
Pattern Recognition

Chapter 4

Non-Parametric Density
Estimation

Non-Parametric
Density Estimation

• Model the probability density function without
making any assumption about its functional form.

• Any non-parametric density estimation technique
has to deal with the choice of “smoothing”
parameters that govern the smoothness of the
estimated density.

• Discuss three types of methods based on:

(1) Histograms

(2) Kernels

(3) K-nearest neighbors

(/) ()
(/)

()

j j

j

p x P
P x

p x

 
 

Histogram-Based
Density Estimation

• Suppose each data point x is represented by an n-
dimensional feature vector (x1,x2,…,xn).

• The histogram is obtained by dividing each xi-axis into a
number of bins M and approximating the density at each
value of xi by the fraction of the points that fall inside the

corresponding bin.

Histogram-Based
Density Estimation (cont’d)

• The number of bins M (or bin size) is acting as a
smoothing parameter.

– If bin width is small (i.e., big M), then the estimated
density is very spiky (i.e., noisy).

– If bin width is large (i.e., small M), then the true structure
of the density is smoothed out.

• In practice, we need to find an optimal value for M
that compromises between these two issues.

Histogram-Based
Density Estimation (cont’d)

Advantages of Histogram-Based
Density Estimation

• Once the histogram has been constructed, the
data is not needed anymore (i.e., memory
efficient)

• Retain only info on the sizes and locations of
histogram bins.

• Histogram can be built sequentially ... (i.e.,
consider the data one at a time and then discard).

Drawbacks of Histogram-Based
Density Estimation

• The estimated density is not smooth and has
discontinuities at the boundaries of the histogram
bins.

• They do not generalize well in high dimensions.

– Consider a d-dimensional feature space.

– If we divide each variable in M intervals, we will end up
with Md bins.

– A huge number of examples would be required to obtain
good estimates (i.e., otherwise, most bins woule be
empty and the density will be approximated by zero).

Density Estimation

• The probability that a given vector x, drawn from the
unknown density p(x), will fall inside some region R in the
input space is given by:

• If we have n data points {x1, x2, ..., xn} drawn independently
from p(x), the probability that k of them will fall in R is given
by the binomial law:

(') '
R

P p d  x x

() (1)k n k

k

n
P k P P P

k

 
   

 

Density Estimation (cont’d)

• The expected value of k is:

• The expected percentage of points falling in R is:

• The variance is given by:

[]E k nP

[/]E k n P

2 (1)
[/] [(/)]

P P
Var k n E k n P

n


  

Density Estimation (cont’d)

• The distribution is sharply peaked as , thus:

/P k n

n

Approximation 1Approximation 1

Density Estimation (cont’d)

• If we assume that p(x) is continuous and does not
vary significantly over the region R, we can
approximated P by:

 where V is the volume enclosed by R.

(') ' ()
R

P p dx p V  x x Approximation 2Approximation 2

http://www.krellinst.org/UCES/archive/modules/potential/quad/rrr.gif

Density Estimation (cont’d)

• Combining these two approximations we have:

• The above approximation is based on contradictory
assumptions:

– R is relatively large (i.e., it contains many samples so that
Pk is sharply peaked) – Approximation 1

– R is relatively small so that p(x) is approximately constant
inside the integration region – Approximation 2

• We need to choose an optimum R in practice ...

/
()

k n
p

V
x

Notation

• Suppose we form regions R1, R2, ... containing x.

– R1 contains 1 sample, R2 contains 2 samples, etc.

• Ri has volume Vi and contains ki samples.

• The n-th estimate pn(x) of p(x) is given by:

/
() n

n

n

k n
p

V
x

Leading Methods for
Density Estimation

• How to choose the optimum values for Vn and kn?

• Two leading approaches:

(1) Fix the volume Vn and determine kn from the data (kernel-
based density estimation methods), e.g.,

(2) Fix the value of kn and determine the corresponding
volume Vn from the data (k-nearest neighbor method),
e.g.,

1/nV n

nk n

/
() n

n

n

k n
p

V
x

Leading Methods for
Density Estimation (cont’d)

Kernel Density Estimation
(Parzen Windows)

• Problem: Given a vector x, estimate p(x)

• Assume Rn to be a hypercube with sides of length hn,
centered on the point x:

• To find an expression for kn (i.e., # points in the
hypercube) let us define a kernel function:

n d

nV h

j

1
1 u j 1,... , d

() 2

0 otherwise




 

 



u

/
() n

n

n

k n
p

V
x

Kernel Density Estimation (cont’d)

• The total number of points xi falling inside the
hypercube is:

• Then, the estimate

becomes

1

n
i

n

i n

k
h




 
  

 


x x

/
() n

n

n

k n
p

V
x

1

1 1
()

n
i

n

i n n

p
n V h




 
  

 


x x
x

ParzenParzen

windowswindows

estimateestimate

equals 1 if equals 1 if xxii fallsfalls

within hypercubewithin hypercube

centered at centered at xx

Kernel Density Estimation (cont’d)

• The density estimate is a superposition of
kernel functions and the samples xi.

• interpolates the density between samples.

• Each sample xi contributes to the estimate
based on its distance from x.

1

1 1
()

n
i

n

i n n

p
n V h




 
  

 


x x
x

() u

Properties of

• The kernel function can have a more
general form (i.e., not just hypercube).

• In order for pn(x) to be a legitimate
estimate, must be a valid density itself:

() u

() u

() 0

() 1d









u

u u

() u

The role of hn

• The parameter hn acts as a smoothing parameter
that needs to be optimized.
– When hn is too large, the estimated density is over-

smoothed (i.e., superposition of “broad” kernel
functions).

– When hn is too small, the estimate represents the
properties of the data rather than the true density
(i.e., superposition of “narrow” kernel functions)

 as a function of hn

• assuming different hn values: () u

() u

pn(x) as a function of hn

• Example: pn(x) estimates assuming 5 samples:

pn(x) as a function of hn (cont’d)

• Example: both p(x) and are Gaussian

() u

ppnn((xx))

1 /nh h n

pn(x) as a function of hn (cont’d)

• Example: p(x) consists of a uniform and
triangular density and is Gaussian.

() u

ppnn((xx))

1 /nh h n

Classification using kernel-based
density estimation

• Estimate density for each class.

• Classify a test point by computing the
posterior probabilities and picking the max.

• The decision regions depend on the choice of
the kernel function and hn.

Decision boundary

 small small hhnn large large hhnn

very lowvery low

error onerror on

trainingtraining

examplesexamples

betterbetter

generalizationgeneralization

Drawbacks of kernel-based methods

• Require a large number of samples.

• Require all the samples to be stored.

• Evaluation of the density could be very
slow if the number of data points is large.

• Kn - Nearest neighbor estimation
– Goal: a solution for the problem of the unknown “best”

window function

• Let the cell volume be a function of the training data

• Center a cell about x and let it grows until it captures kn
samples (kn = f(n))

• kn are called the kn nearest-neighbors of x

2 possibilities can occur:
. Density is high near x; therefore the cell will be small which

provides a good resolution

• Density is low; therefore the cell will grow large and stop until
higher density regions are reached

• We can obtain a family of estimates by setting kn=k1/n
and choosing different values for k1

••44

KNN – Number of Neighbors

• If K=1, select the nearest neighbor

•

• If K=1, select the nearest neighbor

• If K>1,
– For classification select the most frequent

neighbor.

– For regression calculate the average of K
neighbors.

kn-nearest-neighbor estimation

• Fix kn and allow Vn to vary:

– Consider a hypersphere around x.

– Allow the radius of the hypersphere to grow until it
contains kn data points.

– Vn is determined by the volume of the hypersphere.

/
() n

n

n

k n
p

V
x size depends size depends

on densityon density

Nearest neighbor methods for classification and
regression

• Nearest neighbors is usually used for
classification or regression:

• For regression, average the predictions of the
K nearest neighbors.

• For classification, pick the class with the most
votes.

• Let the k’th nearest neighbor contribute a count that
falls off with k. For example,

k2
1

1


The decision boundary implemented by 3NN

••The boundary is always the perpendicular bisector of the line The boundary is always the perpendicular bisector of the line

between two points between two points

Regions defined by using various numbers of
neighbors

Parzen windows vs
kn-nearest-neighbor estimation

 Parzen windowsParzen windows kn-nearest-neighbor

1nk k n

kn-nearest-neighbor classification

• Suppose that we have c classes and that class ωi
contains ni points with n1+n2+...+nc=n

• Given a point x, we find the kn nearest neighbors
Suppose that ki points from kn belong to class ωi,
then:

 (/) i
n i

i n

k
p

nV
 x

(/) ()
(/)

()

n i i
i

n

p P
P

p

 
 

x
x

x

kn-nearest-neighbor classification (cont’d)

• The prior probabilities can be computed as:

• Using the Bayes’ rule, the posterior probabilities can
be computed as follows:

 where

(/) ()
(/)

()

n i i i
i

n n

p P k
P

p k

 
  

x
x

x

() i
i

n
P

n
 

() n
n

n

k
p

nV
x

kn-nearest-neighbor rule

• k-nearest-neighbor classification rule:

 Given a data point x, find a hypersphere around it
that contains k points and assign x to the class
having the largest number of representatives inside
the hypersphere.

• When k=1, we get the nearest-neighbor rule.

(/) ()
(/)

()

n i i i
i

n n

p P k
P

p k

 
  

x
x

x

Example

Example

k = 3 (odd value)
and x = (0.10, 0.25)t

• Closest vectors to x with their labels are:
{(0.10, 0.28, 2); (0.12, 0.20, 2); (0.15, 0.35,1)}

• Assign the label 2 to x since 2 is the most
frequently represented.

PrototypesPrototypes LabelsLabels

(0.15, 0.35)(0.15, 0.35)

(0.10, 0.28)(0.10, 0.28)

(0.09, 0.30)(0.09, 0.30)

(0.12, 0.20)(0.12, 0.20)

11

22

55

22

Decision boundary for
 kn-nearest-neighbor rule

• The decision boundary is piece-wise linear.

• Each line segment corresponds to the perpendicular
bisector of two points belonging to different classes.

Drawbacks of
k-nearest-neighbor rule

• The resulting estimate is not a true density
(i.e., its integral diverges).

• Require all the data points to be stored.

• Computing the closest neighbors could be
time consuming (i.e., efficient algorithms are
required).

1

1

1
()

2 | |
p x

x x



e.g., if e.g., if n=1n=1 and ,and ,

nk n

Nearest-neighbor rule
(kn=1)

• Suppose we have Dn={x1,, xn} labeled
training samples (i.e., known classes).

• Let x’ in Dn be the closest point to x, which
needs to be classified.

• The nearest neighbor rule is to assign x the
class associated with x’.

Example

• x = (0.10, 0.25)t

Training Training

ExamplesExamples

LabelsLabels DistanDistan

cece

(0.15, 0.35)(0.15, 0.35)

(0.10, 0.28)(0.10, 0.28)

(0.09, 0.30)(0.09, 0.30)

(0.12, 0.20)(0.12, 0.20)

11

22

55

22

0.1180.118

0.0300.030

0.0510.051

0.0540.054

Decision boundary
(nearest-neighbor rule)

• The nearest neighbor rule leads to a
Voronoi tessellation of the feature space.

• Each cell contains all the points that are
closer to a given training point x than to
any other training points.

• All the points in a cell are labeled by the
category of the training point in that cell.

Decision boundary
(nearest-neighbor rule) (cont’d)

• Knowledge of this boundary is sufficient to classify
new points.

• The boundary itself is rarely computed…

– Many algorithms seek to retain only those points necessary
to generate an identical boundary.

Example: Digit Recognition

• Yann LeCunn – MNIST

Digit Recognition

– Handwritten digits

– 28x28 pixel images

 (d = 784)

– 60,000 training samples

– 10,000 test samples

• Nearest neighbor is

competitive!!

Test Error Rate (%)Test Error Rate (%)

Linear classifier (1Linear classifier (1--layer NN)layer NN) 12.012.0

KK--nearestnearest--neighbors, Euclideanneighbors, Euclidean 5.05.0

KK--nearestnearest--neighbors, Euclidean, neighbors, Euclidean,

deskeweddeskewed

2.42.4

KK--NN, Tangent Distance, 16x16NN, Tangent Distance, 16x16 1.11.1

KK--NN, shape context matchingNN, shape context matching 0.670.67

1000 RBF + linear classifier1000 RBF + linear classifier 3.63.6

SVM deg 4 polynomialSVM deg 4 polynomial 1.11.1

22--layer NN, 300 hidden unitslayer NN, 300 hidden units 4.74.7

22--layer NN, 300 HU, [deskewing]layer NN, 300 HU, [deskewing] 1.61.6

LeNetLeNet--5, [distortions]5, [distortions] 0.80.8

Boosted LeNetBoosted LeNet--4, [distortions]4, [distortions] 0.70.7

Computational complexity
(nearest-neighbor rule)

• Assuming n training examples in d dimensions, a
straightforward implementation would take O(dn2)

• A parallel implementation would take O(1)

Reducing computational complexity

• Three generic approaches:

– Computing partial distances

– Pre-structuring (e.g., search tree)

– Editing the stored prototypes

Partial distances

• Compute distance using first r dimensions only:

 where r<d.

• If the partial distance is too great (i.e., greater
than the distance of x to current closest
prototype), there is no reason to compute
additional terms.

2 1/ 2

1

(,) (())
r

r k k

k

D x x


  x x

Pre-structuring: Bucketing

• In the Bucketing algorithm, the space is
divided into identical cells.

– For each cell the data points inside it are stored
in a list.

– Given a test point x, find the cell that contains it.

– Search only the points inside that cell!

– Does not guarantee to find the true nearest
neighbor(s) !

Pre-structuring: Bucketing (cont’d)

1/41/4 3/43/4

1/41/4

3/43/4

search this search this

cell only!cell only!

Pre-structuring: Bucketing (cont’d)

•• Tradeoff:Tradeoff:

–– speed vs accuracy speed vs accuracy

Pre-structuring: Search Trees
(k-d tree)

• A k-d tree is a data structure for storing a
finite set of points from a k-dimensional
space.

• Generalization of binary search ...

• Goal: hierarchically decompose space into a
relatively small number of cells such that
no cell contains too many points.

Pre-structuring: Search Trees
(k-d tree) (cont’d)

splits along y=5splits along y=5

splits along x=3splits along x=3

inputinput outputoutput

Pre-structuring: Search Trees
(how to build a k-d tree)

• Each internal node in a k-d tree is associated with a
hyper-rectangle and a hyper-plane orthogonal to one
of the coordinate axis.

– The hyper-plane splits the hyper-rectangle into two parts,
which are associated with the child nodes.

– The partitioning process goes on until the number of data
points in the hyper-rectangle falls below some given
threshold.

Pre-structuring: Search Trees
(how to build a k-d tree) (cont’d)

splits along y=5splits along y=5

splits along x=3splits along x=3

Pre-structuring: Search Trees
(how to build a k-d tree) (cont’d)

Pre-structuring: Search Trees
(how to search using k-d trees)

• For a given query point, the algorithm
works by first descending the tree to find
the data points lying in the cell that
contains the query point.

• Then it examines surrounding cells if they
overlap the ball centered at the query point
and the closest data point so far.

 http://www-2.cs.cmu.edu/~awm/animations/kdtree/nn-vor.ppt

http://www-2.cs.cmu.edu/~awm/animations/kdtree/nn-vor.ppt
http://www-2.cs.cmu.edu/~awm/animations/kdtree/nn-vor.ppt
http://www-2.cs.cmu.edu/~awm/animations/kdtree/nn-vor.ppt
http://www-2.cs.cmu.edu/~awm/animations/kdtree/nn-vor.ppt
http://www-2.cs.cmu.edu/~awm/animations/kdtree/nn-vor.ppt

Pre-structuring: Search Trees
(how to search using k-d trees) (cont’d)

no need to search ...no need to search ...

search ...search ...

Pre-structuring: Search Trees
(how to search using k-d trees) (cont’d)

Pre-structuring: Search Trees
(how to search using k-d trees) (cont’d)

Editing

• Goal: reduce the number of training samples.

• Two main approaches:

– Condensing: preserve decision boundaries.

– Pruning: eliminate noisy examples to produce
smoother boundaries and improve accuracy.

Editing using condensing

• Retain only the samples that are needed to define
the decision boundary.

• Decision Boundary Consistent – a subset whose
nearest neighbour decision boundary is close to the
boundary of the entire training set.

• Minimum Consistent Set – the smallest subset of the
training data that correctly classifies all of the
original training data.

Editing using condensing (cont’d)

• Retain mostly points along the decision boundary.

Original data Condensed data

Minimum Consistent Set

Editing using condensing (cont’d)

• Keep points contributing to the boundary (i.e., at least one
neighbor belongs to a different category).

• Eliminate prototypes that are surrounded by samples of the

same category.

Editing using condensing (cont’d)

can be eliminated!can be eliminated!

Editing using pruning

• Pruning seeks to remove “noisy” points and
produces smooth decision boundaries.

• Often, it retains points far from the decision
boundaries.

• Wilson pruning: remove points that do not
agree with the majority of their k-nearest-
neighbours.

Editing using pruning (cont’d)

Wilson editing with k=7

Original data

Wilson editing with k=7

Original data

Combined Editing/Condensing

 • (1) Prune the data to remove noise and smooth the boundary.

• (2) Condense to obtain a smaller subset.

Example: 3D hand pose estimation

query

Database (107,328 images)

nearest

neighbor

Athitsos and Sclaroff. Estimating 3D Hand Pose from a Cluttered Image, CVPR 2004

General comments
(nearest-neighbor classifier)

• The nearest neighbor classifier provides a
powerful tool.

– Its error is bounded to be at most two times of
the Bayes error (in the limiting case).

– It is easy to implement and understand.

– It can be implemented efficiently.

– Its performance, however, relies on the metric
used to compute distances!

Properties of distance metrics

Distance metrics - Euclidean

• Euclidean distance:

• Distance relations can change by scaling (or
other) transformations.

– e.g., choose different units.

 
2/1

1

2
),(














 



d

k

kk babaD

Distance metrics – Euclidean (cont’d)

– Hint: normalize data in each dimension if there is
a large disparity in the ranges of values.

rere--scaled!scaled!

