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Generic Process Framework 

• Communication 

– Involves communication among the customer and other stake holders; encompasses 
requirements gathering 

• Planning 

– Establishes a plan for software engineering work; addresses technical tasks, 
resources, work products, and work schedule 

• Modeling (Analyze, Design) 

– Encompasses the creation of models to better under the requirements and the design 

• Construction (Code, Test) 

– Combines code generation and testing to uncover errors 

• Deployment 

– Involves delivery of software to the customer for evaluation and feedback 
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Modeling: Software Requirements 

Analysis 

• Helps software engineers to better understand the problem they will 
work to solve 

• Encompasses the set of tasks that lead to an understanding of what the 
business impact of the software will be, what the customer wants, and 
how end-users will interact with the software 

• Uses a combination of text and diagrams to depict requirements for 
data, function, and behavior 

– Provides a relatively easy way to understand and review requirements for 
correctness, completeness and consistency 
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Modeling: Software Design 

• Brings together customer requirements, business needs, and technical 
considerations to form the “blueprint” for a product 

• Creates a model that that provides detail about software data structures, 
software architecture, interfaces, and components that are necessary to 
implement the system 

• Architectural design  

– Represents the structure of data and program components that are required to build 
the software 

– Considers the architectural style, the structure and properties of components that 
constitute the system, and interrelationships that occur among all architectural 
components 

• User Interface Design 

– Creates an effective communication medium between a human and a computer 

– Identifies interface objects and actions and then creates a screen layout that forms 
the basis for a user interface prototype 

• Component-level Design 

– Defines the data structures, algorithms, interface characteristics, and communication 
mechanisms allocated to each software component 

 

 

 



Traditional Process Models 
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Prescriptive Process Model 

• Defines a distinct set of activities, actions, tasks, milestones, and work 

products that are required to engineer high-quality software 

• The activities may be linear, incremental, or evolutionary  
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Waterfall Model 

(Diagram) 
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Waterfall Model 

(Description) 

• Oldest software lifecycle model and best understood by upper management 

• Used when requirements are well understood and risk is low 

• Work flow is in a linear (i.e., sequential) fashion 

• Used often with well-defined adaptations or enhancements to current 

software 
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Waterfall Model 

(Problems) 

• Doesn't support iteration, so changes can cause confusion 

• Difficult for customers to state all requirements explicitly and up front 

• Requires customer patience because a working version of the program 
doesn't occur until the final phase 

• Problems can be somewhat alleviated in the model through the addition of 
feedback loops (see the next slide) 
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Waterfall Model with Feedback 

(Diagram) 
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Incremental Model 

(Diagram) 
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Incremental Model 

(Description) 

• Used when requirements are well understood 

• Multiple independent deliveries are identified 

• Work flow is in a linear (i.e., sequential) fashion within an increment and is 

staggered between increments 

• Iterative in nature; focuses on an operational product with each increment 

• Provides a needed set of functionality sooner while delivering optional 

components later 

• Useful also when staffing is too short for a full-scale development 
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Prototyping Model 

(Diagram) 
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Prototyping Model 

(Description) 

• Follows an evolutionary and iterative approach 

• Used when requirements are not well understood 

• Serves as a mechanism for identifying software requirements 

• Focuses on those aspects of the software that are visible to the customer/user 

• Feedback is used to refine the prototype 
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Prototyping Model 

(Potential Problems) 

• The customer sees a "working version" of the software, wants to stop all 
development and then buy the prototype after a "few fixes" are made 

• Developers often make implementation compromises to get the software 
running quickly (e.g., language choice, user interface, operating system 
choice, inefficient algorithms) 

• Lesson learned 

– Define the rules up front on the final disposition of the prototype before it is built 

– In most circumstances, plan to discard the prototype and engineer the actual 
production software with a goal toward quality 
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Spiral Model 

(Diagram) 
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Spiral Model 

(Description) 

• Invented by Dr. Barry Boehm in 1988 while working at TRW 

• Follows an evolutionary approach 

• Used when requirements are not well understood and risks are high 

• Inner spirals focus on identifying software requirements and project risks; may 
also incorporate prototyping 

• Outer spirals take on a classical waterfall approach after requirements have been 
defined, but permit iterative growth of the software 

• Operates as a risk-driven model…a go/no-go decision occurs after each 
complete spiral in order to react to risk determinations 

• Requires considerable expertise in risk assessment 

• Serves as a realistic model for large-scale software development 
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General Weaknesses of 

Evolutionary Process Models 

1) Prototyping poses a problem to project planning because of the uncertain 
number of iterations required to construct the product 

2) Evolutionary software processes do not establish the maximum speed of 
the evolution 

• If too fast, the process will fall into chaos 

• If too slow, productivity could be affected 

3) Software processes should focus first on flexibility and extensibility, and 
second on high quality 

• We should prioritize the speed of the development over zero defects 

• Extending the development in order to reach higher quality could result in 
late delivery 



Specialized Process Models 
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Component-based Development Model 

• Consists of the following process steps 

– Available component-based products are researched and evaluated for the 
application domain in question 

– Component integration issues are considered 

– A software architecture is designed to accommodate the components 

– Components are integrated into the architecture 

– Comprehensive testing is conducted to ensure proper functionality 

• Relies on a robust component library 

• Capitalizes on software reuse, which leads to documented savings in 
project cost and time 
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Formal Methods Model 

(Description) 

• Encompasses a set of activities that leads to formal mathematical 

specification of computer software 

• Enables a software engineer to specify, develop, and verify a 

computer-based system by applying a rigorous, mathematical notation 

• Ambiguity, incompleteness, and inconsistency can be discovered and 

corrected more easily through mathematical analysis 

• Offers the promise of defect-free software 

• Used often when building safety-critical systems 
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Formal Methods Model 

(Challenges) 

• Development of formal methods is currently quite time-consuming and 

expensive 

• Because few software developers have the necessary background to 

apply formal methods, extensive training is required 

• It is difficult to use the models as a communication mechanism for 

technically unsophisticated customers 



The Unified Process 
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Background 

• Birthed during the late 1980's and early 1990s when object-oriented 
languages were gaining wide-spread use 

• Many object-oriented analysis and design methods were proposed; 
three top authors were Grady Booch, Ivar Jacobson, and James 
Rumbaugh 

• They eventually worked together on a unified method, called the 
Unified Modeling Language (UML) 

– UML is a robust notation for the modeling and development of object-
oriented systems 

– UML became an industry standard in 1997 

– However, UML does not provide the process framework, only the 
necessary technology for object-oriented development 
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Background (continued) 

• Booch, Jacobson, and Rumbaugh later developed the unified process, 
which is a framework for object-oriented software engineering using 
UML 

– Draws on the best features and characteristics of conventional software 
process models 

– Emphasizes the important role of software architecture 

– Consists of a process flow that is iterative and incremental, thereby 
providing an evolutionary feel 

• Consists of five phases: inception, elaboration, construction, transition, 
and production 
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Phases of the Unified Process 

communication 
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modeling 
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deployment 

Inception Elaboration 
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Transition Production 
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Inception Phase 

• Encompasses both customer communication and planning activities of the 

generic process 

• Business requirements for the software are identified 

• A rough architecture for the system is proposed 

• A plan is created for an incremental, iterative development 

• Fundamental business requirements are described through preliminary use 

cases 

– A use case describes a sequence of actions that are performed by a user 
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Elaboration Phase 

• Encompasses both the planning and modeling activities of the generic process 

• Refines and expands the preliminary use cases 

• Expands the architectural representation to include five views 

– Use-case model 

– Analysis model 

– Design model 

– Implementation model 

– Deployment model 

• Often results in an executable architectural baseline that represents a first cut 
executable system 

• The baseline demonstrates the viability of the architecture but does not provide 
all features and functions required to use the system 
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Construction Phase 

• Encompasses the construction activity of the generic process 

• Uses the architectural model from the elaboration phase as input 

• Develops or acquires the software components that make each use-case 

operational 

• Analysis and design models from the previous phase are completed to reflect the 

final version of the increment 

• Use cases are used to derive a set of acceptance tests that are executed prior to 

the next phase 
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Transition Phase 

• Encompasses the last part of the construction activity and the first part of the 

deployment activity of the generic process 

• Software is given to end users for beta testing and user feedback reports on 

defects and necessary changes 

• The software teams create necessary support documentation (user manuals, 

trouble-shooting guides, installation procedures) 

• At the conclusion of this phase, the software increment becomes a usable 

software release 
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Production Phase 

• Encompasses the last part of the deployment activity of the generic process 

• On-going use of the software is monitored 

• Support for the operating environment (infrastructure) is provided 

• Defect reports and requests for changes are submitted and evaluated  
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Unified Process Work Products 

• Work products are produced in each of the first four phases of the 
unified process 

• In this course, we will concentrate on the analysis model and the 
design model work products 

• Analysis model includes 

– Scenario-based model, class-based model, and behavioral model 

• Design model includes 

– Component-level design, interface design, architectural design, and 
data/class design 

 


