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L10: Linear discriminants analysis 

• Linear discriminant analysis, two classes

• Linear discriminant analysis, C classes

• LDA vs. PCA

• Limitations of LDA

• Variants of LDA

• Other dimensionality reduction methods
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Linear discriminant analysis, two-classes 

• Objective
– LDA seeks to reduce dimensionality while preserving as much of the

class discriminatory information as possible

– Assume we have a set of 𝐷-dimensional samples 𝑥(1, 𝑥(2, … 𝑥(𝑁 , 𝑁1

of which belong to class 𝜔1, and 𝑁2 to class 𝜔2 

– We seek to obtain a scalar 𝑦 by projecting the samples 𝑥 onto a line

𝑦 = 𝑤𝑇𝑥 

– Of all the possible lines we would like to select the one that maximizes
the separability of the scalars
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– In order to find a good projection vector, we need to define a measure
of separation

– The mean vector of each class in 𝑥-space and 𝑦-space is

𝜇𝑖 =
1

𝑁𝑖
 𝑥𝑥∈𝜔𝑖

and 𝜇 𝑖 =
1

𝑁𝑖
 𝑦𝑦∈𝜔𝑖

=
1

𝑁𝑖
 𝑤𝑇𝑥𝑥∈𝜔𝑖

= 𝑤𝑇𝜇𝑖

– We could then choose the distance between the projected means as
our objective function

𝐽 𝑤 = 𝜇 1 − 𝜇 2 = 𝑤𝑇 𝜇1 − 𝜇2

• However, the distance between projected means is not a good measure
since it does not account for the standard deviation within classes
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• Fisher’s solution
– Fisher suggested maximizing the difference between the means,

normalized by a measure of the within-class scatter

– For each class we define the scatter, an equivalent of the variance, as

𝑠 𝑖
2 =  𝑦 − 𝜇 𝑖

2
𝑦∈𝜔𝑖

• where the quantity 𝑠 1
2 + 𝑠 2

2  is called the within-class scatter of the
projected examples

– The Fisher linear discriminant is defined as the linear function
𝑤𝑇𝑥 that maximizes the criterion function

𝐽 𝑤 =
𝜇 1−𝜇 2

2

𝑠 1
2+𝑠 2

2

– Therefore, we are looking for a
projection where examples from
the same class are projected very
close to each other and, at the
same time, the projected means
are as farther apart as possible x1 

x2 

1 
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• To find the optimum 𝑤∗, we must express 𝐽(𝑤) as a function of 𝑤
– First, we define a measure of the scatter in feature space 𝑥

𝑆𝑖 =  𝑥 − 𝜇𝑖 𝑥 − 𝜇𝑖
𝑇

𝑥∈𝜔𝑖

𝑆1 + 𝑆2 = 𝑆𝑊 
• where 𝑆𝑊 is called the within-class scatter matrix

– The scatter of the projection 𝑦 can then be expressed as a function of the scatter
matrix in feature space 𝑥

𝑠 𝑖
2 =  𝑦 − 𝜇 𝑖

2
𝑦∈𝜔𝑖

=  𝑤𝑇𝑥 − 𝑤𝑇𝜇𝑖
2

𝑥∈𝜔𝑖
= 

 =  𝑤𝑇 𝑥 − 𝜇𝑖 𝑥 − 𝜇𝑖
𝑇𝑤𝑥∈𝜔𝑖

= 𝑤𝑇𝑆𝑖𝑤

𝑠 1
2 + 𝑠 2

2 = 𝑤𝑇𝑆𝑊𝑤

– Similarly, the difference between the projected means can be expressed in terms
of the means in the original feature space

𝜇 1 − 𝜇 2
2 = 𝑤𝑇𝜇1 − 𝑤𝑇𝜇2

2 = 𝑤𝑇 𝜇1 − 𝜇2 𝜇1 − 𝜇2
𝑇

𝑆𝐵

𝑤 = 𝑤𝑇𝑆𝐵𝑤

• The matrix 𝑆𝐵 is called the between-class scatter.  Note that, since 𝑆𝐵 is the outer
product of two vectors, its rank is at most one

– We can finally express the Fisher criterion in terms of 𝑆𝑊 and 𝑆𝐵 as

𝐽 𝑤 =
𝑤𝑇𝑆𝐵𝑤
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– To find the maximum of 𝐽(𝑤) we derive and equate to zero
𝑑

𝑑𝑤
𝐽 𝑤 =

𝑑

𝑑𝑤

𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
= 0 ⇒ 

𝑤𝑇𝑆𝑊𝑤
𝑑 𝑤𝑇𝑆𝐵𝑤

𝑑𝑤
− 𝑤𝑇𝑆𝐵𝑤

𝑑 𝑤𝑇𝑆𝑊𝑤

𝑑𝑤
= 0 ⇒ 

𝑤𝑇𝑆𝑊𝑤 2𝑆𝐵𝑤 − 𝑤𝑇𝑆𝐵𝑤 2𝑆𝑊𝑤 = 0

– Dividing by 𝑤𝑇𝑆𝑊𝑤

𝑤𝑇𝑆𝑊𝑤

𝑤𝑇𝑆𝑊𝑤
𝑆𝐵𝑤 −

𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
𝑆𝑊𝑤 = 0 ⇒ 

 𝑆𝐵𝑤 − 𝐽𝑆𝑊𝑤 = 0 ⇒ 
𝑆𝑊

−1𝑆𝐵𝑤 − 𝐽𝑤 = 0

– Solving the generalized eigenvalue problem (𝑆𝑊
−1𝑆𝐵𝑤 = 𝐽𝑤) yields

 𝑤∗ = arg max
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
= 𝑆𝑊

−1 𝜇1 − 𝜇2

– This is know as Fisher’s linear discriminant (1936), although it is not a
discriminant but rather a specific choice of direction for the projection
of the data down to one dimension



7 

Example 
• Compute the LDA projection for the

following 2D dataset
𝑋1 = {(4,1), (2,4), (2,3), (3,6), (4,4)} 

𝑋2 = {(9,10), (6,8), (9,5), (8,7), (10,8)} 

• SOLUTION (by hand)
– The class statistics are

 𝑆1 =
.8 −.4

2.64
 𝑆2 =

1.84 −.04
2.64

𝜇1 = 3.0 3.6 𝑇;   𝜇2 = 8.4 7.6 𝑇

– The within- and between-class scatter are

𝑆𝐵 =
29.16 21.6

16.0
 𝑆𝑊 =

2.64 −.44
5.28

– The LDA projection is then obtained as the solution of the generalized
eigenvalue problem

𝑆𝑊
−1𝑆𝐵𝑣 = 𝜆𝑣 ⇒ 𝑆𝑊

−1𝑆𝐵 − 𝜆𝐼 = 0 ⇒
11.89 − 𝜆 8.81

5.08 3.76 − 𝜆
= 0 ⇒ 𝜆 = 15.65 

11.89 8.81
5.08 3.76

𝑣1

𝑣2
= 15.65

𝑣1

𝑣2
⇒

𝑣1

𝑣2
=

.91

.39
– Or directly by

𝑤∗ = 𝑆𝑊
−1 𝜇1 − 𝜇2 = −.91 − .39 𝑇
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LDA, C classes 

• Fisher’s LDA generalizes gracefully for C-class problems
– Instead of one projection 𝑦, we will now seek (𝐶 − 1) projections

[𝑦1, 𝑦2, … 𝑦𝐶−1] by means of (𝐶 − 1) projection vectors 𝑤𝑖arranged by
columns into a projection matrix 𝑊 = [𝑤1|𝑤2| … |𝑤𝐶−1]:

𝑦𝑖 = 𝑤𝑖
𝑇𝑥 ⇒ 𝑦 = 𝑊𝑇𝑥

• Derivation
– The within-class scatter generalizes as

 𝑆𝑊 = 𝑆𝑖
𝐶
𝑖=1  

• where 𝑆𝑖 =  𝑥 − 𝜇𝑖 𝑥 − 𝜇𝑖
𝑇

𝑥∈𝜔𝑖

and 𝜇𝑖 =
1

𝑁𝑖
 𝑥𝑥∈𝜔𝑖

– And the between-class scatter becomes

𝑆𝐵 = 𝑁𝑖 𝜇𝑖 − 𝜇 𝜇𝑖 − 𝜇 𝑇𝐶
𝑖=1

• where 𝜇 =
1

𝑁
 𝑥∀𝑥 =

1

𝑁
𝑁𝑖𝜇𝑖

𝐶
𝑖=1  

– Matrix 𝑆𝑇 = 𝑆𝐵 + 𝑆𝑊 is called the total scatter
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– Similarly, we define the mean vector and scatter matrices for the
projected samples as

𝜇 𝑖 =
1

N𝑖
 𝑦𝑦∈𝜔𝑖

𝑆 𝑊 =  𝑦 − 𝜇 𝑖 𝑦 − 𝜇 𝑖
𝑇

𝑦∈𝜔𝑖

𝐶
𝑖=1

𝜇 =
1

𝑁
 𝑦∀𝑦 𝑆 𝐵 = 𝑁𝑖 𝜇 𝑖 − 𝜇 𝜇 𝑖 − 𝜇 𝑇𝐶

𝑖=1

– From our derivation for the two-class problem, we can write
𝑆 𝑊 = 𝑊𝑇𝑆𝑊𝑊
𝑆 𝐵 = 𝑊𝑇𝑆𝐵𝑊

– Recall that we are looking for a projection that maximizes the ratio of
between-class to within-class scatter.  Since the projection is no longer
a scalar (it has 𝐶 − 1 dimensions), we use the determinant of the
scatter matrices to obtain a scalar objective function

𝐽 𝑊 =
𝑆 𝐵

𝑆 𝑊
=

𝑊𝑇𝑆𝐵𝑊

𝑊𝑇𝑆𝑊𝑊

– And we will seek the projection matrix 𝑊∗ that maximizes this ratio
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– It can be shown that the optimal projection matrix 𝑊∗ is the one
whose columns are the eigenvectors corresponding to the largest
eigenvalues of the following generalized eigenvalue problem

𝑊∗ = 𝑤1
∗ 𝑤2

∗ …𝑤𝐶−1
∗ = arg max

𝑊𝑇𝑆𝐵𝑊

𝑊𝑇𝑆𝑊𝑊
⇒ 𝑆𝐵 − 𝜆𝑖𝑆𝑊 𝑤𝑖

∗ = 0

• NOTES
– 𝑆𝐵 is the sum of 𝐶 matrices of rank ≤ 1 and the mean vectors are

constrained by 
1

𝐶
𝜇𝑖

𝐶
𝑖=1 = 𝜇 

• Therefore, 𝑆𝐵 will be of rank (𝐶 − 1) or less

• This means that only (𝐶 − 1) of the eigenvalues 𝜆𝑖  will be non-zero

– The projections with maximum class separability information are the
eigenvectors corresponding to the largest eigenvalues of 𝑆𝑊

−1𝑆𝐵

– LDA can be derived as the Maximum Likelihood method for the case of
normal class-conditional densities with equal covariance matrices
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LDA vs. PCA 
• This example illustrates the performance of PCA

and LDA on an odor recognition problem
– Five types of coffee beans were presented to an array

of gas sensors
– For each coffee type, 45 “sniffs” were performed and

the response of the gas sensor array was processed in
order to obtain a 60-dimensional feature vector

• Results
– From the 3D scatter plots it is clear that LDA

outperforms PCA in terms of class discrimination
– This is one example where the discriminatory

information is not aligned with the direction of
maximum variance 0 50 100 150 200
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Limitations of LDA 
• LDA produces at most 𝐶 − 1 feature projections

– If the classification error estimates establish that more features are needed,
some other method must be employed to provide those additional features

• LDA is a parametric method (it assumes unimodal Gaussian likelihoods)

– If the distributions are significantly non-Gaussian, the LDA projections may not
preserve complex structure in the data needed for classification

• LDA will also fail if discriminatory information is
not in the mean but in the variance of the data


1


2


2


1


1
= 

2
= 


1


2


1


2


1
= 

2
= 


1


2


1


2


2


1


1
= 

2
= 


1


2


1


2


1
= 

2
= 


1


2

x
1

x
2

L
D

AP
C

A

x
1

x
2

L
D

AP
C

A



13 

Variants of LDA 
• Non-parametric LDA (Fukunaga)

– NPLDA relaxes the unimodal Gaussian assumption by computing 𝑆𝐵 using local
information and the kNN rule. As a result of this
• The matrix 𝑆𝐵 is full-rank, allowing us to extract more than (𝐶 − 1) features
• The projections are able to preserve the structure of the data more closely

• Orthonormal LDA (Okada and Tomita)
– OLDA computes projections that maximize the Fisher criterion and, at the same

time, are pair-wise orthonormal
• The method used in OLDA combines the eigenvalue solution of 𝑆𝑊

−1𝑆𝐵 and the Gram-
Schmidt orthonormalization procedure

• OLDA sequentially finds axes that maximize the Fisher criterion in the subspace
orthogonal to all features already extracted

• OLDA is also capable of finding more than (𝐶 − 1) features

• Generalized LDA (Lowe)
– GLDA generalizes the Fisher criterion by incorporating a cost function similar to the

one we used to compute the Bayes Risk
• As a result, LDA can produce projects that are biased by the cost function, i.e., classes

with a higher cost 𝐶𝑖𝑗 will be placed further apart in the low-dimensional projection

• Multilayer perceptrons (Webb and Lowe)
– It has been shown that the hidden layers of multi-layer perceptrons perform non-

linear discriminant analysis by maximizing 𝑇𝑟[𝑆𝐵𝑆𝑇
†], where the scatter matrices

are measured at the output of the last hidden layer 
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Other dimensionality reduction methods 
• Exploratory Projection Pursuit (Friedman and Tukey)

– EPP seeks an M-dimensional (M=2,3 typically) linear projection of the data that
maximizes a measure of “interestingness”

– Interestingness is measured as departure from multivariate normality

• This measure is not the variance and is commonly scale-free.  In most implementations it is also
affine invariant, so it does not depend on correlations between features. [Ripley, 1996]

– In other words, EPP seeks projections that separate clusters as much as possible and
keeps these clusters compact, a similar criterion as Fisher’s, but EPP does NOT use class
labels

– Once an interesting projection is found, it is important to remove the structure it reveals
to allow other interesting views to be found more easily

x2 

x1 

x2 

Interesting Uninteresting 
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• Sammon’s non-linear mapping (Sammon)

– This method seeks a mapping onto an M-dimensional space that preserves the
inter-point distances in the original N-dimensional space

– This is accomplished by minimizing the following objective function

 𝐸 𝑑, 𝑑′ =
𝑑 𝑃𝑖,𝑃𝑗 −𝑑 𝑃𝑖

′,𝑃𝑗
′

2

𝑑 𝑃𝑖,𝑃𝑗
𝑖≠𝑗

• The original method did not obtain an explicit mapping but only a lookup table for
the elements in the training set

– Newer implementations based on neural networks do provide an explicit mapping for
test data and also consider cost functions (e.g., Neuroscale)

• Sammon’s mapping is closely related to Multi Dimensional Scaling (MDS), a family
of multivariate statistical methods commonly used in the social sciences

– We will review MDS techniques when we cover manifold learning
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