

Prescriptive Process

Models

 - Generic process framework (revisited)

- Traditional process models

- Specialized process models

- The unified process

2

Generic Process Framework

• Communication

– Involves communication among the customer and other stake holders; encompasses
requirements gathering

• Planning

– Establishes a plan for software engineering work; addresses technical tasks,
resources, work products, and work schedule

• Modeling (Analyze, Design)

– Encompasses the creation of models to better under the requirements and the design

• Construction (Code, Test)

– Combines code generation and testing to uncover errors

• Deployment

– Involves delivery of software to the customer for evaluation and feedback

3

Modeling: Software Requirements

Analysis

• Helps software engineers to better understand the problem they will
work to solve

• Encompasses the set of tasks that lead to an understanding of what the
business impact of the software will be, what the customer wants, and
how end-users will interact with the software

• Uses a combination of text and diagrams to depict requirements for
data, function, and behavior

– Provides a relatively easy way to understand and review requirements for
correctness, completeness and consistency

4

Modeling: Software Design

• Brings together customer requirements, business needs, and technical
considerations to form the “blueprint” for a product

• Creates a model that that provides detail about software data structures,
software architecture, interfaces, and components that are necessary to
implement the system

• Architectural design

– Represents the structure of data and program components that are required to build
the software

– Considers the architectural style, the structure and properties of components that
constitute the system, and interrelationships that occur among all architectural
components

• User Interface Design

– Creates an effective communication medium between a human and a computer

– Identifies interface objects and actions and then creates a screen layout that forms
the basis for a user interface prototype

• Component-level Design

– Defines the data structures, algorithms, interface characteristics, and communication
mechanisms allocated to each software component

Traditional Process Models

6

Prescriptive Process Model

• Defines a distinct set of activities, actions, tasks, milestones, and work

products that are required to engineer high-quality software

• The activities may be linear, incremental, or evolutionary

7

Waterfall Model

(Diagram)

Communication

Project initiation

Requirements

gathering

Planning

Estimating

Scheduling

Tracking Modeling

Analysis

Design Construction

Code

Test Deployment

Delivery

Support

Feedback

8

Waterfall Model

(Description)

• Oldest software lifecycle model and best understood by upper management

• Used when requirements are well understood and risk is low

• Work flow is in a linear (i.e., sequential) fashion

• Used often with well-defined adaptations or enhancements to current

software

9

Waterfall Model

(Problems)

• Doesn't support iteration, so changes can cause confusion

• Difficult for customers to state all requirements explicitly and up front

• Requires customer patience because a working version of the program
doesn't occur until the final phase

• Problems can be somewhat alleviated in the model through the addition of
feedback loops (see the next slide)

10

Waterfall Model with Feedback

(Diagram)
Communication

Project initiation

Requirements

gathering

Planning

Estimating

Scheduling

Tracking Modeling

Analysis

Design Construction

Code

Test Deployment

Delivery

Support

Feedback

11

Incremental Model

(Diagram)

Communication
Planning

Modeling
Construction

Deployment

Communication
Planning

Modeling
Construction

Deployment

Communication
Planning

Modeling
Construction

Deployment

Increment #1

Increment #2

Increment #3

12

Incremental Model

(Description)

• Used when requirements are well understood

• Multiple independent deliveries are identified

• Work flow is in a linear (i.e., sequential) fashion within an increment and is

staggered between increments

• Iterative in nature; focuses on an operational product with each increment

• Provides a needed set of functionality sooner while delivering optional

components later

• Useful also when staffing is too short for a full-scale development

13

Prototyping Model

(Diagram)

Communication

Quick

Planning

Modeling

Quick Design

Construction

Of Prototype

Deployment,

Delivery,

and Feedback

Start

14

Prototyping Model

(Description)

• Follows an evolutionary and iterative approach

• Used when requirements are not well understood

• Serves as a mechanism for identifying software requirements

• Focuses on those aspects of the software that are visible to the customer/user

• Feedback is used to refine the prototype

15

Prototyping Model

(Potential Problems)

• The customer sees a "working version" of the software, wants to stop all
development and then buy the prototype after a "few fixes" are made

• Developers often make implementation compromises to get the software
running quickly (e.g., language choice, user interface, operating system
choice, inefficient algorithms)

• Lesson learned

– Define the rules up front on the final disposition of the prototype before it is built

– In most circumstances, plan to discard the prototype and engineer the actual
production software with a goal toward quality

16

Spiral Model

(Diagram)

Start

Start

Communication

Planning

Modeling

Construction Deployment

17

Spiral Model

(Description)

• Invented by Dr. Barry Boehm in 1988 while working at TRW

• Follows an evolutionary approach

• Used when requirements are not well understood and risks are high

• Inner spirals focus on identifying software requirements and project risks; may
also incorporate prototyping

• Outer spirals take on a classical waterfall approach after requirements have been
defined, but permit iterative growth of the software

• Operates as a risk-driven model…a go/no-go decision occurs after each
complete spiral in order to react to risk determinations

• Requires considerable expertise in risk assessment

• Serves as a realistic model for large-scale software development

18

General Weaknesses of

Evolutionary Process Models

1) Prototyping poses a problem to project planning because of the uncertain
number of iterations required to construct the product

2) Evolutionary software processes do not establish the maximum speed of
the evolution

• If too fast, the process will fall into chaos

• If too slow, productivity could be affected

3) Software processes should focus first on flexibility and extensibility, and
second on high quality

• We should prioritize the speed of the development over zero defects

• Extending the development in order to reach higher quality could result in
late delivery

Specialized Process Models

20

Component-based Development Model

• Consists of the following process steps

– Available component-based products are researched and evaluated for the
application domain in question

– Component integration issues are considered

– A software architecture is designed to accommodate the components

– Components are integrated into the architecture

– Comprehensive testing is conducted to ensure proper functionality

• Relies on a robust component library

• Capitalizes on software reuse, which leads to documented savings in
project cost and time

21

Formal Methods Model

(Description)

• Encompasses a set of activities that leads to formal mathematical

specification of computer software

• Enables a software engineer to specify, develop, and verify a

computer-based system by applying a rigorous, mathematical notation

• Ambiguity, incompleteness, and inconsistency can be discovered and

corrected more easily through mathematical analysis

• Offers the promise of defect-free software

• Used often when building safety-critical systems

22

Formal Methods Model

(Challenges)

• Development of formal methods is currently quite time-consuming and

expensive

• Because few software developers have the necessary background to

apply formal methods, extensive training is required

• It is difficult to use the models as a communication mechanism for

technically unsophisticated customers

The Unified Process

24

Background

• Birthed during the late 1980's and early 1990s when object-oriented
languages were gaining wide-spread use

• Many object-oriented analysis and design methods were proposed;
three top authors were Grady Booch, Ivar Jacobson, and James
Rumbaugh

• They eventually worked together on a unified method, called the
Unified Modeling Language (UML)

– UML is a robust notation for the modeling and development of object-
oriented systems

– UML became an industry standard in 1997

– However, UML does not provide the process framework, only the
necessary technology for object-oriented development

25

Background (continued)

• Booch, Jacobson, and Rumbaugh later developed the unified process,
which is a framework for object-oriented software engineering using
UML

– Draws on the best features and characteristics of conventional software
process models

– Emphasizes the important role of software architecture

– Consists of a process flow that is iterative and incremental, thereby
providing an evolutionary feel

• Consists of five phases: inception, elaboration, construction, transition,
and production

26

Phases of the Unified Process

communication

planning

modeling

construction

deployment

Inception Elaboration

Construction

Transition Production

27

Inception Phase

• Encompasses both customer communication and planning activities of the

generic process

• Business requirements for the software are identified

• A rough architecture for the system is proposed

• A plan is created for an incremental, iterative development

• Fundamental business requirements are described through preliminary use

cases

– A use case describes a sequence of actions that are performed by a user

28

Elaboration Phase

• Encompasses both the planning and modeling activities of the generic process

• Refines and expands the preliminary use cases

• Expands the architectural representation to include five views

– Use-case model

– Analysis model

– Design model

– Implementation model

– Deployment model

• Often results in an executable architectural baseline that represents a first cut
executable system

• The baseline demonstrates the viability of the architecture but does not provide
all features and functions required to use the system

29

Construction Phase

• Encompasses the construction activity of the generic process

• Uses the architectural model from the elaboration phase as input

• Develops or acquires the software components that make each use-case

operational

• Analysis and design models from the previous phase are completed to reflect the

final version of the increment

• Use cases are used to derive a set of acceptance tests that are executed prior to

the next phase

30

Transition Phase

• Encompasses the last part of the construction activity and the first part of the

deployment activity of the generic process

• Software is given to end users for beta testing and user feedback reports on

defects and necessary changes

• The software teams create necessary support documentation (user manuals,

trouble-shooting guides, installation procedures)

• At the conclusion of this phase, the software increment becomes a usable

software release

31

Production Phase

• Encompasses the last part of the deployment activity of the generic process

• On-going use of the software is monitored

• Support for the operating environment (infrastructure) is provided

• Defect reports and requests for changes are submitted and evaluated

32

Unified Process Work Products

• Work products are produced in each of the first four phases of the
unified process

• In this course, we will concentrate on the analysis model and the
design model work products

• Analysis model includes

– Scenario-based model, class-based model, and behavioral model

• Design model includes

– Component-level design, interface design, architectural design, and
data/class design

