
Introduction 

 
• All Parametric densities are unimodal (have a single local 

maximum), whereas many practical problems involve multi-
modal densities 
 

• Nonparametric procedures can be used with arbitrary 
distributions and without the assumption that the forms of 
the underlying densities are known 
 

• There are two types of nonparametric methods: 
 
– Estimating P(x | j )  
– Bypass probability and go directly to a-posteriori probability 

estimation 



Density Estimation 
 

– Basic idea: 
 

–  Probability that a vector x will fall in region R is: 
 
 
 

–  P is a smoothed (or averaged) version of the density function 
p(x) if we have a sample of size n; therefore, the probability that 
k points fall in R is then: 
 

 
   and the expected value for k is: 

 

                           E(k) = nP                 (3) 
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ML estimation of  P =  

                   is reached for 

 

Therefore, the ratio k/n is a good estimate for the 
probability P and hence for the density function p.  

 

p(x) is continuous and that the region R is so small 

that p does not vary significantly within it, we can 
write: 

 
 

where is a point within R and V the volume enclosed by R. 
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Combining equation (1) , (3) and (4) yields: 
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Density Estimation (cont.) 

• Justification of equation (4) 
 

  
 
 
 
 

We assume that p(x) is continuous and that region R is 

so small that p does not vary significantly within R. 

Since p(x) = constant, it is not a part of the sum. 
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Where: (R) is: a surface in the Euclidean space R2 

       a volume in the Euclidean space R3 

       a hypervolume in the Euclidean space Rn 

 

 Since p(x)  p(x’) = constant, therefore in the Euclidean space R3: 
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–  Condition for convergence 
 

 The fraction k/(nV) is a space averaged value of p(x). 

  p(x) is obtained only if V approaches zero. 
 

 
 

 This is the case where no samples are included in R: it is an 

uninteresting case! 

 

 

 

 In this case, the estimate diverges: it is an uninteresting 
case! 
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• The volume V needs to approach 0 anyway if we want to use this 
estimation 
 

• Practically, V cannot be allowed to become small since the number of 
samples is always limited 
 

• One will have to accept a certain amount of variance in the ratio k/n 
 

• Theoretically, if an unlimited number of samples is available, we can 
circumvent this difficulty 

 To estimate the density of x, we form a sequence of regions 

 R1, R2,…containing x: the first region contains one sample, the second two 

samples and so on. 

 Let Vn be the volume of Rn, kn the number of samples falling in Rn and pn(x) 

be the nth estimate for p(x): 
 

pn(x) = (kn/n)/Vn            (7) 



 Three necessary conditions should apply if we want pn(x) to converge to p(x): 

 

 

 

 

 

 There are two different ways of obtaining sequences of regions that satisfy these 
conditions: 
 

 (a) Shrink an initial region where Vn = 1/n and show that  

 

 

        
     This is called “the Parzen-window estimation method” 
 

 (b) Specify kn as some function of n,  such as kn = n; the volume Vn is 

      grown until it encloses kn neighbors of x. This is called “the kn-nearest  

      neighbor estimation method” 
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Parzen Windows 

– Parzen-window approach to estimate densities assume 

that the region Rn is a d-dimensional hypercube 

 

 

 

 

 
 

 

– ((x-xi)/hn) is equal to unity if xi falls within the hypercube 
of volume Vn centered at x and equal to zero otherwise. 
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– The number of samples in this hypercube is: 
 

 
 

  

 

By substituting kn in equation (7), we obtain the 
following estimate: 

 

 
 

 
 

Pn(x) estimates p(x) as an average of functions of x and  

the samples (xi) (i = 1,… ,n). These functions  can be general! 
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– Illustration 

 

•  The behavior of the Parzen-window method 
 
– Case where p(x) N(0,1) 

  Let (u) = (1/(2) exp(-u2/2) and hn = h1/n (n>1)  

                                                                     (h1: known parameter) 

  Thus: 

 

 

  is an average of normal densities centered at the  

  samples xi. 
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– Numerical results: 

 

 

 For n = 1 and h1=1 
 
 
 
 
 
 

 

 For n = 10 and h = 0.1, the contributions of the 
individual samples are clearly observable ! 
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Analogous results are also obtained in two dimensions as illustrated: 

 





– Case where p(x) = 1.U(a,b) + 2.T(c,d) (unknown 
density) (mixture of a uniform and a triangle density) 





–  Classification example 
 

In classifiers based on Parzen-window estimation: 
 

• We estimate the densities for each category and classify a 
test point by the label corresponding to the maximum 
posterior 
 

• The decision region for a Parzen-window classifier depends 
upon the choice of window function as illustrated in the 
following figure. 




