

Slides for Chapter 8:

Distributed Objects and Components

2 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.1

Distributed objects

2

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.2

IDL interfaces Shape and ShapeList

struct Rectangle{ 1

 long width;

 long height;

 long x;

 long y;

} ;

struct GraphicalObject { 2

 string type;

 Rectangle enclosing;

 boolean isFilled;

};

interface Shape { 3

 long getVersion() ;

 GraphicalObject getAllState() ; // returns state of the GraphicalObject

};

typedef sequence <Shape, 100> All; 4

interface ShapeList { 5

 exception FullException{ }; 6

 Shape newShape(in GraphicalObject g) raises (FullException); 7

 All allShapes(); // returns sequence of remote object references 8

 long getVersion() ;

};

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.3

IDL module Whiteboard

module Whiteboard {

 struct Rectangle{

 ...} ;

 struct GraphicalObject {

 ...};

 interface Shape {

 ...};

 typedef sequence <Shape, 100> All;

 interface ShapeList {

 ...};

};

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.4

IDL constructed types – 1

Type Examples Use

sequence typedef sequence <Shape, 100> All;
typedef sequence <Shape> All
bounded and unbounded sequences
o f Shapes

Defines a type for a variable-length
sequence of elements of a specified
IDL type. An upper bound on the
length may be specified.

string String name;
typedef string<8> SmallString;

unbounded and bounded
sequences of characters

Defines a sequences of characters,
terminated by the null character. An

upper bound on the length may be
specified.

array typedef octet uniqueId[12];

typedef GraphicalObject GO[10][8]

Defines a type for a multi-dimensional
fixed-length sequence of elements of a
specified IDL type.

this figure continues on the next slide

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.4

 IDL constructed types – 2

Type Examples Use

record struct GraphicalObject {

string type;
Rectangle enclosing;
boolean isFilled;

};

Defines a type for a record containing a
group of related entities. Structs are
passed by value in arguments and
results.

enumerated enum Rand
(Exp, Number, Name);

The enumerated type in IDL maps a
type name onto a small set of integer
values.

union union Exp switch (Rand) {
 case Exp: string vote;
case Number: long n;
case Name: string s;

The IDL discriminated union allows
one of a given set of types to be passed
as an argument. The header is
parameterized by an enum , which
specifies which member is in use. };

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.5

The main components of the CORBA architecture

client

server

proxy

or dynamic invocation

implementation

 repository object
adapter

ORB ORB

skeleton

or dynamic skeleton

client
 program

interface

 repository

Request

Reply
core core for A

Servant

 A

8 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.6

CORBA Services (1)

this figure continues on the next slide

9 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.6

CORBA Services (continued)

9

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.7
Java interfaces generated by idlj from CORBA interface ShapeList

public interface ShapeListOperations {

 Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException;

 Shape[] allShapes();

 int getVersion();

}

public interface ShapeList extends ShapeListOperations, org.omg.CORBA.Object,

 org.omg.CORBA.portable.IDLEntity { }

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.8
ShapeListServant class of the Java server program for CORBA interface ShapeList

import org.omg.CORBA.*;

import org.omg.PortableServer.POA;

class ShapeListServant extends ShapeListPOA {

 private POA theRootpoa;

 private Shape theList[];

 private int version;

 private static int n=0;

 public ShapeListServant(POA rootpoa){

 theRootpoa = rootpoa;

 // initialize the other instance variables

 }

// continued on the next slide

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.8 continued

public Shape newShape(GraphicalObject g)

 throws ShapeListPackage.FullException { 1

 version++;

 Shape s = null;

 ShapeServant shapeRef = new ShapeServant(g, version);

 try {

 org.omg.CORBA.Object ref =

 theRoopoa.servant_to_reference(shapeRef); 2

 s = ShapeHelper.narrow(ref);

 } catch (Exception e) {}

 if(n >=100) throw new ShapeListPackage.FullException();

 theList[n++] = s;

 return s;

 }

 public Shape[] allShapes(){ ... }

 public int getVersion() { ... }

}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.9

Java class ShapeListServer

import org.omg.CosNaming.*; import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*; import org.omg.PortableServer.*;

public class ShapeListServer {

 public static void main(String args[]) {

 try{

 ORB orb = ORB.init(args, null); 1

 POA rootpoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));2

 rootpoa.the_POAManager().activate(); 3

 ShapeListServant SLSRef = new ShapeListServant(rootpoa); 4

 org.omg.CORBA.Object ref = rootpoa.servant_to_reference(SLSRef); 5

 ShapeList SLRef = ShapeListHelper.narrow(ref);

 org.omg.CORBA.Object objRef =orb.resolve_initial_references("NameService");

 NamingContext ncRef = NamingContextHelper.narrow(objRef); 6

 NameComponent nc = new NameComponent("ShapeList", ""); 7

 NameComponent path[] = {nc}; 8

 ncRef.rebind(path, SLRef); 9

 orb.run(); 10

 } catch (Exception e) { ... }

 }}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.10

Java client program for CORBA interfaces Shape and ShapeList

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

public class ShapeListClient{

 public static void main(String args[]) {

 try{

 ORB orb = ORB.init(args, null); 1

 org.omg.CORBA.Object objRef =

 orb.resolve_initial_references("NameService");

 NamingContext ncRef = NamingContextHelper.narrow(objRef);

 NameComponent nc = new NameComponent("ShapeList", "");

 NameComponent path [] = { nc };

 ShapeList shapeListRef =

 ShapeListHelper.narrow(ncRef.resolve(path)); 2

 Shape[] sList = shapeListRef.allShapes(); 3

 GraphicalObject g = sList[0].getAllState(); 4

 } catch(org.omg.CORBA.SystemException e) {...}

 }

15 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.11

An example software architecture

16 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.12

The structure of a container

17 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.13

Application servers

18 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.14

Transaction attributes in EJB.

19 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.15

Invocation contexts in EJB

20 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.16

An example component configuration in Fractal

21 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.17

The structure of a Fractal component

22 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 8.18

Component and ContentController Interfaces in Fractal

