Slides for Chapter 8:
Distributed Objects and Components

Figure 8.1
Distributed objects

Objects Distributed objects Description of distributed object

Object references ~ Remote object references Globally unique reference for a
distributed object; may be passed as a
parameter.

Interfaces Remote interfaces Provides an abstract specification of the

methods that can be invoked on the
remote object; specified using an
interface definition language (IDL).

Actions Distributed actions Initiated by a method invocation,
potentially resulting in invocation
chains; remote invocations use RMI.

Exceptions Distributed exceptions Additional exceptions generated from
the distributed nature of the system,
including message loss or process
failure.

Garbage collection Distributed garbage collection Extended scheme to ensure that an
object will continue to exist if at least
one object reference or remote object
reference exists for that object,
otherwise, it should be removed.
Requires a distributed garbage
collection algorithm.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 8.2
IDL interfaces Shape and ShapelList

struct Rectangle{ 1 struct GraphicalObject {
long width; string type;
long height; Rectangle enclosing;
long x; boolean isFilled;
long y; P8
} -
interface Shape {
long getVersion() ;
GraphicalObject getAllState() ; // returns state of the GraphicalObject
}’.

typedef sequence <Shape, 100> All;
interface Shapelist {
exception FullException{ };
Shape newShape(in GraphicalObject g) raises (FullException);

All allShapes(); // returns sequence of remote object references
long getVersion() ;

}’.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Co N O\ L K

Figure 8.3
IDL module Whiteboard

module Whiteboard {
struct Rectangle{

L
struct GraphicalObject {

L
interface Shape {

L
pedef sequence <Shape, 100> All;
interface Shapelist {

s

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 8.4

IDL constructed types — 1

Type

Examples

Use

sequence

string

array

typedef sequence <Shape, 100> All;
typedef sequence <Shape> All

bounded and unbounded sequences
of Shapes

String name;

typedef string<8> SmallString;
unbounded and bounded
sequences of characters

typedef octet uniqueld[12];
typedef GraphicalObject GO[10][8]

Defines a type for a variable-length
sequence of elements of a specified
IDL type. An upper bound on the
length may be specified.

Defines a sequences of characters,
terminated by the null character. An

upper bound on the length may be
specified.

Defines a type for a multi-dimensional
fixed-length sequence of elements of a

specified IDL type.

this figure continues on the next slide

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 8.4
IDL constructed types — 2

Type Examples Use
record struct GraphicalObject { Defines a type for a record containing a
string type; group of related entities. Structs are
Rectangle enclosing, passed by value in arguments and
boolean isFilled; results.
enumerated enum Rand The enumerated type in IDL maps a
(Exp, Number, Name), type name onto a small set of integer
values.
union union Exp switch (Rand) { The IDL discriminated union allows
case Exp: string vote; one of a given set of types to be passed
case Number: long n, as an argument. The header is
case Name: string s; parameterized by an enum, which

2 specifies which member is in use.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 8.5
The main components of the CORBA architecture

client server

implementation interface

repository repository

object

skeleton
)

adapter
Request
progra
Reply
or dynamic invocation or dynamic skeleton

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 8.6

CORBA Services (1)

CORBA Service

Naming service

Trading service

Event service

Notification
service

Role Further details

Supports naming in CORBA, in particular mapping names to [OMG 2004b]
remote object references within a given naming context (see

Chapter 9).

Whereas the Naming service allows objects to be located by [OMG 2000a,
name, the Trading service allows them to be located by Henning and
attribute; that is, it is a directory service. The underlying Vinoski 1999]
database manages a mapping of service types and associated

attributes onto remote object references.

Allows objects of interest to communicate notifications to [Farley 1998,
subscribers using ordinary CORBA remote method OMG 2004c]
invocations (see Chapter 6 for more on event services

generally).

Extends the event service with added capabilities including [OMG 2004d]
the ability to define filters expressing events of interest and

also to define the reliability and ordering properties of the
underlying event channel. this figure continues on the next slide

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 8
© Pearson Education 2012

Figure 8.6

CORBA Services (continued)

Security service

Transaction
service

Concurrency
control service

Persistent state
service

Lifecycle service

Supports a range of security mechanisms including
authentication, access control, secure communication,
auditing and nonrepudiation (see Chapter 11).

Supports the creation of both flat and nested transactions (as
defined in Chapters 16 and 17).

Uses locks to apply concurrency control to the access of
CORBA objects (may be used via the transaction service or as
an independent service).

Offers a persistent object store for CORBA, used to save and
restore the state of CORBA objects (implementations are
retrieved from the implementation repository).

Defines conventions for creating, deleting, copying and
moving CORBA objects; for example, how to use factories to
create objects.

[Blakely 1999,
Baker 1997,
OMG 2002b]

[OMG 2003]

[OMG 2000b]

[OMG 2002d]

[OMG 2002¢]

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 8.7
Java interfaces generated by idlj from CORBA interface ShapeList

public interface ShapeListOperations {
Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException,

Shape[] allShapes(),
int getVersion(),

public interface ShapelList extends ShapeListOperations, org.omg. CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 8.8
ShapeListServant class of the Java server program for CORBA interface ShapeList

import org.omg.CORBA.*;
import org.omg.PortableServer. POA,

class ShapelListServant extends ShapeListPOA {

private POA theRootpoa,

private Shape thelist[],

private int version,

private static int n=0;

public ShapelListServant(POA rootpoa){
theRootpoa = rootpoa,
// initialize the other instance variables

/

// continued on the next slide

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 8.8 continued

public Shape newShape(GraphicalObject g)
throws ShapelistPackage.FullException {
version+-+;
Shape s = null;
ShapeServant shapeRef = new ShapeServant(g, version),
try {
org.omg.CORBA.Object ref =
theRoopoa.servant to_reference(shapeRef);
s = ShapeHelper.narrow(ref),
} catch (Exception e) {}
if(n >=100) throw new ShapelListPackage.FullException();
theList[n++] = s;
return s,
/
public Shape[] allShapes(){ ... }
public int getVersion() { ... }

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 8.9
Java class ShapeListServer

import org.omg.CosNaming.*; import org.omg.CosNaming. NamingContextPackage.*;
import org.omg.CORBA.*; import org.omg.PortableServer. *;
public class ShapelListServer {

public static void main(String args[]) {

try{
ORB orb = ORB.init(args, null); 1
POA rootpoa = POAHelpernarrow(orb.resolve initial references("RootPOA"));?
rootpoa.the POAManager().activate(); 3
ShapelistServant SLSRef = new ShapelistServant(rootpoa), 4
org.omg.CORBA.Object ref = rootpoa.servant to_reference(SLSRef); 5

Shapelist SLRef = ShapeListHelpernarrow(ref);
org.omg.CORBA.Object objRef =orb.resolve_initial references("NameService"),
NamingContext ncRef = NamingContextHelper.narrow(objRef),
NameComponent nc = new NameComponent("ShapeList", "");
NameComponent path[] = {nc},
ncRef.rebind(path, SLRef);
orb.run(),
} catch (Exception e) { ... }

i

~ O o N D\

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 8.10
Java client program for CORBA interfaces Shape and ShapelList

import org.omg.CosNaming. *;
import org.omg.CosNaming. NamingContextPackage. *;
import org.omg.CORBA. *;
public class ShapeListClient{
public static void main(String args[]) {
try{
ORB orb = ORB.init(args, null),
org.omg.CORBA.Object objRef =
orb.resolve _initial references("NameService");
NamingContext ncRef = NamingContextHelper.narrow(objRef),
NameComponent nc = new NameComponent("ShapeList", "");
NameComponent path [] = { nc };
ShapelList shapelListRef =
ShapelListHelper.narrow(ncRef.resolve(path)),
Shape[] sList = shapelistRef.allShapes(),
GraphicalObject g = sList[0].getAllState(),
} catch(org.omg. CORBA.SystemException e) {...}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

o

Figure 8.11
An example software architecture

Directory service Required interface

Provided interface

Flat file service

File service

Block module Device module

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

15

Figure 8.12
The structure of a container

Lifecycle interface

External (provided) Calls to external

distributed system
P> services

interfaces

>Components

-

Interception

Incoming invocations

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 1 6
© Pearson Education 2012

Figure 8.13
Application servers

Technology Developed by Further details
WebSphere Application Server 1BM [www.ibm.com]
Enterprise JavaBeans SUN [java.sun.com XII]
Spring Framework SpringSource [www.springsource.org]
(a division of VMware)
JBoss JBoss Community [www.]boss.org]
CORBA Component Model OMG [Wang et al. 2001]
JOnAS OW?2 Consortium [jonas.ow2.org]

GlassFish SUN [glassfish.dev.java.net]

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 1 7
© Pearson Education 2012

Figure 8.14

Transaction attributes in EJB.

Attribute

REQUIRED

REQUIRES NEW
SUPPORTS

NOT SUPPORTED

MANDATORY

NEVER

Policy

[f the client has an associated transaction running, execute
within this transaction; otherwise, start a new transaction.

Always start a new transaction for this invocation.

If the client has an associated transaction, execute the
method within the context of this transaction; if not, the call
proceeds without any transaction support.

[f the client calls the method from within a transaction, then
this transaction is suspended before calling the method and
resumed afterwards — that is, the invoked method is excluded
from the transaction.

The associated method must be called from within a client
transaction; if not, an exception is thrown,

The associated methods must not be called from within a
client transaction; if this is attempted, an exception is
thrown.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

18

Figure 8.15
Invocation contexts in EJB

Signature Use

public Object getTarget() Returns the bean instance associated with the
Incoming invocation or event

public Method getMethod() Returns the method being invoked

public Object[] getParameters() Returns the set of parameters associated with the
intercepted business method

public void setParameters(Allows the parameter set to be altered by the
Object[] params) interceptor, assuming type correctness 1s
maintained

public Object proceed() throws Execution proceeds to next interceptor in the chain
Exception (if any) or the method that has been intercepted

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 1 9
© Pearson Education 2012

Figure 8.16
An example component configuration in Fractal

cs.ClientServer

- r S S
Caller } p-»}— Callee

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

20

Figure 8.17
The structure of a Fractal component

Control interfaces

1 1

T
Q O O Controllers
-

Client interface

— Server interfaces
Content -
Membrane
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 2 1

© Pearson Education 2012

Figure 8.18
Component and ContentController Interfaces in Fractal

public interface Component {
Object[] getFclnterfaces (),
Object getFclnterface (String itfName),
Type getFcType (),

/

public interface ContentController {
Object[] getFclnternallnterfaces (),

Object getFcinterfacelnterface(String itfName),

Component[] getFcSubComponents (),
void addFcSubComponent (Component c);
void removeFcSubComponent(Component c),

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

22

