
Slides for Chapter 12:

Distributed File Systems

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.1

Storage systems and their properties

Sharing Persis-
tence

Distributed
cache/replicas

Consistency
maintenance

Example

Main memory RAM

File system UNIX file system

Distributed file system Sun NFS

Web Web server

Distributed shared memory Ivy (DSM, Ch. 18)

Remote objects (RMI/ORB) CORBA

Persistent object store 1 CORBA Persistent
Object Service

Peer-to-peer storage system OceanStore (Ch. 10)

1

1

1

2

Types of consistency:

 1: strict one-copy. 3: slightly weaker guarantees. 2: considerably weaker guarantees.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.2

File system modules

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk I/O and buffering

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.3

File attribute record structure

File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.4

UNIX file system operations

filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.

count = read(filedes, buffer, n)

count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).

status = stat(name, buffer) Gets the file attributes for file name into buffer.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.5

File service architecture

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.6

Flat file service operations

Read(FileId, i, n) -> Data
— throws BadPosition

If 1 ≤ i ≤ Length(File): Reads a sequence of up to n items
from a file starting at item i and returns it in Data.

Write(FileId, i, Data)
— throws BadPosition

If 1 ≤ i ≤ Length(File)+1: Writes a sequence of Data to a
file, starting at item i, extending the file if necessary.

Create() -> FileId Creates a new file of length 0 and delivers a UFID for it.

Delete(FileId) Removes the file from the file store.

GetAttributes(FileId) -> Attr Returns the file attributes for the file.

SetAttributes(FileId, Attr) Sets the file attributes (only those attributes that are not
shaded in Figure 12.3).

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.7

Directory service operations

Lookup(Dir, Name) -> FileId
— throws NotFound

Locates the text name in the directory and returns the
relevant UFID. If Name is not in the directory, throws an
exception.

AddName(Dir, Name, FileId)
— throws NameDuplicate

If Name is not in the directory, adds (Name, File) to the
directory and updates the file’s attribute record.
If Name is already in the directory: throws an exception.

UnName(Dir, Name)
— throws NotFound

If Name is in the directory: the entry containing Name is
removed from the directory.
If Name is not in the directory: throws an exception.

GetNames(Dir, Pattern) -> NameSeq Returns all the text names in the directory that match the
regular expression Pattern.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.8

NFS architecture

UNIX kernel

protocol

Client computer Server computer

system calls

Local Remote

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

NFS

UNIX

UNIX kernel

Virtual file system Virtual file system

O
th

e
r

 f
ile

 s
y
s
te

m

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.9

NFS server operations (simplified) – 1

lookup(dirfh, name) -> fh, attr Returns file handle and attributes for the file name in the directory

dirfh.

create(dirfh, name, attr) ->

newfh, attr
Creates a new file name in directory dirfh with attributes attr and

returns the new file handle and attributes.

remove(dirfh, name) status Removes file name from directory dirfh.

getattr(fh) -> attr Returns file attributes of file fh. (Similar to the UNIX stat system

call.)

setattr(fh, attr) -> attr Sets the attributes (mode, user id, group id, size, access time and
modify time of a file). Setting the size to 0 truncates the file.

read(fh, offset, count) -> attr, data Returns up to count bytes of data from a file starting at offset.

Also returns the latest attributes of the file.

write(fh, offset, count, data) -> attr Writes count bytes of data to a file starting at offset. Returns the

attributes of the file after the write has taken place.

rename(dirfh, name, todirfh, toname)

-> status
Changes the name of file name in directory dirfh to toname in

directory to todirfh .

link(newdirfh, newname, dirfh, name)

-> status
Creates an entry newname in the directory newdirfh which refers to

file name in the directory dirfh.

Continues on next slide ...

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.9

NFS server operations (simplified) – 2

symlink(newdirfh, newname, string)
 -> status

Creates an entry newname in the directory newdirfh of type

symbolic link with the value string. The server does not interpret

the string but makes a symbolic link file to hold it.

readlink(fh) -> string Returns the string that is associated with the symbolic link file

identified by fh.

mkdir(dirfh, name, attr) ->

 newfh, attr

Creates a new directory name with attributes attr and returns the

new file handle and attributes.

rmdir(dirfh, name) -> status Removes the empty directory name from the parent directory dirfh.

Fails if the directory is not empty.

readdir(dirfh, cookie, count) ->

 entries

Returns up to count bytes of directory entries from the directory

dirfh. Each entry contains a file name, a file handle, and an opaque

pointer to the next directory entry, called a cookie. The cookie is

used in subsequent readdir calls to start reading from the following

entry. If the value of cookie is 0, reads from the first entry in the

directory.

statfs(fh) -> fsstats Returns file system information (such as block size, number of

free blocks and so on) for the file system containing a file fh.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.10

Local and remote file systems accessible on an NFS client

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

Note:

 The file system mounted at /usr/students in the client is actually the sub-tree located at /export/people in Server 1;

the file system mounted at /usr/staff in the client is actually the sub-tree located at /nfs/users in Server 2.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.11

Distribution of processes in the Andrew File System

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.12

File name space seen by clients of AFS

/ (root)

tmp bin cmuvmunix. . .

bin

SharedLocal

Symbolic

links

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.13

System call interception in AFS

UNIX file
system calls

Non-local file
operations

Workstation

Local
disk

User
program

UNIX kernel

Venus

UNIX file system

Venus

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.14

Implementation of file system calls in AFS

User process UNIX kernel Venus Net Vice

open(FileName,
mode)

If FileName refers to a
file in shared file space,
pass the request to

Venus.

Open the local file and
return the file

descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise,

send a request for the
file to the Vice server

that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache

list and return the local
name to UNIX.

Transfer a copy of the

file and a callback
promise to the
workstation. Log the

callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation

on the local copy.

write(FileDescriptor,

Buffer, length)

Perform a normal

UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server

that is the custodian of
the file.

Replace the file

contents and send a
callback to all other
clients holdingcallback

promises on the file.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 12.15

The main components of the Vice service interface

Fetch(fid) -> attr, data Returns the attributes (status) and, optionally, the contents of file
identified by the fid and records a callback promise on it.

Store(fid, attr, data) Updates the attributes and (optionally) the contents of a specified
file.

Create() -> fid Creates a new file and records a callback promise on it.

Remove(fid) Deletes the specified file.

SetLock(fid, mode) Sets a lock on the specified file or directory. The mode of the
lock may be shared or exclusive. Locks that are not removed
expire after 30 minutes.

ReleaseLock(fid) Unlocks the specified file or directory.

RemoveCallback(fid) Informs server that a Venus process has flushed a file from its
cache.

BreakCallback(fid) This call is made by a Vice server to a Venus process. It cancels
the callback promise on the relevant file.

