

Slides for Chapter 17:

 Distributed transactions

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.1

Distributed transactions

(a) Flat transaction (b) Nested transactions

Client

X

Y

Z

X

Y

M

N T
1

T
2

T
11

Client

P

T

T
12

T
21

T
22

T

T

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.2

Nested banking transaction

a.withdraw(10)

c . deposit(10)

b.withdraw(20)

d.deposit(20)

Client A

B

C

T
1

T
2

T
3

T
4

T

D

X

Y

Z

T = openTransaction

 openSubTransaction
a.withdraw(10);

 closeTransaction

 openSubTransaction
b.withdraw(20);

 openSubTransaction
c.deposit(10);

 openSubTransaction
d.deposit(20);

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.3

A distributed banking transaction

. .

BranchZ

BranchX

participant

participant

C

D

Client

BranchY

B

A

participant join

 join

 join

T

 a.withdraw(4);

 c.deposit(4);

 b.withdraw(3);

 d.deposit(3);

openTransaction

 b.withdraw(T, 3);

closeTransaction

T = openTransaction

 a.withdraw(4);

 c.deposit(4);
 b.withdraw(3);
 d.deposit(3);

 closeTransaction

 Note: the coordinator is in one of the servers, e.g. BranchX

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.4

Operations for two-phase commit protocol

canCommit?(trans)-> Yes / No

 Call from coordinator to participant to ask whether it can commit a transaction.

 Participant replies with its vote.

doCommit(trans)

 Call from coordinator to participant to tell participant to commit its part of a

 transaction.

doAbort(trans)

 Call from coordinator to participant to tell participant to abort its part of a

 transaction.

haveCommitted(trans, participant)

 Call from participant to coordinator to confirm that it has committed the

 transaction.

getDecision(trans) -> Yes / No

 Call from participant to coordinator to ask for the decision on a transaction after

 it has voted Yes but has still had no reply after some delay. Used to recover from

 server crash or delayed messages.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.5

The two-phase commit protocol

Phase 1 (voting phase):

1. The coordinator sends a canCommit? request to each of the participants in the

transaction.

2. When a participant receives a canCommit? request it replies with its vote (Yes or

No) to the coordinator. Before voting Yes, it prepares to commit by saving objects in

permanent storage. If the vote is No the participant aborts immediately.

Phase 2 (completion according to outcome of vote):

3. The coordinator collects the votes (including its own).

(a) If there are no failures and all the votes are Yes the coordinator decides to commit

the transaction and sends a doCommit request to each of the participants.

(b) Otherwise the coordinator decides to abort the transaction and sends doAbort

requests to all participants that voted Yes.

4. Participants that voted Yes are waiting for a doCommit or doAbort request from the

coordinator. When a participant receives one of these messages it acts accordingly

and in the case of commit, makes a haveCommitted call as confirmation to the

coordinator.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.6

Communication in two-phase commit protocol

canCommit?

Yes

doCommit

haveCommitted

Coordinator

1

3

(waiting for votes)

committed

done

prepared to commit

step

Participant

2

4

(uncertain)

prepared to commit

committed

status step status

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.7

Operations in coordinator for nested transactions

openSubTransaction(trans) -> subTrans

 Opens a new subtransaction whose parent is trans and

 returns a unique subtransaction identifier.

getStatus(trans)-> committed, aborted, provisional

 Asks the coordinator to report on the status of the transaction

 trans. Returns values representing one of the following:

 committed, aborted, provisional.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.8

Transaction T decides whether to commit

1

2

T
11

T
12

T
22

T
21

abort (at M)

provisional commit (at N)

provisional commit (at X)

aborted (at Y)

provisional commit (at N)

provisional commit (at P)

T

T

T

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.9

Information held by coordinators of nested transactions

Coordinator of

transaction

Child

transactions

Participant Provisional

commit list

Abort list

T T 1 , T 2 yes T 1 , T 12 T 11 , T 2

T 1 T 11 , T 12 yes T 1 , T 12 T 11

T 2 T 21 , T 22 no (aborted) T 2

T 11 no (aborted) T 11

T 12 , T 21 T 12 but not T 21 T 21 , T 12

T 22 no (parent aborted) T 22

*T 21’s parent has aborted

*

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.10

canCommit? for hierarchic two-phase commit protocol

canCommit?(trans, subTrans) -> Yes / No

 Call a coordinator to ask coordinator of child subtransaction

 whether it can commit a subtransaction subTrans. The first

 argument trans is the transaction identifier of top-level

 transaction. Participant replies with its vote Yes / No.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.11

canCommit? for flat two-phase commit protoco

canCommit?(trans, abortList) -> Yes / No

 Call from coordinator to participant to ask whether it can

 commit a transaction. Participant replies with its

 vote Yes / No.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.12

Interleavings of transactions U, V and W

U V W

d.deposit(10) lock D

b.deposit(10) lock B

a.deposit(20) lock A at Y

at X

c.deposit(30) lock C

b.withdraw(30) wait at Y at Z

c.withdraw(20) wait at Z

a.withdraw(20) wait at X

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.13

Distributed deadlock

D

Waits for

Waits

for

Held by

Held

by

B Waits for

Held

by

X

Y

Z

Held by

W

U V

A C

W

V

U

(a) (b)

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.14

Local and global wait-for graphs

X

T U

Y

V T
T

U V

 local wait-for graph local wait-for graph global deadlock detector

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.15

Probes transmitted to detect deadlock

V

Held by

W

Waits for Held by

Waits
for

Waits for

Deadlock

detected

U

C

A

B

Initiation

W U V W

W U

W U V

Z

Y

X

→ → →

→ →

→

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.16

Two probes initiated

(a) initial situation (b) detection initiated at object

requested by T

(c) detection initiated at object

requested by W

U

T

V

W

Waits for

Waits
for

V

W

U

T

T U W V
T U W

T U
Waits for

U

V

T

W

W V T
W V T U

W V

Waits
for

→

→ →
→ →

→ →

→ → →

→

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.17

Probes travel downhill

. .

(b) Probe is forwarded when V starts waiting (a) V stores probe when U starts waiting

U

W

V

probe
queue

U V

Waits for

B
Waits for
B

Waits

for C

V W

U V

V

U V

U V U

W probe
queue

→ →

→

→

→

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.18

Types of entry in a recovery file

Type of entry Description of contents of entry

Object A value of an object.

Transaction status

Transaction identifier, transaction status (prepared , committed

aborted) and other status values used for the two-phase

commit protocol.

Intentions list
Transaction identifier and a sequence of intentions, each of

which consists of <objectID, Pi>, where Pi is the position in the

recovery file of the value of the object.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.19

Log for banking service

P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7

Object: A Object: B Object: C Object: A Object: B Trans: T Trans: T Object: C Object: B Trans: U
100 200 300 80 220 prepared committed 278 242 prepared

< A , P 1 > < C , P 5 >
< B , P 2 > < B , P 6 >
P 0 P 3 P 4

Checkpoint
End

of log

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.20

Shadow versions

Map at start Map when T commits

A P 0 A P 1

B P 0 ' B P 2

C P 0 " C P 0 "

P 0 P 0 ' P 0 " P 1 P 2 P 3 P 4

Version store 100 200 300 80 220 278 242

Checkpoint

→

→

→

→

→

→

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.21

Log with entries relating to two-phase commit protocol

Trans: T Coord’r: T Trans: T Trans: U Part’pant: U Trans: U Trans: U

prepared part’pant
list: . . .

committed prepared Coord’r: . . uncertain committed

intentions
list

intentions
list

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.22

 Recovery of the two-phase commit protocol

Role Status Action of recovery manager

Coordinator prepared No decision had been reached before the server failed. It sends
abortTransaction to all the servers in the participant list and adds the
transaction status aborted in its recovery file. Same action for state
aborted . If there is no participant list, the participants will eventually
timeout and abort the transaction.

Coordinator committed A decision to commit had been reached before the server failed. It
sends a doCommit to all the participants in its participant list (in case
it had not done so before) and resumes the two-phase protocol at step 4
(Fig 17.5).

Participant committed The participant sends a haveCommitted message to the coordinator (in
case this was not done before it failed). This will allow the coordinator
to discard information about this transaction at the next checkpoint.

Participant uncertain The participant failed before it knew the outcome of the transaction. It
cannot determine the status of the transaction until the coordinator
informs it of the decision. It will send a getDecision to the coordinator
to determine the status of the transaction. When it receives the reply it
will commit or abort accordingly.

Participant prepared The participant has not yet voted and can abort the transaction.

Coordinator done No action is required.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 17.23

Nested transactions

T

A 1 A 11 A 12 A 2

A 1

T 1 T 11 T 12 T 2

A 11

A 11

A 12

A 12

A 2

top of stack

T
1

T 2

T11

T 12

