Introduction

* All Parametric densities are unimodal (have a single local

maximum), whereas many practical problems involve multi-
modal densities

 Nonparametric procedures can be used with arbitrary
distributions and without the assumption that the forms of
the underlying densities are known

* There are two types of nonparametric methods:

— Estimating P(x | @)

— Bypass probability and go directly to a-posteriori probability
estimation



Density Estimation

— Basic idea:

— Probability that a vector x will fall in region R is:

P= j p(x' )dx’ (1)

— P is asmoothed (or averaged) version of the density function
E(x ) if we have a sample of size n; therefore, the probability that
points fall in R is then:

and the expected value for k is:
E(k) = nP (3)

P, =(Z] P*(1-P)y™* (2
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Therefore, the ratio k/n is a good estimate for the
probability P and hence for the density function p.

p(x) is continuous and that the region Ris so small
that p does not vary significantly within it, we can

write:
[ p(x ax'= p(x v 4

where is a point within R and V the volume enclosed by R



Combining equation (1), (3) and (4) yields: k/n
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V
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FIGURE 4.1. The relative probability an estimate given by Eq. 4 will yield a particular
value for the probability density, here where the true probability was chosen to be 0.7,
Each curve is labeled by the total number of patterns n sampled, and is scaled to give
the same maximum (at the true probability). The form of each curve is binomial, as
given by Eq. 2. For large n, such binomials peak strongly at the true probahbility. In the
limit n — oo, the curve approaches a delta function, and we are guaranteed that our
estimate will give the true probability. From: Richard O. Duda, Peter E. Hart, and David
G Stork, Fattern Classification. Copyright @© 2001 by John Wiley & Sons, Inc.



Density Estimation (cont.)

 Justification of equation (4)

[ p(x )ax'= p(x )y 4
R

We assume that p(x) is continuous and that region Ris

so small that p does not vary significantly within R.
Since p(x) = constant, it is not a part of the sum.



[ (' )dx'= p(x )| de'= p(x' )[ 1y(x )dx'= p(x' )u(R)
R R R

Where: y(R) is: a surface in the Euclidean space R?
a volume in the Euclidean space R?
a hypervolume in the Euclidean space R"

Since p(x) =p(x’) = constant, therefore in the Euclidean space R3:

I p(x")dx'= p(x)V
R

k
nVv

and p(x)=



— Condition for convergence

The fraction k/(nV) is a space averaged value of p(x).
p(x) is obtained only if V approaches zero.

lim p(x)=0 (if n= fixed)

V—>0,k=0

This is the case where no samples are included in R it is an
uninteresting case!

lim p(X):OO

Vo0,k+0

In this case, the estimate diverges: it is an uninteresting
case!



 The volume V needs to approach 0 anyway if we want to use this
estimation

* Practically, V cannot be allowed to become small since the number of
samples is always limited

* One will have to accept a certain amount of variance in the ratio k/n

* Theoretically, if an unlimited number of samples is available, we can
circumvent this difficulty

To estimate the density of x, we form a sequence of regions

/?1, /?2, ...containing x: the first region contains one sample, the second two
samples and so on.

Let V_ be the volume of R, k_the number of samples falling in R and p,(x)
be the nt" estimate for p(x):

pox) = (k/n)/V,  (7)



Three necessary conditions should apply if we want p,(x) to converge to p(x):

1)limV, =0
2)limk, =
3)limk, /n=20

There are two different ways of obtaining sequences of regions that satisfy these
conditions:

(a) Shrink an initial region where V,_ = 1/vh and show that

P.(x)—> p(x)

n—o0

This is called

(b) Specify k. as some function of n, such as k, = ¥n; the volume V._is
grown until it encloses k, neighbors of x. This is called



V. =1/n
ky=n

FIGURE 4.2, There are two leading methods for estimating the density at a point, here
at the center of each square. The one shown in the top row is to start with a large volume
centered on the test point and shrink it according to a function such as V,, = 1/.,/n. The
other method, shown in the bottom row, is to decrease the volume in a data-dependent
way, for instance letting the volume enclose some number k, = /n of sample points.
The sequences in both cases represent random variables that generally converge and
allow the true density at the test point to be calculated. From: Richard O. Duda, Peter
E. Hart, and David C. Stork, Fattern Classification. Copyright @© 2001 by John Wiley &

Sons, Inc.
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— Parzen-window

rzen Windows

approach to estimate densities assume

that the region R is a d-dimensional hypercube

V =h'

(h, : length of the edge of R, )

Let o(u) be the followingwindow function :

P(u)=-

f

1 .
1 ‘uj‘SE j=1,...,d

\0 otherwise

— ¢((x-x;)/h,) is equal to unity if x; falls within the hypercube

of volume V, ce

ntered at x and equal to zero otherwise.



— The number of samples in this hypercube is:

< [ x—x,
_i;(p p

n

By substltutmg k. in equatlon (7), we obtain the

following e ™ i=n 4 X — X
N

X)=—) —
P, (X) ngVn .

P (x) estimates p(x) as an average of functions of x and
the samples (x;) (i=1,... ,n). These functions ¢ can be general!



lllustration

The behavior of the Parzen-window method

— Case where p(x) 2N(0,1)

Let @(u) = (1/ (2 7) exp(-u?/2) and h, = hl/\/v (n>1)
(h: known parameter)

Thus: 1i=n ] X — X.
X)=— ’
p.(x) nz;h (0[ p ]

n

is an average of normal densities centered at the
samples x..



— Numerical results:

Forn=1and h,=1

I 1/2 2
pl(x)=¢(x_x1)=\/%e_ (x_xl) _)N(xlyl)

Forn=10and h = 0.1, the contributions of the
individual samples are clearly observable |
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FIGURE 4.5. Farzen-window estimates of a univariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to besl
show the structure in each graph. Note particularly that the n = oo estimates are the
same (and match the true density function), regardless of window width. From: Richard
0. Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright © 2001

by John Wiley & Sons, Inc.



Analogous results are also obtained in two dimensions as illustrated:

h,=2

n={0"




fl=oo

FIGURE 4.6. Parzen-window estimates of a bivariate normal density using different window widths and num
bers of samples, The vertical axes have been scaled to best show the structure in each graph. Note particularly

that the n = oo estimales are the same (and match the true distribution), regardless of window width. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright © 2001 by John Wiley
& Hons, Inc.




r=if

— Case where p(x) = A,.U(a,b) + A4,.T(c,d) (unknown
density) (mixture of a uniform and a triangle density)

fr,=1 fr,=(13 Ji, =0} 2
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FIGURE 4.7. Parzen-window estimates of a bimodal distribution using different window
widths and numbers of samples. Note particularly that the n = oo estimates are the same
(and match the true distribution), regardless of window width. From: Richard O. Duda,
Peter E. Hart, and David C. Stork, Fattern Classification. Copyright © 2001 by John
Wiley & Sons, Inc.



— Classification example

In classifiers based on Parzen-window estimation:

* We estimate the densities for each category and classify a
test point by the label corresponding to the maximum
posterior

* The decision region for a Parzen-window classifier depends
upon the choice of window function as illustrated in the
following figure.
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FIGURE 4.8. The decision boundaries in a two-dimensional Parzen-window di-
chotomizer depend on the window width h. At the left a small h leads to boundaries
that are more complicated than for large b on same data set, shown at the right. Appar-
ently, for these data a small h would be appropriate for the upper region, while a large
h would be appropriate for the lower region; no single window width is ideal over-
all. From: Richard O. Duda, Peter E. Harl, and David G. Stork, Fattern Classificalion.
Copyright @ 2001 by John Wiley & Sons, Inc.



