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Maximum Likelihood Estimation

e Data availability in a Bayesian framework
 We could design an optimal classifier if we knew:
. P(®,) (priors)
. P(Xx | ®;) (class-conditional densities)
« Unfortunately, we rarely have this complete
information.

* Design a classifier from a training sample
* No problem with prior estimation

« Samples are often too small for class-
conditional estimation (large dimension of
feature space)
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Maximum Likelihood Estimation

e A priori information about the problem
Normality of P(X | )
P(x | @) ~N(p;, %)
Characterized by 2 parameters

 Estimation techniques
Maximum-Likelihood (ML) and Bayesian
estimations

 Results are nearly identical, but the
approaches are different
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Parameter Estimation

Parameter estimation

N

Maximum likelihood: Bayesian estimation:
values of parameters parameters as

are fixed but random variables
unknown having some known

a priori distribution
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Maximum Likelihood Estimation

eParameters in ML estimation are fixed but
unknown

*Best parameters are obtained by maximizing the
probability of obtaining the samples observed

*Here, we use P(m; | X) for our classification rule
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Maximum Likelihood Estimation

ML Estimation:

* Has good convergence properties as the
sample size increases

« Simpler than any other alternative
techniques

» General principle
In a specific example

 Assume we have c classes and
* p(X|w;) ~ N(pj,%5)
e p(X|w;) = p(X|w;,0;)  where:

6; = (1), %)) = (u}, 2, .., 01,022, cov(a, o).

)
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Maximum Likelihood Estimation

*Use the information provided by the training samples to
estimate 6 =(0,,0,, ...,0,)each 6, (i=1, 2, ..., c) is associated
with each category

e C separate problems: Use a set D ofn training samples

X1, Xp,..., X, drawn independently from p(X|0@) to estimate
the unknown &

p(D|0) = || p(xx|0)
=

p(D|0O) is called the likelihood of Gw.r.t.
the set of samples
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Maximum Likelihood Estimation

p(D|0) = ][ p(xx|6)
k—1

p(D|0) is called the likelihood of Gw.r.t.
the set of samples

« ML estimate of @ is, by definition the value 9 that
maximizes p(D|0)

* “It is the value of @ that best agrees with the actually
observed training samples”
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Figure 3.1: The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figures shows the likelihood p(D|@) as a function of the mean. If
we had a very large number of training points, this likelihood would be very narrow.
The value that maximizes the likelihood is marked @; it also maximizes the logarithm
of the likelihood — i.e., the log-likelihood (@), shown at the bottom. Note especially
that the likelihood lies in a different space from p(z|6), and the two can have different
functional forms.
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Maximum Likelihood Estimation

e Optimal estimation
elet 0= (61,05,....0,)" andlet Vg be

the gradient operator
o 0 0

T
Vg = e
0 {891’892’ 96,

« We define 1(8) as the log-likelihood function:

1(0) =Inp(D|O)
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Maximum Likelihood Estimation

 New problem statement: determine @ that
maximizes the log-likelihood:

)

6 = arg méaxl(Q)

e Set of necessary conditions for
an optimum Is:

n
VQZ — Z Vglﬂp(XMG)
k=1

Vol =0
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Maximum Likelihood Estimaition

« Example of a specific case: unknown u

* P(X; | #) ~ N(, 2) (Samples are
drawn from a multivariate normal
population)

InpOxglpe) = — In [(2m) )3 -3 )= x40

Vo Inp(Xg|p) = 71X, — p)

0 = u therefore:
 The ML estimate for u must satisfy:

TL
S 2 (x, —p) =0
k=1
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Maximum Likelihood Estimation

Multiplying by £ and rearranging, we obtain:

1 Tl
p=-> x
=1

(Just the arithmetic average of the samples of the
training samples)

Conclusion: “If P(Xglw;) (4 =1,2,...,¢) is supposed
to be Gaussian in a d dimensional feature space; then
we can estimate 6 = (0, 0,, ..., 0.) and perform an
optimal classification”
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Maximum Likelihood Estimaition

« Gaussian Case: unknown g and o

— (91:92) — (M:O-Q)

1 1
_ In |
Vol = 391( p(xkl0)) —0

392 (Inp(zk|0))

k 1 9‘"‘2(:1:.16 _ 91) — O

n I 0 2
_Zk 19 +Z— (3921) — 0
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Maximum Likelihood Estimation

4 712
1 * 6
\ 2 0>
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Quality of Estimators

Three Principal Factors can be used to
obtain the quality of estimators:

e Bias
e Consistency

o Efficiency
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Quality of Estimators

Three principal factors can be used to establish the quality or “goodness™ of
an estimator. First, it is desirable that the expected value of the estimator be
equal to the parameter being established. That is,

E[¢]=¢ (4.5)

where ¢ is an estimator for the parameter ¢. If this is true, the estimator is said
to be unbiased. Second, it is desirable that the mean square error of the
estimator be smaller than for other possible estimators. That s,

E[(&’l - ¢)2] = E[(‘%; o ¢)1] (4.6)

where &, is the estimator of interest and ¢, is any other possible estimator. If
this is true, the estimator is said to be more efficient than other possible
estimators. Third, it is desirable that the estimator approach the parameter

being estimated with a probability approaching unity as the sample size
becomes large. That is, for any € > 0,

lim Prob[lt}; —¢|2¢e]=0 (4.7a)
N— oo
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Quality of Estimators

lim Prob[|¢p — ¢| = e] =0 (4.7a)
N — oc

I[f this is true, the estimator is said to be consistent. It follows from the
Chebyshev inequality of Equation (3.22) that a sufficient (but not necessary)

condition to meet the requirements of Equation (4.7a) is given by

lim E[(é— )] =0 (4.7b)
r"\"r_':f.'
Note that the requirements stated in Equation (4.7) are simply convergence
requirements in (a) probability and (b) the mean square sense, as defined later
in Section 5.3.4.
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Maximum Likelihood Estimation (continued)
Bias

e ML estimate for o2 is biased

1?’1 2 T?,—].Q
AT 2 .

=

* An elementary unbiased estimator for ¢?:

Z(:r:ﬁ—a:)Q S

n—1.:
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Maximum Likelihood Estimation (contin

-
ued)

* An elementary unbiased estimator for ¢?:

E

« Sample covariance matrix:

C =

Z (X — @) (X — )T

n—l
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Maximum Likelinhood Estimation (continued)

Key property of ML.:

e If an estimator is unbiased and ML then
It IS also efficient
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Density Function Params. via Sample

Gaussian density function:

Hass)
2 o

1 _
pix)=""H¢

where p and o?are estimated from sample (via
maximum likelihood estimate):

1
/U:FZ X/'

1 :
o’ ZEZM —14)
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Comm

n Exponential Distributions

Maximum Likelihood

Name

Distribution

Domain

S
T
1 .
p(x|0) = Gz n ;:1 Tk
Normal /38_ o (1/2)6(2—6,)? f; >0 1 - )
\ 2 B E IIIZJ- ;T. k
T
. 1
Multi- p(x|0) = O, p > Xk
variate 19,112 _(1/2)(x—0,) O, (x—0,) positive =1
Normal amaze ) | lefinite L5 xpx}
HTrInA. definite - 541
k=1
o N p(z|f) = n 1S~
Exponential De=bz 2> 0 6 >0 = ;121 Ty
0 otherwise
. .;If |9J 1 n 5
avleig > ( 1 72
Rayleigh Wre=0" 2 >0 0=0 S g
0 otherwise
p(x|f) = n
Maxwell L o 2 ._ 0 >0 1 2
% 93 / 2;1?2 E_:—BJ.. T _} D 11 P k
0 otherwise
1/n
'. ?| 9 — ( n
) 0y +1 A > —1 H
Gamma _‘9._ 201 F_-,—ta >0 1 k—1
ree,+1)- — (’}2 >0 . 2
0 otherwise P Z T
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Common Exponential Distributions

p(x|0) = noo o\
Beta TO DT @47 T L= k=1 -
0<z<1 0y > —1 no AT
0 otherwise . (&]:[1(1 N Ik})
i - " * . T
Poisson P(x|0) = "i—_,!f-:_ﬁ r=0,1,2,.. 6>0 % > ay,
k=1
) . ) .- :jin- - | <
Bernoulli P(z|0) =01 —0)'=* 2 =0,1 0<d<1 Wi T = g = T
TI 0408 0B ,11:1
PL.I’|16.) — . | .
Binomial Tt (L —6)m 0<fh<1 :. SR % Z T
r=20,1,....,m 1° k=1
P(x|0) =
d v — !
. r; =0,1,....m _
T 67 oon
Multinomial | l;ll ' - LY x
. E T; =m k=1
H x,;! =1
=1
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Example with real world data

 Classification of remote sensing
hyperspectral image using
maximum likelihood technique
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Maximum Likelihood Classification

e Image is acquired by the ROSIS-
03 optical sensor over the
University of Pavia, Italy

e Spatial dimension: 610 x 340
pixels

eSpatial resolution: 1.3m per pixel

e Spectral dimension: 103 spectral
channels (0.43-0.86 pm)
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=]

Spectral context

0.4:m 1.0 15 2.0 2.5i:m

PANCHROMATIC

MULTISPECTRAL

1 band 2-10 bands Tens N\
E::g:ws Ofl lines wavelength A
Panchromatic: Multispectral: Hyperspectral:
one grey level limited detailed

value per pixel spectral info spectral info
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Spectral context

Maximum Likelihood
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Maximum Likelihood Classification

Input image (103 Task:

spectral channels) Assign every

pixel to one
of the nine classes:

trees
metal sheets
bare soil
bitumen
bricks

Reference data
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Spectral Context for HS Image

meadows
asphalt
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Spectral Context for HS Image
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Maximum Likelihood Classification

e Feature vector: a vector of radiance values x
for each pixel

103 spectral bands -> dimensionality of the
feature vector d=103
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Maximum Likelihood Classification

« Samples of each class k are assumed to have
a Gaussian distribution

e Parameters of distributions for each class are
estimated from the training samples, using the
maximum likelihood estimates:

Pe=— D Xjk
mr
S= > O — ) K — 1)
k 7,k 1275 1,k Hi)

where Xjk,J = 1,...,m; - training samples for
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Maximum Likelihood

Maximum Likelihood Classification

 We split reference data into sets of training

and test samples:

Class Training | Test
samples | samples

Asphalt 548 6304
Meadows 540 18146
Gravel 392 1815
Trees 524 2912
Metal 265 1113
sheets

Bare solil 532 4572
Bitumen 375 081
Bricks 514 3364
Shadows 231 795
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Maximum Likelihood Classification

 For each class k, P =[d(d+1)/2 + d]
parameters have to be estimated

e If d = 103, P = 5459!

 We have only from 231 to 548 training
samples per class

e To avoid a significant parameter estimation
error: P<<m, (m, — number of training samples

for class k)




36

Pattern Recognition: Maximum Likelihood

Maximum Likelihood Classification

 Dimensionality reduction must be performed
first, to reduce the dimensionality d

 The first 3 bands on the 103-band image are
omitted

A 10-band image is obtained by averaging over
every 10 bands (new d = 10)
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Maximum Likelihood Classification

1) Parameters of Gaussian distributions for
each class are estimated

2) The whole image is classified using
K =9 (number of classes) discriminant
functions (MAP classification):

1 1
gr(X) = —§(X—Mk:)TZ;§1(X—Hk)—§ In |2 |4+In P(wy)

m
P(wi) = —k m -total number of training samples
m
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Maximum Likelihood Classification

, Meadows, , trees, metal sheets,
bare soil, bitumen, bricks,

Overall accuracy = 82.29%
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Maximum Likelihood Classification

\{

- 4
* onfusion matrix(0A = 82.2899%, AA = 86.362%%, K = 76.878%) =]
1-azphalt 2-meadows J-gravel 4Hrees B-metal_sheet E-bare_soil 7-bitumen 3-brick I-ghadow |class ace. |
T-asphalt 4365 £ 332 33 17 34 411 538 0 7717
\E-meadnws 0 14784 2 2261 0 1114 0 5 0 81.36
Fgavel |14 1 1223 1 0 8 0 568 0 £7.38
yess |0 50 2 2858 0 3 0 0 0 9811
Bmetal_shest |0 0 0 0 1113 0 0 0 0 100.00
Bhae sl |1 918 5@ 83 0 3442 0 80 0 7528
Fhitumen |64 0 3 1 0 1 392 20 0 a0.93
B-brick 33 2 292 1 0 55 3 2578 0 88,53
Sshadow |7 0 3 0 2 0 0 0 783 93,49
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Maximum Likelihood Classification

Conclusions for the classification example:

» Classification accuracies are high for most of
the classes

e Other feature extraction (dimensionality
reduction) method can be used - accuracies
can be further improved
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Computational complexity

« Example: complexity of a ML estimation of
the parameters in a classifier for Gaussian
priors in d dimension, with n training samples
for each of c categories

O(dn) O(nd?) O(1) O(d*n)

A ,._.,A..__\ f_,.-\,_\ L?I:ﬂ:l
1 I Pl . d 1 -~ e m——
g(x) = —3{}{— ) yE (x—pn)-— 5 In 27 — 3 In 3|4+ In Pw)

e Overall computational complexity (CC) for
learning is O(cd?n)

e CC for classificaiton of one sample is O(cd?)
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Computational complexity

e Parallel implementations
e Space complexity
 Time complexity

« Example: Estimation of the sample mean
using d processors, each adding n values

e Space complexity: O(d)
 Time complexity: O(n)
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