Slides for Chapter 21:
Designing Distributed Systems:
Google Case Study

Figure 21.1
Outline architecture of the original Google search engine [Brin and Page 1998]

URL server —» Crawlers ____, Store server

\

Anchors
/ \ Repository
URL resolver Indexer
Links Doc Lexicon

index
Storage barrels

T

PageRank » Searcher

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.2

Example Google applications

Application
Gmail

Google Docs
Google Sites
Google Talk
Google Calendar
Google Wave
Google News
Google Maps

Google Earth

Google App
Engine

Description

Mail system with messages hosted by Google but desktop-like message management.
Web-based office suite supporting shared editing of documents held on Google servers.
Wiki-like web sites with shared editing facilities.

Supports instant text messaging and Voice over IP.

Web-based calendar with all data hosted on Google servers.

Collaboration tool integrating email, instant messaging, wikis and social networks.
Fully automated news aggregator site.

Scalable web-based world map including high-resolution imagery and unlimited user-
generated overlays.

Scalable near-3D view of the globe with unlimited user-generated overlays.

Google distributed infrastructure made available to outside parties as a service (platform as
a service).

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.3
Organization of the Google physical infrastructure

Racks Racks
X (X X X Switches X
Cluster Cluster
Racks
Switches
Cluster
e Data centre architecture

To other data centres and the Internet
(To avoid clutter the Ethernet connections are shown from only one of the clusters to the external

Iln kS) Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.4
The scalability problem in Google

More queriei

Better results

p g
More data

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.5
The overall Google systems architecture

Google applications and services

Google infrastructure (middleware)

Google platform

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.6
Google infrastructure

Distributed computation

Data and coordination

Communication paradigms

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.7
Protocol buffers example

message Book {
required string title = 1;
repeated string author = 2;
enum Status {
IN PRESS = 0;
PUBLISHED = 1;
OUT OF PRINT= 2;
/
message BookStats {
required int32 sales = 1,
optional int32 citations = 2;
optional Status bookstatus = 3 [default = PUBLISHED];
/
optional BookStats statistics = 3;
repeated string keyword = 4;

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.8a
Summary of design choices related to communication paradigms - part 1

Element

Protocol buffers

Design choice

The use of a
language for
specifying data
formats

Simplicity of the
language

Support for a
style of RPC
(taking a single
message as a
parameter and
returning a single
message as
result)

Protocol-agnostic

design

Rationale

Flexible in that
the same
language can be
used for
serializing data
for storage or
communication

Efficient
implementation

More efficient,
extensible and
supports service
evolution

Different RPC
implementation
s can be used

© Pearson Education 2012

Trade-offs

Lack of
expressiveness when
compared, for
example, with XML

Lack of
expressiveness when
compared with other
RPC or RMI packages

No common semantics
for RPC exchanges

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

Figure 21.8b

Summary of design choices related to communication paradigms - part 2

Publish-subscribe

Topic-based
approach

Real-time and
reliability
guarantees

Supports
efficient
implementation

Supports
maintenance of
consistent views
in a timely
manner

Less expressive than
content-based
approaches (mitigated
by the additional
filtering capabilities)

Additional
algorithmic support
required with
associated overhead

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 21.9
Overall architecture of GFS

Client control flow
GFS client p GFS master
library | g metadata
4
[|
|
: p GFS chunkserver GFS chunkserver
e e
L L L L LD L LD UL L LR Z/ZNa 6 data chunks
aaia flow

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.10
Chubby API

Role
General

File

Lock

Operation

Open

Close
Delete

GetContentsAndStat

GetStat
ReadDir

SetContents
SetACL
Acquire
TryAquire

Release

Effect

Opens a given named file or directory and
returns a handle

Closes the file associated with the handle
Deletes the file or directory

Returns (atomically) the whole file contents
and metadata associated with the file

Returns just the metadata

Returns the contents of a directory — that is, the
names and metadata of any children

Writes the whole contents of a file (atomically)
Writes new access control list information
Acquires a lock on a file

Tries to acquire a lock on a file

Releases a lock

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 21.11
Overall architecture of Chubby

Chubby cell

Client

Chubby
client library

.

* denotes current master

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.12
Message exchanges in Paxos (in absence of failures) - step 1

Step 1: electing a coordinator

Propose (seq_number)

Coordinator . Replicas
Promise

4——"/
4—///”
4/

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.12
Message exchanges in Paxos (in absence of failures) - step 2

Step 2: seeking consensus

Accept (value)

Coordinator Acknowledgement Replicas

4//,
4/
//

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.12
Message exchanges in Paxos (in absence of failures) - step 3

Step 3: achieving consensus

commit
Coordinator Replicas

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.13
The table abstraction in Bigtable

Column families and qualifiers

G 2 CF2:q1 CF2:q2 CF3:q1 CF3:q2

P t=10|
R» : | | %=§ limestamps

Rows

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.14
Overall architecture of Bigtable

Client

Bigtable

client library <
A

Row access

» Bigtable
master
Monitoring,
tablet allocation,
garbage collection
Tablet ... Tablet

server server

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 21.15

The storage architecture in Bigtable

Held in main
memory

Memtable

Write throug

Held in GFS

Write

Persistent log

» Merge |¢— Read
A
SSTable files

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 21.16
The hierarchical indexing scheme adopted by Bigtable

User tablets
Other metadata tablets

/'

I I Y [
T
L0

Root tablet
(1st metadata tablet
Chubby file Y ===

ST
T IS I T
[T
R

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.17

Summary of design choices related to data storage and coordination

Design choice

The use of a large
chunk size (64
megabytes)

The use of a
centralized master

Separation of control
and data flows

Relaxed consistency
model

Combined lock and
file abstraction

Whole-file reading
and writing

Client caching with
strict consistency

The use of a table
abstraction

The use of a
centralized master

Separation of control
and data flows

Emphasis on
monitoring and load
balancing

Rationale

Suited to the size of files in GFS;
efficient for large sequential
reads and appends; minimizes the
amount of metadata

The master maintains a global
view that informs management
decisions; simpler to implement

High-performance file access
with minimal master
involvement

High performance, exploiting
semantics of the GFS operations

Multipurpose, for example
supporting elections

Very efficient for small files

Deterministic semantics

Supports structured data
efficiently

As above, master has a global
view; simpler to implement

High-performance data access
with minimal master
involvement

Ability to support very large
numbers of parallel clients

© Pearson Education 2012

Trade-offs

Would be very inefficient
for random access to small
parts of files

Single point of failure
(mitigated by maintaining
replicas of operations logs)
Complicates the client
library as it must deal with

both the master and
chunkservers

Data may be inconsistent,
in particular duplicated

Need to understand and
differentiate between
different facets

Inappropriate for large
files

Overhead of maintaining
strict consistency

Less expressive than a
relational database

Single point of failure;
possible bottleneck

Overhead associated with
maintaining global states

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

Figure 21.18
Examples of the use of MapReduce

Function

Word caunr\

Grep

Sort

N.B. This
relies heavily
on the
intermediate
step

Inverted
index

‘

Initial step

Partition data
into fixed-size
chunks for

processing

[

<

.

Map phase

For each occurrence of
word in data partition,
emit <word, 1>

Output a line if it
matches a given pattern

For each entry in the
input data, output the
key-value pairs to be
sorted

Parse the associated
documents and output
a <word, document
ID> pair wherever that
word exists

‘

Intermediate step

Merge/sort all
key-value keys
according to their
intermediary key

Reduce phase

(For each word in
the intermediary
set, count the
number of 1s

Null

Null

For each word,
produce a list of
(sorted)

kducument IDs

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 21.19
The overall execution of a MapReduce program

e O [
| 1
| i
| !

Input data | |)
| |
— >:
|

| Results

| (written to file

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.20
The overall execution of a Sawzall program

Raw data

Filter

T Filter > Aggregator —

\ Results

< Filter Emitted data

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 21.21

Summary of design choices related to distributed computation

Element

MapReduce

Sawzall

Design choice

The use of a
cCOmmaon
framework

Programming of
system via two
operations, map
and reduce

Inherent support
for fault-tolerant
distributed
computations

Provision of a
specialized
programming
language for
distributed
computation

Rationale

Hides details of parallelization and
distribution from the programmer;
improvements to the infrastructure
immediately exploited by all
MapReduce applications

Very simple programming model
allowing rapid development of
complex distributed computations

Programmer does not need to worry
about dealing with faults
(particularly important for long-
running tasks running over a physical
infrastructure where failures are
expected)

Again, support for rapid
development of often complex
distributed computations with
complexity hidden from the
programmer (even more so than with
MapReduce)

Trade-offs

Design choices within
the framework may not
be appropriate for all
styles of distributed
computation

Again, may not be
appropriate for all
problem domains

Overhead associated
with fault-recovery
strategies

Assumes that programs
can be written in the
style supported (in
terms of filters and
aggregators)

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

