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• Data availability in a Bayesian framework
• We could design an optimal classifier if we knew: 

• P(ωi ) (priors) 
• P(x | ωi ) (class-conditional densities) 
• Unfortunately, we rarely have this complete 

information.

• Design a classifier from a training sample
• No problem with prior estimation 
• Samples are often too small for class- 

conditional estimation (large dimension of 
feature space) 
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• A priori information about the problem 
Normality of P(x | ωi ) 
P(x | ωi ) ~ N( μi , Σi ) 
Characterized by 2 parameters

• Estimation techniques 
Maximum-Likelihood (ML) and Bayesian 
estimations 

• Results are nearly identical, but the 
approaches are different 
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Parameter estimation

Maximum likelihood: 
values of parameters 
are fixed but 
unknown

Bayesian estimation: 
parameters as 
random variables 
having some known 
a priori distribution
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•Parameters in ML estimation are fixed but 
unknown

•Best parameters are obtained by maximizing the 
probability of obtaining the samples observed

•Here, we use P(ωi | x) for our classification rule
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ML Estimation:

• Has good convergence properties as the 
sample size increases 

• Simpler than any other alternative 
techniques

• General principle 
in a specific example

• Assume we have c classes and 
•
• where:
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•Use the information provided by the training samples to 
estimate θ

 
= (θ1 , θ2 , …, θc ) each θi (i = 1, 2, …, c) is associated 

with each category

• c separate problems: Use a set       of n training samples
x1 , x2 ,…, xn drawn independently from                  to estimate 
the unknown θ

is called the likelihood of θ w.r.t. 
the set of samples
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• ML estimate of θ is, by definition the value      that 
maximizes 

• “It is the value of θ that best agrees with the actually 
observed training samples”

is called the likelihood of θ w.r.t. 
the set of samples
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• Optimal estimation
• Let                                        and let             be 

the gradient operator

• We define as the log-likelihood function: 
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• New problem statement: determine θ that 
maximizes the log-likelihood:

• Set of necessary conditions for 
an optimum is:
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• Example of a specific case: unknown μ
• P(xi | μ) ~ N(μ, Σ) (Samples are 

drawn from a multivariate normal 
population) 

θ
 

= μ
 

therefore: 
• The ML estimate for μ

 
must satisfy: 
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Multiplying by Σ
 

and rearranging, we obtain:  

(Just the arithmetic average of the samples of the 
training samples) 

Conclusion: “If                                                 is supposed  
to be Gaussian in a d dimensional feature space; then 
we can estimate θ

 
= (θ1 , θ2 , …, θc ) and perform an 

optimal classification”

∂
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• Gaussian Case: unknown μ and σ
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Three Principal Factors can be used to 
obtain the quality of estimators:

• Bias

• Consistency

• Efficiency 
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Bias
• ML estimate for σ2 is biased

• An elementary unbiased estimator for σ2 :
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• An elementary unbiased estimator for σ2 :

• Sample covariance matrix:
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Maximum Likelihood Estimation (continued)Maximum Likelihood Estimation (continued)Maximum Likelihood Estimation (continued)

Key property of ML:

• If an estimator is unbiased and ML then 
it is also efficient
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Gaussian density function:

where μ
 

and σ2

 
are estimated from sample (via 

maximum likelihood estimate):
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• Classification of remote sensing 
hyperspectral image using 
maximum likelihood technique
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• Image is acquired by the ROSIS- 
03 optical sensor over the 
University of Pavia, Italy

• Spatial dimension: 610 x 340 
pixels

•Spatial resolution: 1.3m per pixel

• Spectral dimension: 103 spectral 
channels (0.43-0.86 μm)



Maximum LikelihoodPattern Recognition:

27

Spectral contextSpectral Spectral contextcontext

Panchromatic: 
one grey level 
value per pixel

Multispectral: 
limited 

spectral info

Hyperspectral: 
detailed 

spectral info
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Input image (103 

spectral channels)
Task:

Assign every 
pixel to one 

of the nine classes:

Reference data
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Spectral Context for HS ImageSpectral Spectral ContextContext for HS Imagefor HS Image

asphalt
meadows
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• Feature vector: a vector of radiance values x 
for each pixel

103 spectral bands  dimensionality of the
feature vector d=103
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• Samples of each class k are assumed to have 
a Gaussian distribution
• Parameters of distributions for each class are 
estimated from the training samples, using the 
maximum likelihood estimates:
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• We split reference data into sets of training 
and test samples:

Class Training 
samples

Test 
samples

Asphalt 548 6304
Meadows 540 18146
Gravel 392 1815
Trees 524 2912
Metal 
sheets

265 1113

Bare soil 532 4572
Bitumen 375 981
Bricks 514 3364
Shadows 231 795
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• For each class k, P = [d(d+1)/2 + d] 
parameters have to be estimated
• If d = 103, P = 5459!

• We have only from 231 to 548 training 
samples per class

• To avoid a significant parameter estimation 
error: P << mk (mk – number of training samples 
for class k)
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• Dimensionality reduction must be performed 
first, to reduce the dimensionality d

• The first 3 bands on the 103-band image are 
omitted

• A 10-band image is obtained by averaging over 
every 10 bands (new d = 10)
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1) Parameters of Gaussian distributions for 
each class are estimated

2) The whole image is classified using 
K = 9 (number of classes) discriminant 
functions (MAP classification):

- total number of training samples
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Overall accuracy = 82.29%
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Conclusions for the classification example:

• Classification accuracies are high for most of 
the classes

• Other feature extraction (dimensionality 
reduction) method can be used accuracies
can be further improved
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• Example: complexity of a ML estimation of 
the parameters in a classifier for Gaussian 
priors in d dimension, with n training samples 
for each of c categories

• Overall computational complexity (CC) for 
learning is O(cd2n)

• CC for classificaiton of one sample is O(cd2)
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• Parallel implementations
• Space complexity
• Time complexity

• Example: Estimation of the sample mean 
using d processors, each adding n values

• Space complexity: O(d)
• Time complexity: O(n)
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