
Chapter 11

Component-Level Design

- Introduction

- The software component

- Designing class-based components

- Designing conventional components

Introduction

3

Background
• Component-level design occurs after the first iteration of the

architectural design

• It strives to create a design model from the analysis and architectural

models

– The translation can open the door to subtle errors that are difficult to find

and correct later

– “Effective programmers should not waste their time debugging – they

should not introduce bugs to start with.” Edsgar Dijkstra

• A component-level design can be represented using some intermediate

representation (e.g. graphical, tabular, or text-based) that can be

translated into source code

• The design of data structures, interfaces, and algorithms should

conform to well-established guidelines to help us avoid the

introduction of errors

The Software Component

5

Defined

• A software component is a modular building block for computer
software

– It is a modular, deployable, and replaceable part of a system that
encapsulates implementation and exposes a set of interfaces

• A component communicates and collaborates with

– Other components

– Entities outside the boundaries of the system

• Three different views of a component

– An object-oriented view

– A conventional view

– A process-related view

6

Object-oriented View
• A component is viewed as a set of one or more collaborating classes

• Each problem domain (i.e., analysis) class and infrastructure (i.e.,
design) class is elaborated to identify all attributes and operations
that apply to its implementation

– This also involves defining the interfaces that enable classes to
communicate and collaborate

• This elaboration activity is applied to every component defined as
part of the architectural design

• Once this is completed, the following steps are performed
1) Provide further elaboration of each attribute, operation, and interface

2) Specify the data structure appropriate for each attribute

3) Design the algorithmic detail required to implement the processing
logic associated with each operation

4) Design the mechanisms required to implement the interface to include
the messaging that occurs between objects

7

Conventional View
• A component is viewed as a functional element (i.e., a module) of a

program that incorporates

– The processing logic

– The internal data structures that are required to implement the processing

logic

– An interface that enables the component to be invoked and data to be

passed to it

• A component serves one of the following roles

– A control component that coordinates the invocation of all other problem

domain components

– A problem domain component that implements a complete or partial

function that is required by the customer

– An infrastructure component that is responsible for functions that support

the processing required in the problem domain

8

Conventional View (continued)

• Conventional software components are derived from the data flow
diagrams (DFDs) in the analysis model

– Each transform bubble (i.e., module) represented at the lowest levels of
the DFD is mapped into a module hierarchy

– Control components reside near the top

– Problem domain components and infrastructure components migrate
toward the bottom

– Functional independence is strived for between the transforms

• Once this is completed, the following steps are performed for each
transform

1) Define the interface for the transform (the order, number and types of
the parameters)

2) Define the data structures used internally by the transform

3) Design the algorithm used by the transform (using a stepwise
refinement approach)

9

Process-related View

• Emphasis is placed on building systems from existing components
maintained in a library rather than creating each component from
scratch

• As the software architecture is formulated, components are selected
from the library and used to populate the architecture

• Because the components in the library have been created with reuse in
mind, each contains the following:

– A complete description of their interface

– The functions they perform

– The communication and collaboration they require

Designing Class-Based

Components

11

Component-level Design Principles

• Open-closed principle
– A module or component should be open for extension but closed for modification

– The designer should specify the component in a way that allows it to be extended without the
need to make internal code or design modifications to the existing parts of the component

• Liskov substitution principle
– Subclasses should be substitutable for their base classes

– A component that uses a base class should continue to function properly if a subclass of the
base class is passed to the component instead

• Dependency inversion principle
– Depend on abstractions (i.e., interfaces); do not depend on concretions

– The more a component depends on other concrete components (rather than on the interfaces)
the more difficult it will be to extend

• Interface segregation principle
– Many client-specific interfaces are better than one general purpose interface

– For a server class, specialized interfaces should be created to serve major categories of
clients

– Only those operations that are relevant to a particular category of clients should be specified
in the interface

12

Component Packaging Principles

• Release reuse equivalency principle

– The granularity of reuse is the granularity of release

– Group the reusable classes into packages that can be managed, upgraded,

and controlled as newer versions are created

• Common closure principle

– Classes that change together belong together

– Classes should be packaged cohesively; they should address the same

functional or behavioral area on the assumption that if one class

experiences a change then they all will experience a change

• Common reuse principle

– Classes that aren't reused together should not be grouped together

– Classes that are grouped together may go through unnecessary integration

and testing when they have experienced no changes but when other

classes in the package have been upgraded

13

Component-Level Design

Guidelines

• Components
– Establish naming conventions for components that are specified as part of

the architectural model and then refined and elaborated as part of the
component-level model

– Obtain architectural component names from the problem domain and
ensure that they have meaning to all stakeholders who view the
architectural model (e.g., Calculator)

– Use infrastructure component names that reflect their implementation-
specific meaning (e.g., Stack)

• Dependencies and inheritance in UML
– Model any dependencies from left to right and inheritance from top (base

class) to bottom (derived classes)

– Consider modeling any component dependencies as interfaces rather than
representing them as a direct component-to-component dependency

14

Cohesion

• Cohesion is the “single-mindedness’ of a component

• It implies that a component or class encapsulates only attributes and
operations that are closely related to one another and to the class or
component itself

• The objective is to keep cohesion as high as possible

• The kinds of cohesion can be ranked in order from highest (best) to
lowest (worst)

– Functional
• A module performs one and only one computation and then returns a result

– Layer
• A higher layer component accesses the services of a lower layer component

– Communicational
• All operations that access the same data are defined within one class

15

Cohesion (continued)

• Kinds of cohesion (continued)

– Sequential

• Components or operations are grouped in a manner that allows the first to

provide input to the next and so on in order to implement a sequence of

operations

– Procedural

• Components or operations are grouped in a manner that allows one to be

invoked immediately after the preceding one was invoked, even when no data

passed between them

– Temporal

• Operations are grouped to perform a specific behavior or establish a certain

state such as program start-up or when an error is detected

– Utility

• Components, classes, or operations are grouped within the same category

because of similar general functions but are otherwise unrelated to each other

16

Coupling

• As the amount of communication and collaboration increases between
operations and classes, the complexity of the computer-based system
also increases

• As complexity rises, the difficulty of implementing, testing, and
maintaining software also increases

• Coupling is a qualitative measure of the degree to which operations
and classes are connected to one another

• The objective is to keep coupling as low as possible

17

Coupling (continued)
• The kinds of coupling can be ranked in order from lowest (best) to

highest (worst)

– Data coupling

• Operation A() passes one or more atomic data operands to operation B(); the
less the number of operands, the lower the level of coupling

– Stamp coupling

• A whole data structure or class instantiation is passed as a parameter to an
operation

– Control coupling

• Operation A() invokes operation B() and passes a control flag to B that directs
logical flow within B()

• Consequently, a change in B() can require a change to be made to the meaning
of the control flag passed by A(), otherwise an error may result

– Common coupling

• A number of components all make use of a global variable, which can lead to
uncontrolled error propagation and unforeseen side effects

– Content coupling

• One component secretly modifies data that is stored internally in another
component

18

Coupling (continued)

• Other kinds of coupling (unranked)
– Subroutine call coupling

• When one operation is invoked it invokes another operation within side of it

– Type use coupling
• Component A uses a data type defined in component B, such as for an instance

variable or a local variable declaration

• If/when the type definition changes, every component that declares a variable
of that data type must also change

– Inclusion or import coupling
• Component A imports or includes the contents of component B

– External coupling
• A component communicates or collaborates with infrastructure components

that are entities external to the software (e.g., operating system functions,
database functions, networking functions)

19

Conducting Component-Level Design

1) Identify all design classes that correspond to the problem domain as defined
in the analysis model and architectural model

2) Identify all design classes that correspond to the infrastructure domain
• These classes are usually not present in the analysis or architectural models

• These classes include GUI components, operating system components, data
management components, networking components, etc.

3) Elaborate all design classes that are not acquired as reusable components
a) Specify message details (i.e., structure) when classes or components collaborate

b) Identify appropriate interfaces (e.g., abstract classes) for each component

c) Elaborate attributes and define data types and data structures required to
implement them (usually in the planned implementation language)

d) Describe processing flow within each operation in detail by means of pseudocode
or UML activity diagrams

20

Conducting Component-Level

Design (continued)

4) Describe persistent data sources (databases and files) and identify the
classes required to manage them

5) Develop and elaborate behavioral representations for a class or component
• This can be done by elaborating the UML state diagrams created for the analysis

model and by examining all use cases that are relevant to the design class

6) Elaborate deployment diagrams to provide additional implementation detail
• Illustrate the location of key packages or classes of components in a system by

using class instances and designating specific hardware and operating system
environments

7) Factor every component-level design representation and always consider
alternatives

• Experienced designers consider all (or most) of the alternative design solutions
before settling on the final design model

• The final decision can be made by using established design principles and
guidelines

Designing Conventional

Components

22

Introduction

• Conventional design constructs emphasize the maintainability of a
functional/procedural program
– Sequence, condition, and repetition

• Each construct has a predictable logical structure where control enters
at the top and exits at the bottom, enabling a maintainer to easily
follow the procedural flow

• Various notations depict the use of these constructs
– Graphical design notation

• Sequence, if-then-else, selection, repetition (see next slide)

– Tabular design notation (see upcoming slide)

– Program design language
• Similar to a programming language; however, it uses narrative text embedded

directly within the program statements

23

Graphical Design Notation

Sequence If-then-else

Selection Repetition

T F

T

T

T

F

F

F

T

F

24

Graphical Example used for Algorithm Analysis

 1 int functionZ(int y)

 2 {

 3 int x = 0;

 4 while (x <= (y * y))

 5 {

 6 if ((x % 11 == 0) &&

 7 (x % y == 0))

 8 {

 9 printf(“%d”, x);

10 x++;

11 } // End if

12 else if ((x % 7 == 0) ||

13 (x % y == 1))

14 {

15 printf(“%d”, y);

16 x = x + 2;

17 } // End else

18 printf(“\n”);

19 } // End while

20 printf("End of list\n");

21 return 0;

22 } // End functionZ

3

4

6 7

9

10

12 13

15

16

18

20

21

25

Tabular Design Notation

1) List all actions that can be associated with a specific procedure (or
module)

2) List all conditions (or decisions made) during execution of the
procedure

3) Associate specific sets of conditions with specific actions,
eliminating impossible combinations of conditions; alternatively,
develop every possible permutation of conditions

4) Define rules by indicating what action(s) occurs for a set of
conditions

26

Tabular Design Notation

(continued)

Conditions 1 2 3 4

Condition A T T F

Condition B F T

Condition C T T

Actions

Action X  

Action Y 

Action Z   

Rules

