
Digital Signatures &

Authentication Protocols

1

Digital Signatures

 have looked at message authentication

 but does not address issues of lack of trust

 digital signatures provide the ability to:

 verify author, date & time of signature

 authenticate message contents

 be verified by third parties to resolve disputes

2

Digital Signature Properties

 must depend on the message signed

 must use information unique to sender

 to prevent both forgery and denial

 must be relatively easy to produce

 must be relatively easy to recognize & verify

 be computationally infeasible to forge

 with new message for existing digital signature

 with fraudulent digital signature for given message

 be practical save digital signature in storage 3

Direct Digital Signatures

 involve only sender & receiver

 assumed receiver has sender’s public-key

 digital signature made by sender signing entire message
or hash with private-key

 can encrypt using receivers public-key

 important that sign first then encrypt message &
signature

 security depends on sender’s private-key

4

Arbitrated Digital Signatures

 involves use of arbiter A

 validates any signed message

 then dated and sent to recipient

 requires suitable level of trust in arbiter

 can be implemented with either private or public-key

algorithms

 arbiter may or may not be able to see message

5

Authentication Protocols

 used to convince parties of each others identity and to

exchange session keys

 may be one-way or mutual

 key issues are

 confidentiality – to protect session keys

 timeliness – to prevent replay attacks

 published protocols are often found to have flaws and

need to be modified

6

Replay Attacks

 where a valid signed message is copied and
later resent

 simple replay

 repetition that can be logged

 repetition that cannot be detected

 backward replay without modification

 countermeasures include

 use of sequence numbers (generally impractical)

 timestamps (needs synchronized clocks)

 challenge/response (using unique nonce)

7

Using Symmetric Encryption

 as discussed previously, we can use a two-level

hierarchy of keys

 usually with a trusted Key Distribution Center (KDC)

 each party shares own master key with KDC

 KDC generates session keys used for connections between

parties

 master keys used to distribute these to them

8

Needham-Schroeder Protocol

 original third-party key distribution protocol

 for session between A B mediated by KDC

 protocol overview is:

1. A->KDC: IDA || IDB || N1

2. KDC -> A: EKa[Ks || IDB || N1 || EKb[Ks||IDA]]

3. A -> B: EKb[Ks||IDA]

4. B -> A: EKs[N2]

5. A -> B: EKs[f(N2)]

9

Needham-Schroeder Protocol

 used to securely distribute a new session key for
communications between A & B

 but is vulnerable to a replay attack if an old session key
has been compromised

 then message 3 can be resent convincing B that is
communicating with A

 modifications to address this require:

 timestamps (Denning 81)

 using an extra nonce (Neuman 93)

10

Using Public-Key Encryption

 have a range of approaches based on the use of public-

key encryption

 need to ensure have correct public keys for other

parties

 using a central Authentication Server (AS)

 various protocols exist using timestamps or nonces

11

Denning AS Protocol

 Denning 81 presented the following:

1. A -> AS: IDA || IDB

2. AS -> A: EPRas[IDA||PUa||T] ||
EPRas[IDB||PUb||T]

3. A -> B: EPRas[IDA||PUa||T] ||
EPRas[IDB||PUb||T] || EPUb[EPRas[Ks||T]]

 note session key is chosen by A, hence
AS need not be trusted to protect it

 timestamps prevent replay but require
synchronized clocks

12

One-Way Authentication

 required when sender & receiver are not in

communications at same time (e.g., email)

 have header in clear so can be delivered by email

system

 may want contents of body protected & sender

authenticated

13

Using Symmetric Encryption

 can refine use of KDC but can’t have final exchange of

nonces:

1. A->KDC: IDA || IDB || N1

2. KDC -> A: EKa[Ks || IDB || N1 || EKb[Ks||IDA]]

3. A -> B: EKb[Ks||IDA] || EKs[M]

 does not protect against replays

 could rely on timestamp in message, though email delays

make this problematic

14

Public-Key Approaches

 have seen some public-key approaches

 if confidentiality is major concern, can use:

A->B: EPUb[Ks] || EKs[M]

 has encrypted session key, encrypted message

 if authentication needed, use a digital signature with a digital certificate:

A->B: M || EPRa[H(M)] || EPRas[T||IDA||PUa]

 with message, signature, certificate

15

Digital Signature Standard

(DSS)

 US Govt approved signature scheme

 designed by NIST & NSA in early 90's

 published as FIPS-186 in 1991

 revised in 1993, 1996 & then 2000

 uses the SHA hash algorithm

 DSS is the standard, DSA is the
algorithm

 FIPS 186-2 (2000) includes alternative
RSA & elliptic curve signature variants

16

Digital Signature Algorithm

(DSA)
 creates a 320 bit signature

 with 512-1024 bit security

 smaller and faster than RSA

 a digital signature scheme only

 security depends on difficulty of computing discrete logarithms

 variant of ElGamal & Schnorr schemes

17

Digital Signature Algorithm

(DSA)

18

DSA Key Generation

 have shared global public key values (p,q,g):

 choose q, a 160 bit

 choose a large prime p = 2L

where L= 512 to 1024 bits and is a multiple of 64

 and q is a prime factor of (p-1)

 choose g = h(p-1)/q

where h<p-1, h(p-1)/q (mod p) > 1

 users choose private & compute public key:

 choose x<q

 compute y = gx (mod p) 19

DSA Signature Creation

 to sign a message M the sender:

 generates a random signature key k, k<q

 k must be random, be destroyed after use, and never be

reused

 then compute signature pair:

r = (gk(mod p))(mod q)

s = (k-1.H(M)+ x.r)(mod q)

 sends signature (r,s) with message M

20

DSA Signature Verification

 having received M & signature (r,s)

 to verify a signature, recipient computes:

w = s-1(mod q)

u1= (H(M).w)(mod q)

u2= (r.w)(mod q)

v = (gu1.yu2(mod p)) (mod q)

 if v=r then signature is verified

 see book web site for details of proof why

21

Summary

 have discussed:

 digital signatures

 authentication protocols (mutual & one-way)

 digital signature algorithm and standard

22

