
CS 313 Introduction to
Computer Networking &

Telecommunication

Data Link Layer Part II –
Sliding Window Protocols

2

Part 2 - Topics

 Sliding Window Protocols

 Go Back N Sliding Window Protocol

 Selective Repeat Sliding Window
Protocol

3

Data Frame Transmission

 Unidirectional assumption in previous
elementary protocols

 Not general

 Full-duplex - approach 1

Two separate communication channels

Forward channel for data

Reverse channel for acknowledgement

 Problems: 1. reverse channel bandwidth wasted

 2. cost

4

Data Frame Transmission

 Full-duplex - approach 2

Same circuit for both directions

Data and acknowledgement are intermixed

How do we tell acknowledgement from data?

 "kind" field telling data or acknowledgement

Can it be improved?

 Approach 3

Attaching acknowledgement to outgoing data
frames

 Piggybacking

5

Piggybacking
 Temporarily delaying transmission of

outgoing acknowledgement so that they
can be hooked onto the next outgoing
data frame

 Advantage: higher channel bandwidth
utilization

 Complication:

How long to wait for a packet to piggyback?

If longer than sender timeout period then

 sender retransmit

 Purpose of acknowledgement is lost

6

Piggybacking

 Solution for timing complexion

If a new packet arrives quickly

 Piggybacking

If no new packet arrives after a receiver ack
timeout

 Sending a separate acknowledgement
frame

7

Sliding Window Protocol

 We are going to study three
bidirectional sliding window protocols
(max sending window size, receiving
window size)
One-bit sliding window protocol (1, 1)

Go back N (>1, 1)

Selective repeat (>1, >1)

 Differ in efficiency, complexity, and
buffer requirements

8

Sliding Window Protocol

 Each outbound frame contains an n-bit
sequence number

Range: 0 - MAX_SEQ (MAX_SEQ = 2n - 1)

For stop-and-wait, n = __. Why?

 At any instance of time

Sender maintains a set of sequence
numbers of frames permitted to send
These frames fall within sending window

Receiver maintains a set of sequence
numbers of frames permitted to accept
These frames fall within receiving window

9

Sliding Window Protocol

 Lower limit, upper limit, and size of two
windows need not be the same

 Fixed or variable size

 Requirements
Packets delivered to the receiver's network

layer must be in the same order that they
were passed to the data link layer on the
sending machine

Frames must be delivered by the physical
communication channel in the order in
which they were sent

10

Sending Window

 Contains frames can be sent or have
been sent but not yet acknowledged –
outstanding frames

 When a packet arrives from network
layer

Next highest sequence number assigned

Upper edge of window advanced by 1

 When an acknowledgement arrives

Lower edge of window advanced by 1

11

Sending Window

 If the maximum window size is n, n
buffers is needed to hold
unacknowledged frames

 Window full (maximum window size
reached)

 shut off network layer

12

Receiving Window

 Contains frames may be accepted

 Frame outside the window discarded

 When a frame's sequence number
equals to lower edge

Passed to the network layer

Acknowledgement generated

Window rotated by 1

13

Receiving Window

 Contains frames may be accepted

 Always remains at initial size (different
from sending window)

 Size

=1 means frames only accepted in order

>1 not so

 Again, the order of packets fed to the
receiver’s network layer must be the
same as the order packets sent by the
sender’s network layer

14

Actually, 1-bit

sequence

number is

enough for

this example.

The purpose

of using 3-bit

is to

demonstrate

the idea of

sliding

window.

In many textbooks, an

array of boxes are used to

represent the window.

A sliding window of size 1, with a 3-bit sequence number.

(a) Initially.

(b) After the first frame has been sent.

(c) After the first frame has been received.

(d) After the first acknowledgement has been received.

15

One Bit Sliding Window Protocol

 Sending window size = receiving
window size = 1

 Stop-and-wait

 Refer to algorithm in Fig 3-16

 Acknowledgement =

 Sequence number of last frame
received w/o error*

 Problem of sender and receiver send
simultaneously

*: some protocols define the acknowledgement to be the
sequence number expected to receive

16

Try to draw the sending

windows and receiving

windows for A and B!

 (a) Case 1: Normal case. (b) Case 7: Abnormal case.
The notation is (seq, ack, packet number). An asterisk indicates
where a network layer accepts a packet.

Case 7: simultaneous start Case 1: normal case

17

One Bit Sliding Window Protocol

 Case 1: no error

 A B
Time (0,1,A0)

(0,0,B0)

 Case 2: data lost

 A B
Time

X
Timeout

(1,0,A1)

(1,1,B1)

(0,1,A2)

(0,0,B2)

(0,1,A0)

(0,1,A0)

(0,0,B0)

Try to draw the sending

windows and receiving

windows for A and B!

*

*

*

*

*

*

*

*

Exp=0

Exp=1

Exp=0

Exp=1

Exp=0

Exp=1

Exp=0

Exp=0

Exp=1

Exp=0

Exp=1

18

One Bit Sliding Window Protocol

 Case 4: ack. lost

 A B
Time

X
Timeout

 Case 3: data error

 A B
Time

Error Timeout

(0,1,A0)

(0,1,A0)

(0,0,B0)

(0,1,A0)

(0,1,A0)

(0,0,B0)

(0,0,B0)

duplicate,

discarded

Try to draw the sending

windows and receiving

windows for A and B!

*

*

* *

Exp=0

Exp=1

Exp=0 Exp=0 Exp=0

Exp=1

Exp=1 Exp=1

19

One Bit Sliding Window Protocol

 Case 6: outgoing
frame timeout

 A B
Time

Timeout

 Case 5: early timeout

 A B
Time

Timeout

(0,1,A0)

(0,1,A0)

(0,0,B0)
(0,1,A0)

(1,1,A1)

(0,1,B0)

Try to draw the sending

windows and receiving

windows for A and B!

duplicate,

discarded
(1,0,A1)

(1,1,B1)

ACK 0

Exp=0 Exp=0

Exp=0 Exp=0

Exp=0 *

* Exp=1

Exp=1 *

Exp=1 *

Exp=1 *

Exp=0 *

Exp=0 *

20

Performance of Stop-and-Wait Protocol
 Assumption of previous protocols:

Transmission time is negligible

False, when transmission time is long

 Example - satellite communication

channel capacity: 50 kbps, frame size: 1kb

 round-trip propagation delay: 500 msec

Time:t=0 start to send 1st bit in frame

 t=20 msec frame sent completely

 t=270 msec frame arrives

 t=520 msec best case of ack. received

Sender blocked 500/520 = 96% of time

Bandwidth utilization 20/520 = 4%

 t

 0

 20

270

520

21

 If channel capacity = b, frame size = L,
and round-trip propagation delay = R,
then bandwidth utilization = _____

 Conclusion:

Long transit time + high bandwidth +
short frame length disaster

Performance of Stop-and-Wait Protocol

22

 Solution: Pipelining

Allowing w frames sent before blocking

 In our example, for 100% utilization

w = __, max window size = __

sequence number = __ bits

 Problem: errors

 Solutions

Go back n protocol (GNP)

Selective repeat protocol (SRP)

Acknowledge n means frames n,n-1,n-2,…
are acknowledged (i.e., received correctly)

Performance of Stop-and-Wait Protocol

23

Go Back n Protocol

 Receiver discards all subsequent frames
following an error one, and send no
acknowledgement for those discarded

 Receiving window size = 1 (i.e., frames
must be accepted in the order they were
sent)

 Sending window might get full

If so, re-transmitting unacknowledged frames

 Wasting a lot of bandwidth if error rate is
high

24

Go Back n Protocol

25

Go Back n Protocol

Time
0 1 2 3 0 1 2 3 0 Frame 0

ACK 1

0 1 2 3 0 1 2 3 0

Frame 1

0 1 2 3 0 1 2 3 0

Frame 2

ACK 2

0 1 2 3 0 1 2 3 0

S R

Frame 3

0 1 2 3 0 1 2 3 0

0 1 2 3 0 1 2 3 0

0 1 2 3 0 1 2 3 0

0 1 2 3 0 1 2 3 0

0 1 2 3 0 1 2 3 0

0 1 2 3 0 1 2 3 0

26

Go Back n Protocol

 What is the maximum sending window
size?

 Maximum sending window size of =
MAX_SEQ, not MAX_SEQ+1

With n-bit sequence number,
 MAX_SEQ = 2n – 1,
 maximum sending window size = 2n - 1

e.g., for 3-bit window, MAX_SEQ = 7, so
window size = 7 although max. size could
be 8

 Why?

27

Go Back n Protocol - Window Size

 Suppose 3-bit window is used and max
sending window size = MAX_SEQ+1 = 8

Sender sends frames 0 through 7

Piggybacked ack 7 comes back

Sender sends anther 8 frames w/ sequence
numbers 0 through 7

Another piggybacked ack 7 comes back

Q: Did all second 8-frames arrive
successfully or did all of them get lost?

Ack 7 for both cases Ambiguous

 Max. window size = 7

28

Go Back n Protocol Implementation

 Sender has to buffer unacknowledged
frames

 Acknowledge n means frames n,n-1,n-2,
... are acknowledged (i.e., received
correctly) and those buffers can be
released

 One timer for each outstanding frame in
sending window

29

Select Repeat Protocol
 Receiver stores correct frames following the

bad one

 Sender retransmits the bad one after noticing

 Receiver passes data to network layer and
acknowledge with the highest number

 Receiving window > 1 (i.e., any frame within
the window may be accepted and buffered
until all the preceding one passed to the
network layer

 Might need large memory

30

Negative Acknowledgement (NAK)

 SRP is often combined with NAK

 When error is suspected by receiver,
receiver request retransmission of a frame

Arrival of a damaged frame

Arrival of a frame other than the expected

 Does receiver keep track of NAK?

 What if NAK gets lost?

 To nak, or not to nak: that is the question

31

Selective Repeat with NAK

32

Selective Repeat with NAK

Where’s the window now?

Where’s the window now?

Time 0 1 2 3 0 1 2 3 0 Frame 0

ACK 1

0 1 2 3 0 1 2 3 0

Frame 1

0 1 2 3 0 1 2 3 0

Frame 2

ACK or NAK?

0 1 2 3 0 1 2 3 0

S R

Frame 3

0 1 2 3 0 1 2 3 0

0 1 2 3 0 1 2 3 0

0 1 2 3 0 1 2 3 0

0 1 2 3 0 1 2 3 0

0 1 2 3 0 1 2 3 0

0 1 2 3 0 1 2 3 0

Frame 2

0 1 2 3 0 1 2 3 0

0 1 2 3 0 1 2 3 0

NAK 2

X

33

Select Repeat Protocol Implementation

 Receiver has a buffer for each sequence
number within receiving window

 Each buffer is associated with an
"arrived" bit

 Check whether sequence number of an
arriving frame within window or not

If so, accept and store

 Maximum window size = ? Can it be
MAX_SEQ ?

34

Select Repeat Protocol - Window Size

 Suppose 3-bit window is used and window
size = MAX_SEQ = 7

sender receiver

0 1 2 3 4 5 6 sent 0 1 2 3 4 5 6 accepted

 0 through 6 to network layer

 all acknowledgements lost

0 retransmitted 0 accepted

ack 6 received

7 sent 7 accepted

 7 and 0 to network layer

35

Select Repeat Protocol - Window Size

 Problem is caused by new and old
windows overlapped

 Solution

Window size=(MAX_SEQ+1)/2

E.g., if 4-bit window is used, MAX_SEQ = 15

 window size = (15+1)/2 = 8

 Number of buffers needed

 = window size

36

Select Repeat Protocol

(a) Initial situation with a window size seven.

(b) After seven frames sent and received, but not acknowledged.

(c) Initial situation with a window size of four.

(d) After four frames sent and received, but not acknowledged.

37

Acknowledgement Timer

 Problem

If the reverse traffic is light, effect?

If there is no reverse traffic, effect?

 Solution

Acknowledgement timer:

 If no reverse traffic before timeout

 send separate acknowledgement

Essential: ack timeout < data frame timeout
Why?

Example: ADSL

 ADSL protocol stacks

 ATM (Asynchronous Transfer Mode)

ADSL

 PPP (Point-to-Point Protocol) full frame

format for unnumbered mode operation

 AAL5 (ATM Adaptation Layer 5) frame

carrying PPP data

