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Figure 8.1 

Distributed objects 
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Figure 8.2 

IDL interfaces Shape and ShapeList 

struct Rectangle{ 1 

 long width;  

 long height; 

 long x; 

 long y; 

} ; 

struct GraphicalObject { 2 

 string type;  

 Rectangle enclosing;  

 boolean isFilled; 

}; 

interface Shape {   3 

 long getVersion() ; 

 GraphicalObject getAllState() ;  // returns state of the GraphicalObject 

}; 

typedef sequence <Shape, 100> All;   4 

interface ShapeList {  5 

 exception FullException{ };   6 

 Shape newShape(in GraphicalObject g) raises (FullException); 7 

 All allShapes(); // returns sequence of remote object references 8 

 long getVersion() ; 

}; 
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Figure 8.3 

IDL module Whiteboard 

module Whiteboard { 

 struct Rectangle{ 

 ...} ; 

 struct GraphicalObject { 

 ...}; 

 interface Shape { 

 ...}; 

 typedef sequence <Shape, 100> All; 

 interface ShapeList { 

 ...}; 

}; 
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Figure 8.4 

IDL constructed types – 1 

Type Examples Use 

sequence typedef sequence <Shape, 100> All; 
typedef sequence <Shape> All 
bounded and unbounded sequences 
o f Shapes 

Defines a type for a variable-length 
sequence of elements of a specified    
IDL type.  An upper bound on the 
length may be specified. 

string String name;  
typedef string<8> SmallString;  

unbounded  and bounded 
sequences of characters 

Defines a sequences of characters, 
terminated by the null character. An 

upper bound on the length may be 
specified. 

array typedef octet uniqueId[12]; 

typedef GraphicalObject GO[10][8] 

Defines a type for a multi-dimensional 
fixed-length sequence of elements of a 
specified IDL type. 

this figure continues on the next slide 
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Figure 8.4 

 IDL constructed types – 2 

Type Examples Use 

record struct GraphicalObject {      

string type;      
Rectangle enclosing;      
boolean isFilled;    

}; 

Defines a type for a record containing a 
group of related entities.  Structs are 
passed by value in arguments and 
results.     

enumerated enum Rand       
(Exp, Number, Name); 

The enumerated type in IDL maps a 
type name onto a small set of integer 
values. 

union union Exp switch (Rand)  { 
 case Exp: string vote;      
case Number: long n;      
case Name: string s; 

The IDL discriminated union allows 
one of a given set of types to be passed 
as an argument. The header is 
parameterized by an  enum , which    
specifies which member is in use.    }; 
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Figure 8.5 

The main components of the CORBA architecture 
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Figure 8.6 

CORBA Services (1) 

this figure continues on the next slide 
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Figure 8.6 

CORBA Services (continued) 
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Figure 8.7 
Java interfaces generated by idlj from CORBA interface ShapeList 

public interface ShapeListOperations { 

    Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException; 

    Shape[] allShapes(); 

    int getVersion(); 

} 

 

public interface ShapeList extends ShapeListOperations, org.omg.CORBA.Object, 

  org.omg.CORBA.portable.IDLEntity { }  
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Figure 8.8 
ShapeListServant class of the Java server program for CORBA interface ShapeList 

import org.omg.CORBA.*;               

import org.omg.PortableServer.POA; 

class ShapeListServant extends ShapeListPOA { 

 private POA theRootpoa;       

 private Shape theList[]; 

 private int version;                  

 private static int n=0; 

 public ShapeListServant(POA rootpoa){ 

  theRootpoa = rootpoa;          

          //  initialize the other instance variables 

 }  

// continued on the next slide 
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Figure 8.8 continued 

public Shape newShape(GraphicalObject g)  

  throws ShapeListPackage.FullException { 1 

  version++;                         

  Shape s = null; 

        ShapeServant shapeRef = new ShapeServant( g, version); 

    try { 

   org.omg.CORBA.Object ref =  

    theRoopoa.servant_to_reference(shapeRef); 2 

   s = ShapeHelper.narrow(ref); 

  } catch (Exception e) {} 

   if(n >=100) throw new ShapeListPackage.FullException(); 

  theList[n++] = s; 

  return s;         

 } 

 public  Shape[] allShapes(){ ... } 

 public int getVersion() { ... } 

} 
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Figure 8.9  

Java class ShapeListServer 

import org.omg.CosNaming.*;   import org.omg.CosNaming.NamingContextPackage.*; 

import org.omg.CORBA.*;      import org.omg.PortableServer.*; 

public class ShapeListServer { 

 public static void main(String args[]) { 

     try{ 

  ORB orb = ORB.init(args, null); 1               

  POA rootpoa =  POAHelper.narrow(orb.resolve_initial_references("RootPOA"));2 

  rootpoa.the_POAManager().activate(); 3 

  ShapeListServant SLSRef = new ShapeListServant(rootpoa); 4     

  org.omg.CORBA.Object ref = rootpoa.servant_to_reference(SLSRef); 5 

  ShapeList SLRef = ShapeListHelper.narrow(ref);  

  org.omg.CORBA.Object objRef =orb.resolve_initial_references("NameService");              

   NamingContext ncRef = NamingContextHelper.narrow(objRef); 6 

  NameComponent nc = new NameComponent("ShapeList", ""); 7 

  NameComponent path[] = {nc}; 8 

  ncRef.rebind(path, SLRef);                                             9 

  orb.run();  10 

     } catch (Exception e) { ... } 

 }} 
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Figure 8.10 

Java client program for CORBA interfaces Shape and ShapeList 

import org.omg.CosNaming.*; 

import org.omg.CosNaming.NamingContextPackage.*; 

import org.omg.CORBA.*; 

public class ShapeListClient{ 

 public static void main(String args[]) { 

  try{ 

   ORB orb = ORB.init(args, null);  1 

   org.omg.CORBA.Object objRef =  

    orb.resolve_initial_references("NameService"); 

   NamingContext ncRef = NamingContextHelper.narrow(objRef); 

   NameComponent nc = new NameComponent("ShapeList", ""); 

   NameComponent path [] = { nc }; 

   ShapeList shapeListRef =  

    ShapeListHelper.narrow(ncRef.resolve(path)); 2 

   Shape[] sList = shapeListRef.allShapes(); 3 

   GraphicalObject g = sList[0].getAllState(); 4 

  } catch(org.omg.CORBA.SystemException e) {...} 

    } 
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Figure 8.11 

An example software architecture 



16 Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5    

©  Pearson Education 2012  

Figure 8.12  

The structure of a container 
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Figure 8.13 

Application servers 
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Figure 8.14 

Transaction attributes in EJB. 
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Figure 8.15 

Invocation contexts in EJB 
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Figure 8.16  

An example component configuration in Fractal 
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Figure 8.17  

The structure of a Fractal component 



22 Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5    

©  Pearson Education 2012  

Figure 8.18 

Component and ContentController Interfaces in Fractal 


