
1

Software
Testing

• What is Testing?

Many people understand many definitions of testing :

1. Testing is the process of demonstrating that errors are not present.

2. The purpose of testing is to show that a program performs its intended
functions correctly.

3. Testing is the process of establishing confidence that a program does
what it is supposed to do.

These definitions are incorrect.

2

Softwar
e

Testin
g

A more appropriate definition is:

“Testing is the process of executing a program with

the intent of finding errors.”

3

Software
Testing

• Why should We Test ?

Although software testing is itself an expensive activity, yet launching of

software without testing may lead to cost potentially much higher than that
of testing, specially in systems where human safety is involved.

In the software life cycle the earlier the
the lower is the cost of their removal.

errors are discovered and removed,

4

Software
Testing

• Who should Do the Testing ?

o

o

Testing requires the developers to find errors from their software.

It is difficult for software developer to point out errors from own
creations.

Many organisations have made a distinction between development

and testing phase by making different people responsible for each

phase.

o

5

Software
Testing

• What should We Test ?

We should test the program’s responses to every possible input. It means,
we should test for all valid and invalid inputs. Suppose a program requires

8 bit integers as inputs. Total possible combinations are 28x28. If only

second it required to execute one set of inputs, it may take 18 hours to

all combinations. Practically, inputs are more than two and size is also

two

one

test

more than 8 bits. We have also not considered invalid inputs where so

many combinations are possible. Hence, complete testing is just not

possible, although, we may wish to do so.

6

Softwar
e

Testin
g

Fig. 1: Control flow graph
7

Software
Testing

1014 The number of paths in the example of Fig. 1 are or 100 trillions. It is
520 519 518 51; where 5 is the number of paths computed from + + + …… +

through the loop body. If only 5 minutes are required to test one test path, it

may take approximately one billion years to execute every path.

8

Software
Testing

Some Terminologies

) Error, Mistake, Bug, Fault and Failure

People make errors. A good synonym is mistake. This may be a syntax

error or misunderstanding of specifications. Sometimes, there are logical

errors.

When developers make mistakes while coding, we call these mistakes
“bugs”.

A fault is the representation of an error, where representation is the mode

of expression, such as narrative text, data flow diagrams, ER diagrams,

source code etc. Defect is a good synonym for fault.

A failure occurs when a fault executes. A particular fault may cause
different failures, depending on how it has been exercised.

9

Software
Testing

) Test, Test Case and Test Suite

Test and Test case terms are used interchangeably. In practice, both are

same and are
and

treated as synonyms. Test case describes an input

description an expected output description.

Fig. 2: Test case template

cases is called a test suite. Hence The set of test any combination of test

cases may generate a test suite.

10

Test Case ID

Section-I

(Before Execution)

Section-II

(After Execution)

Purpose : Execution History:

Pre condition: (If any) Result:

Inputs: If fails, any possible reason (Optional);

Expected Outputs: Any other observation:

Post conditions: Any suggestion:

Written by: Run by:

Date: Date:

Software
Testing

) Verification and Validation

Verification is the process of evaluating a system or component to

determine whether the products of a given development phase satisfy the
conditions imposed at the start of that phase.

Validation is the process of evaluating a system or component during or at

the end of development process to determine whether it satisfies the

specified requirements .

Testing= Verification+Validation

11

Software
Testing

) Alpha, Beta and Acceptance Testing

The term Acceptance Testing is used when the software is developed for

a specific customer. A series of tests are conducted to enable the customer

to validate all requirements. These tests are conducted by the end user /

customer and may range from adhoc tests to well planned systematic

series of tests.

The terms alpha and beta testing are used when the software is developed

as a product for anonymous customers.

Alpha Tests are conducted at the developer’s site by some potential

customers. These tests are
testing may be started when

conducted in a controlled environment. Alpha
formal testing process is near completion.

Beta Tests are conducted by the customers / end users at their sites.

Unlike alpha testing, developer is not present here. Beta testing is

conducted in a real environment that cannot be controlled by the developer.

12

Softwar
e

Testin
g

Functional Testing

Input
domain

Output
domain

System

under

test

Fig. 3: Black box testing

13

Output

test data

Input test

data

Software
Testing

Boundary Value Analysis

Consider a program with two input variables x and y. These input variables

have specified boundaries as:
a ≤ x ≤ b

c ≤ y ≤ d

Input domain

d

y
c

a b
x

Fig.4: Input domain for program having two input variables

14

Software
Testing

The boundary value analysis test cases for our program with two inputs

variables (x and y) that may have any value from 100 to 300 are: (200,100),

(200,101), (200,200), (200,299), (200,300), (100,200), (101,200), (299,200) and

(300,200). This input domain is shown in Fig. 8.5. Each dot represent a test case

and inner rectangle is the domain of legitimate inputs. Thus, for a program of n

variables, boundary value analysis yield 4n + 1 test cases.

Input domain
400
300

200

100

y

400 0 100 200 300
x

Fig. 5: Input domain of two variables x and y
boundaries [100,300] each

with

15

Software
Testing

Example- 8.I

Consider a program for the determination of the nature of roots of a
quadratic equation. Its input is a triple of positive integers (say a,b,c) and

values may be from interval [0,100]. The program output may have
the following words.

one of

[Not a quadratic equation; Real

Design the boundary value test

roots; Imaginary

cases.

roots; Equal roots]

16

Softwar
e

Testin
g

Solution

Quadratic equation will be of type:

ax2+bx+c=0

real if (b2-4ac)>0

imaginary if (b2-4ac)<0

equal if (b2-4ac)=0

Roots

Roots

Roots

are

are

are

Equation is not quadratic if a=0

17

Softwar
e

Testin
g

The boundary value test cases are :

18

Test Case a b c Expected output

1

0 50 50 Not Quadratic

2 1 50 50 Real Roots

3

50 50 50

Imaginary Roots

4

99 50 50 Imaginary Roots

5

100 50 50 Imaginary Roots

6 50 0 50 Imaginary Roots

7 50 1 50 Imaginary Roots

8 50 99 50 Imaginary Roots

9 50 100 50 Equal Roots

10 50 50 0 Real Roots

11 50 50 1

Real Roots

12 50 50 99 Imaginary Roots

13 50 50 100 Imaginary Roots

Software
Testing

Robustness testing

It is nothing but the extension of boundary value analysis. Here, we would

like to see, what happens when the extreme values are exceeded with a

value slightly greater than the maximum, and a value slightly less than

minimum. It means, we want to go outside the legitimate boundary of input

domain. This extended form of boundary value analysis is called

robustness testing and shown in Fig. 6

There are four additional test cases which are outside the legitimate input

domain. Hence total test cases in robustness testing are 6n+1, where n is

the number of input variables. So, 13 test cases are:

(200,99), (200,100), (200,101), (200,200), (200,299), (200,300)

(200,301), (99,200), (100,200), (101,200), (299,200), (300,200), (301,200)

24

Softwar
e

Testin
g

400
300

200

100

y

400 0 100 200

x

300

Fig. 8.6: Robustness test cases for two variables x
and y with range [100,300] each

25

Software
Testing

Worst-case testing

If we reject “single fault” assumption theory of reliability and may like to see

what happens when more than one variable has an extreme value. In

electronic circuits analysis, this is called “worst case analysis”. It is more

thorough in the sense that boundary
of worst case test cases. It requires

value test cases are a proper subset
more effort. Worst case testing for a

5n function of n variables generate test cases as opposed to 4n+1 test

cases
52=25

for boundary value analysis. Our
test cases and are given in table 1.

two variables example will have

26

Software
Testing

Table 1: Worst cases test inputs for two variables example

27

Test case
number

Inputs Test case
number

Inputs

x y x y

1 100 100 14 200 299

2 100 101 15 200 300

3 100 200 16 299 100

4 100 299 17 299 101

5 100 300 18 299 200

6 101 100 19 299 299

7 101 101 20 299 300

8 101 200 21 300 100

9 101 299 22 300 101

10 101 300 23 300 200

11 200 100 24 300 299

12 200 101 25 300 300

13 200 200 --

Software
Testing

Example - 8.4

Consider the program for the determination of nature of roots of a quadratic

equation as explained in example 8.1. Design the Robust test case and worst

test cases for this program.

28 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Solution

Robust test cases are 6n+1. Hence, in 3 variable
slide:

input cases total number

of test cases are 19 as given on next

29 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

10 1

30 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test case a b c Expected Output

1

-1

50

50

Invalid input`

2

0

50

50

Not quadratic equation

3

1

50

50

Real roots

4

50

50

50

Imaginary roots

5

99

50

50

Imaginary roots

6

100

50

50

Imaginary roots

7

101

50

50

Invalid input

8

50

-1

50

Invalid input

9

50

0

50

Imaginary roots

50

50

Imaginary roots

11

50

99

50

Imaginary roots

12

50

100

50

Equal roots

13

50

101

50

Invalid input

14

50

50

-1

Invalid input

15

50

50

0

Real roots

16

50

50

1

Real roots

17

50

50

99

Imaginary roots

18

50

50

100

Imaginary roots

19

50

50

101

Invalid input

Software
Testing

In case of worst test case total test cases are 5n. Hence, 125 test cases will be

generated in worst test cases. The worst test cases are given below:

31 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case a b c Expected output

1 0 0 0 Not Quadratic

2 0 0 1 Not Quadratic

3 0 0 50 Not Quadratic

4 0 0 99 Not Quadratic

5 0 0 100 Not Quadratic

6 0 1 0 Not Quadratic

7 0 1 1 Not Quadratic

8 0 1 50 Not Quadratic

9 0 1 99 Not Quadratic

10 0 1 100 Not Quadratic

11 0 50 0 Not Quadratic

12 0 50 1 Not Quadratic

13 0 50 50 Not Quadratic

14 0 50 99 Not Quadratic

Softwar
e

Testin
g

32 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A b c Expected output

15 0 50 100 Not Quadratic

16 0 99 0 Not Quadratic

17 0 99 1 Not Quadratic

18 0 99 50 Not Quadratic

19 0 99 99 Not Quadratic

20 0 99 100 Not Quadratic

21 0 100 0 Not Quadratic

22 0 100 1 Not Quadratic

23 0 100 50 Not Quadratic

24 0 100 99 Not Quadratic

25 0 100 100 Not Quadratic

26 1 0 0 Equal Roots

27 1 0 1 Imaginary

28 1 0 50 Imaginary

29 1 0 99 Imaginary

30 1 0 100 Imaginary

31 1 1 0 Real Roots

Softwar
e

Testin
g

33 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A b C Expected output

32 1 1 1 Imaginary

33 1 1 50 Imaginary

34 1 1 99 Imaginary

35 1 1 100 Imaginary

36 1 50 0 Real Roots

37 1 50 1 Real Roots

38 1 50 50 Real Roots

39 1 50 99 Real Roots

40 1 50 100 Real Roots

41 1 99 0 Real Roots

42 1 99 1 Real Roots

43 1 99 50 Real Roots

44` 1 99 99 Real Roots

45 1 99 100 Real Roots

46 1 100 0 Real Roots

47 1 100 1 Real Roots

48 1 100 50 Real Roots

Softwar
e

Testin
g

34 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A b C Expected output

49 1 100 99 Real Roots

50 1 100 100 Real Roots

51 50 0 0 Equal Roots

52 50 0 1 Imaginary

53 50 0 50 Imaginary

54 50 0 99 Imaginary

55 50 0 100 Imaginary

56 50 1 0 Real Roots

57 50 1 1 Imaginary

58 50 1 50 Imaginary

59 50 1 99 Imaginary

60 50 1 100 Imaginary

61 50 50 0 Real Roots

62 50 50 1 Real Roots

63 50 50 50 Imaginary

64 50 50 99 Imaginary

65 50 50 100 Imaginary

35

Softwar
e

Testin
g

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A b C Expected output

66 50 99 0 Real Roots

67 50 99 1 Real Roots

68 50 99 50 Imaginary

69 50 99 99 Imaginary

70 50 99 100 Imaginary

71 50 100 0 Real Roots

72 50 100 1 Real Roots

73 50 100 50 Equal Roots

74 50 100 99 Imaginary

75 50 100 100 Imaginary

76 99 0 0 Equal Roots

77 99 0 1 Imaginary

78 99 0 50 Imaginary

79 99 0 99 Imaginary

80 99 0 100 Imaginary

81 99 1 0 Real Roots

82 99 1 1 Imaginary

36

Softwar
e

Testin
g

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A b C Expected output

83 99 1 50 Imaginary

84 99 1 99 Imaginary

85 99 1 100 Imaginary

86 99 50 0 Real Roots

87 99 50 1 Real Roots

88 99 50 50 Imaginary

89 99 50 99 Imaginary

90 99 50 100 Imaginary

91 99 99 0 Real Roots

92 99 99 1 Real Roots

93 99 99 50 Imaginary Roots

94 99 99 99 Imaginary

95 99 99 100 Imaginary

96 99 100 0 Real Roots

97 99 100 1 Real Roots

98 99 100 50 Imaginary

99 99 100 99 Imaginary

100 99 100 100 Imaginary

37

Softwar
e

Testin
g

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A b C Expected output

101 100 0 0 Equal Roots

102 100 0 1 Imaginary

103 100 0 50 Imaginary

104 100 0 99 Imaginary

105 100 0 100 Imaginary

106 100 1 0 Real Roots

107 100 1 1 Imaginary

108 100 1 50 Imaginary

109 100 1 99 Imaginary

110 100 1 100 Imaginary

111 100 50 0 Real Roots

112 100 50 1 Real Roots

113 100 50 50 Imaginary

114 100 50 99 Imaginary

115 100 50 100 Imaginary

116 100 99 0 Real Roots

117 100 99 1 Real Roots

118 100 99 50 Imaginary

Softwar
e

Testin
g

38 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A b C Expected output

119 100 99 99 Imaginary

120 100 99 100 Imaginary

121 100 100 0 Real Roots

122 100 100 1 Real Roots

123 100 100 50 Imaginary

124 100 100 99 Imaginary

125 100 100 100 Imaginary

Software
Testing

Example – 8.5

Consider the program
example

for the determination of previous date in a calendar as

explained
program.

in 8.2. Design the robust and worst test cases for this

39 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Solution

Robust test cases are 6n+1. Hence total 19 robust test cases are designed

and are given on next slide.

40 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

41 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test case Month Day Year Expected Output

1 6 15 1899 Invalid date (outside range)

2 6 15 1900 14 June, 1900

3 6 15 1901 14 June, 1901

4 6 15 1962 14 June, 1962

5 6 15 2024 14 June, 2024

6 6 15 2025 14 June, 2025

7 6

15

2026

Invalid date (outside range)

8 6 0

1962

Invalid date

9 6 1 1962

31 May, 1962

10

6

2

1962

1 June, 1962

11

6

30

1962

29 June, 1962

12

6

31

1962

Invalid date

13

6

32

1962

Invalid date

14 0 15 1962 Invalid date

15 1 15 1962 14 January, 1962

16 2 15 1962 14 February, 1962

17 11 15 1962 14 November, 1962

18 12 15 1962 14 December, 1962

19 13 15 1962 Invalid date

Software
Testing

In case of worst test case total test cases are 5n. Hence, 125 test cases will be

generated in worst test cases. The worst test cases are given below:

42 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case Month Day Year Expected output

1 1 1 1900 31 December, 1899

2 1 1 1901 31 December, 1900

3 1 1 1962 31 December, 1961

4 1 1 2024 31 December, 2023

5 1 1 2025 31 December, 2024

6 1 2 1900 1 January, 1900

7 1 2 1901 1 January, 1901

8 1 2 1962 1 January, 1962

9 1 2 2024 1 January, 2024

10 1 2 2025 1 January, 2025

11 1 15 1900 14 January, 1900

12 1 15 1901 14 January, 1901

13 1 15 1962 14 January, 1962

14 1 15 2024 14 January, 2024

Softwar
e

Testin
g

43 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A b c Expected output

15 1 15 2025 14 January, 2025

16 1 30 1900 29 January, 1900

17 1 30 1901 29 January, 1901

18 1 30 1962 29 January, 1962

19 1 30 2024 29 January, 2024

20 1 30 2025 29 January, 2025

21 1 31 1900 30 January, 1900

22 1 31 1901 30 January, 1901

23 1 31 1962 30 January, 1962

24 1 31 2024 30 January, 2024

25 1 31 2025 30 January, 2025

26 2 1 1900 31 January, 1900

27 2 1 1901 31 January, 1901

28 2 1 1962 31 January, 1962

29 2 1 2024 31 January, 2024

30 2 1 2025 31 January, 2025

31 2 2 1900 1 February, 1900

Softwar
e

Testin
g

44 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case Month Day Year Expected output

32 2 2 1901 1 February, 1901

33 2 2 1962 1 February, 1962

34 2 2 2024 1 February, 2024

35 2 2 2025 1 February, 2025

36 2 15 1900 14 February, 1900

37 2 15 1901 14 February, 1901

38 2 15 1962 14 February, 1962

39 2 15 2024 14 February, 2024

40 2 15 2025 14 February, 2025

41 2 30 1900 Invalid date

42 2 30 1901 Invalid date

43 2 30 1962 Invalid date

44 2 30 2024 Invalid date

45 2 30 2025 Invalid date

46 2 31 1900 Invalid date

47 2 31 1901 Invalid date

48 2 31 1962 Invalid date

Softwar
e

Testin
g

45 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case Month Day Year Expected output

49 2 31 2024 Invalid date

50 2 31 2025 Invalid date

51 6 1 1900 31 May, 1900

52 6 1 1901 31 May, 1901

53 6 1 1962 31 May, 1962

54 6 1 2024 31 May, 2024

55 6 1 2025 31 May, 2025

56 6 2 1900 1 June, 1900

57 6 2 1901 1 June, 1901

58 6 2 1962 1 June, 1962

59 6 2 2024 1 June, 2024

60 6 2 2025 1 June, 2025

61 6 15 1900 14 June, 1900

62 6 15 1901 14 June, 1901

63 6 15 1962 14 June, 1962

64 6 15 2024 14 June, 2024

65 6 15 2025 14 June, 2025

Softwar
e

Testin
g

46 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case Month Day Year Expected output

66 6 30 1900 29 June, 1900

67 6 30 1901 29 June, 1901

68 6 30 1962 29 June, 1962

69 6 30 2024 29 June, 2024

70 6 30 2025 29 June, 2025

71 6 31 1900 Invalid date

72 6 31 1901 Invalid date

73 6 31 1962 Invalid date

74 6 31 2024 Invalid date

75 6 31 2025 Invalid date

76 11 1 1900 31 October, 1900

77 11 1 1901 31 October, 1901

78 11 1 1962 31 October, 1962

79 11 1 2024 31 October, 2024

80 11 1 2025 31 October, 2025

81 11 2 1900 1 November, 1900

82 11 2 1901 1 November, 1901

Softwar
e

Testin
g

47 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case Month Day Year Expected output

83 11 2 1962 1 November, 1962

84 11 2 2024 1 November, 2024

85 11 2 2025 1 November, 2025

86 11 15 1900 14 November, 1900

87 11 15 1901 14 November, 1901

88 11 15 1962 14 November, 1962

89 11 15 2024 14 November, 2024

90 11 15 2025 14 November, 2025

91 11 30 1900 29 November, 1900

92 11 30 1901 29 November, 1901

93 11 30 1962 29 November, 1962

94 11 30 2024 29 November, 2024

95 11 30 2025 29 November, 2025

96 11 31 1900 Invalid date

97 11 31 1901 Invalid date

98 11 31 1962 Invalid date

99 11 31 2024 Invalid date

100 11 31 2025 Invalid date

Softwar
e

Testin
g

48 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case Month Day Year Expected output

101 12 1 1900 30 November, 1900

102 12 1 1901 30 November, 1901

103 12 1 1962 30 November, 1962

104 12 1 2024 30 November, 2024

105 12 1 2025 30 November, 2025

106 12 2 1900 1 December, 1900

107 12 2 1901 1 December, 1901

108 12 2 1962 1 December, 1962

109 12 2 2024 1 December, 2024

110 12 2 2025 1 December, 2025

111 12 15 1900 14 December, 1900

112 12 15 1901 14 December, 1901

113 12 15 1962 14 December, 1962

114 12 15 2024 14 December, 2024

115 12 15 2025 14 December, 2025

116 12 30 1900 29 December, 1900

117 12 30 1901 29 December, 1901

118 12 30 1962 29 December, 1962

Softwar
e

Testin
g

49 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case Month Day Year Expected output

119 12 30 2024 29 December, 2024

120 12 30 2025 29 December, 2025

121 12 31 1900 30 December, 1900

122 12 31 1901 30 December, 1901

123 12 31 1962 30 December, 1962

124 12 31 2024 30 December, 2024

125 12 31 2025 30 December, 2025

Software
Testing

Example – 8.6

Consider the triangle problem as given in example 8.3. Generate robust and

worst test cases for this problem.

50 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Solution

Robust test cases are given on next slide.

51 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

52 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

` x y z Expected Output

1 50 50 0 Invalid input`

2 50 50 1 Isosceles

3 50 50 2 Isosceles

4 50 50 50 Equilateral

5 50 50 99 Isosceles

6 50 50 100 Not a triangle

7 50

50

101

Invalid input

8 50 0

50

Invalid input

9 50 1 50

Isosceles

10

50

2

50

Isosceles

11

50

99

50

Isosceles

12

50

100

50

Not a triangle

13

50

101

50

Invalid input

14 0 50 50 Invalid input

15 1 50 50 Isosceles

16 2 50 50 Isosceles

17 99 50 50 Isosceles

18 100 50 50 Not a triangle

19 100 50 50 Invalid input

Software
Testing

Worst test cases are 125 and are given below:

53 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case x y z Expected output

1 1 1 1 Equilateral

2 1 1 2 Not a triangle

3 1 1 50 Not a triangle

4 1 1 99 Not a triangle

5 1 1 100 Not a triangle

6 1 2 1 Not a triangle

7 1 2 2 Isosceles

8 1 2 50 Not a triangle

9 1 2 99 Not a triangle

10 1 2 100 Not a triangle

11 1 50 1 Not a triangle

12 1 50 2 Not a triangle

13 1 50 50 Isosceles

14 1 50 99 Not a triangle

Softwar
e

Testin
g

54 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A b c Expected output

15 1 50 100 Not a triangle

16 1 99 1 Not a triangle

17 1 99 2 Not a triangle

18 1 99 50 Not a triangle

19 1 99 99 Isosceles

20 1 99 100 Not a triangle

21 1 100 1 Not a triangle

22 1 100 2 Not a triangle

23 1 100 50 Not a triangle

24 1 100 99 Not a triangle

25 1 100 100 Isosceles

26 2 1 1 Not a triangle

27 2 1 2 Isosceles

28 2 1 50 Not a triangle

29 2 1 99 Not a triangle

30 2 1 100 Not a triangle

31 2 2 1 Isosceles

Softwar
e

Testin
g

55 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A b C Expected output

32 2 2 2 Equilateral

33 2 2 50 Not a triangle

34 2 2 99 Not a triangle

35 2 2 100 Not a triangle

36 2 50 1 Not a triangle

37 2 50 2 Not a triangle

38 2 50 50 Isosceles

39 2 50 99 Not a triangle

40 2 50 100 Not a triangle

41 2 99 1 Not a triangle

42 2 99 2 Not a triangle

43 2 99 50 Not a triangle

44 2 99 99 Isosceles

45 2 99 100 Scalene

46 2 100 1 Not a triangle

47 2 100 2 Not a triangle

48 2 100 50 Not a triangle

Softwar
e

Testin
g

56 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A b C Expected output

49 2 100 50 Scalene

50 2 100 99 Isosceles

51 50 1 100 Not a triangle

52 50 1 1 Not a triangle

53 50 1 2 Isosceles

54 50 1 50 Not a triangle

55 50 1 99 Not a triangle

56 50 2 100 Not a triangle

57 50 2 1 Not a triangle

58 50 2 2 Isosceles

59 50 2 50 Not a triangle

60 50 2 99 Not a triangle

61 50 50 100 Isosceles

62 50 50 1 Isosceles

63 50 50 2 Equilateral

64 50 50 50 Isosceles

65 50 50 99 Not a triangle

57

Softwar
e

Testin
g

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A B C Expected output

66 50 99 1 Not a triangle

67 50 99 2 Not a triangle

68 50 99 50 Isosceles

69 50 99 99 Isosceles

70 50 99 100 Scalene

71 50 100 1 Not a triangle

72 50 100 2 Not a triangle

73 50 100 50 Not a triangle

74 50 100 99 Scalene

75 50 100 100 Isosceles

76 50 1 1 Not a triangle

77 99 1 2 Not a triangle

78 99 1 50 Not a triangle

79 99 1 99 Isosceles

80 99 1 100 Not a triangle

81 99 2 1 Not a triangle

82 99 2 2 Not a triangle

Softwar
e

Testin
g

58 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A b C Expected output

83 99 2 50 Not a triangle

84 99 2 99 Isosceles

85 99 2 100 Scalene

86 99 50 1 Not a triangle

87 99 50 2 Not a triangle

88 99 50 50 Isosceles

89 99 50 99 Isosceles

90 99 50 100 Scalene

91 99 99 1 Isosceles

92 99 99 2 Isosceles

93 99 99 50 Isosceles

94 99 99 99 Equilateral

95 99 99 100 Isosceles

96 99 100 1 Not a triangle

97 99 100 2 Scalene

98 99 100 50 Scalene

99 99 100 99 Isosceles

100 99 100 100 Isosceles

Softwar
e

Testin
g

59 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A b C Expected output

101 100 1 1 Not a triangle

102 100 1 2 Not a triangle

103 100 1 50 Not a triangle

104 100 1 99 Not a triangle

105 100 1 100 Isosceles

106 100 2 1 Not a triangle

107 100 2 2 Not a triangle

108 100 2 50 Not a triangle

109 100 2 99 Scalene

110 100 2 100 Isosceles

111 100 50 1 Not a triangle

112 100 50 2 Not a triangle

113 100 50 50 Not a triangle

114 100 50 99 Scalene

115 100 50 100 Isosceles

116 100 99 1 Not a triangle

117 100 99 2 Scalene

118 100 99 50 Scalene

Softwar
e

Testin
g

60 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case A b C Expected output

119 100 99 99 Isosceles

120 100 99 100 Isosceles

121 100 100 1 Isosceles

122 100 100 2 Isosceles

123 100 100 50 Isosceles

124 100 100 99 Isosceles

125 100 100 100 Equilateral

Software
Testing

Equivalence Class Testing

In this method, input domain of a program is partitioned into a finite number of

equivalence classes such that one can reasonably assume, but not
class

be
is absolutely sure, that the test of a representative value of each

equivalent to a test of any other value.

Two steps are required to implementing this method:

1. The equivalence classes are identified by taking each input condition and

partitioning it into valid and invalid classes. For example, if an input

condition specifies
equivalence class

a range of values from 1 to 999, we identify one valid

[1<item<999]; and two invalid equivalence classes

[item<1] and [item>999].

2. Generate the test cases using

previous step. This is performed

equivalence classes. Then a test

the equivalence classes identified in the

by writing test cases covering all the valid

case is written for each invalid equivalence

class so that no test contains more than one invalid class. This is to ensure
that no two invalid classes mask each other.

61 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

System
under test

Input domain Output domain

Fig. 7: Equivalence partitioning

Most of the time, equivalence class testing defines classes of the input domain.

However, equivalence classes should also be defined for output domain.

Hence, we should design equivalence classes based on input and output

domain.

62 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Outputs

Invalid input

Valid

inputs

Software
Testing

Example 8.7

Consider the program for the determination of nature of roots of a quadratic

equation as explained in example 8.1. Identify the equivalence class test

cases for output and input domains.

63 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Solution

Output domain equivalence class test cases can be identified as follows:

O1={<a,b,c>:Not a quadratic equation if a = 0}
O1={<a,b,c>:Real roots if (b2-4ac)>0}

O1={<a,b,c>:Imaginary roots if (b2-4ac)<0}

if (b2-4ac)=0}` O1={<a,b,c>:Equal roots

The number
below:

of test cases can be derived form above relations and shown

64 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test case a b c Expected output

1 0 50 50 Not a quadratic equation

2 1 50 50 Real roots

3 50 50 50 Imaginary roots

4 50 100 50 Equal roots

Software
Testing

We may have another set of test cases based on input domain.

I1=
I2=

I3=

I4=

I5=

I6=

I7=

I8=

I9=

{a:

{a:

{a:

{a:

{b:

{b:

{b:

{c:

a =

a <

1 ≤

0}

0}

a ≤ 100}

a > 100}

0 ≤ b ≤ 100}

b <

b >

0 ≤

0}

100}

c ≤ 100}

{c: c < 0}

I10={c: c > 100}

65 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Here test cases 5 and 8 are redundant test cases. If we choose any value other

than nominal, we may not have redundant test cases. Hence total test cases are
10+4=14 for this problem.

66 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case a b c Expected output

1

0 50 50 Not a quadratic equation

2 -1 50 50 Invalid input

3

50 50 50

Imaginary Roots

4

101 50 50 invalid input

5

50 50 50 Imaginary Roots

6 50 -1 50 invalid input

7 50 101 50 invalid input

8 50 50 50 Imaginary Roots

9 50 50 -1 invalid input

10 50 50 101 invalid input

Software
Testing

Example 8.8

Consider the program for determining the previous date in a calendar as

explained in example 8.3. Identify the equivalence class test cases for output

& input domains.

67 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Solution

Output domain equivalence class are:

O1={<D,M,Y>:
O1={<D,M,Y>:

Previous date if all are valid inputs}

Invalid date if any input makes the date invalid}

68 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test case M D Y Expected output

1 6 15 1962 14 June, 1962

2 6 31 1962 Invalid date

Software
Testing

We may have another set of test cases which are based on input domain.

1 ≤ m ≤ 12} I1={month:
I2={month:

I3={month:

m

m

< 1}

> 12}

1 ≤ D ≤ 31}

D < 1}

D > 31}

I4={day:

I5={day:

I6={day:

1900 ≤ Y ≤

Y < 1900}

Y > 2025}

I7={year:
I8={year:

I9={year:

2025}

69 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Inputs domain test cases are :

70 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test Case M D Y Expected output

1

6 15 1962 14 June, 1962

2 -1 15 1962 Invalid input

3

13 15 1962

invalid input

4

6 15 1962 14 June, 1962

5

6 -1 1962 invalid input

6 6 32 1962 invalid input

7 6 15 1962 14 June, 1962

8 6 15 1899 invalid input (Value out of range)

9 6 15 2026 invalid input (Value out of range)

Software
Testing

Example – 8.9

Consider the triangle problem specified in a example
domain.

8.3. Identify the

equivalence class test cases for output and input

71 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Solution

Output domain equivalence classes are:

O1={<x,y,z>:
O1={<x,y,z>:

O1={<x,y,z>:

O1={<x,y,z>:

Equilateral triangle with sides x,y,z}

Isosceles triangle with sides x,y,z}

Scalene triangle with sides x,y,z}

Not a triangle with sides x,y,z}

The test cases are:

72 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test case x y z Expected Output

1

50

50

50 Equilateral

2 50

50 99 Isosceles

3

100

99

50

Scalene

4 50

100

50

Not a triangle

Softwar
e

Testin
g

Input domain based classes are:

I1={x:
I2={x:

I3={x:

I4={y:

I5={y:

I6={y:

I7={z:

I8={z:

I9={z:

x < 1}

x > 100}

1 ≤ x ≤ 100}

y < 1}

y > 100}

1 ≤ y ≤ 100}

z < 1}

z > 100}

1 ≤ z ≤ 100}

73 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Some inputs domain test cases can be obtained using the relationship amongst
and z.

x,y

I10={<
I11={<

I12={<

I13={<

I14={<

I15={<

I16={<

I17={<

I18={<

I19={<

I20={<

x,y,z

x,y,z

x,y,z

x,y,z

x,y,z

x,y,z

x,y,z

x,y,z

x,y,z

x,y,z

x,y,z

>:

>:

>:

>:

>:

>:

>:

>:

>:

>:

>:

x

x

x

y

x

x

x

y

y

z

z

=

=

=

=

≠

=

>

=

>

=

>

y = z}

y, x ≠ z}

x ≠

x ≠

x ≠

z,

z,

y,

y}

y}

z, y ≠ z}

y + z}

y +z}

x +z}

x + z}

x + y}

x +y}

74 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Test cases derived from input domain are:

75 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test case x y z Expected Output

1

0

50

50 Invalid input

2 101

50 50 Invalid input

3

50

50

50

Equilateral

4 50 0

50 Invalid input

5 50 101 50 Invalid input

6 50 50 50 Equilateral

7 50

50

0

Invalid input

8 50 50

101

Invalid input

9 50 50 50 Equilateral

10 60

60 60

Equilateral

11 50

50 60 Isosceles

12 50

60 50 Isosceles

13 60 50 50 Isosceles

Softwar
e

Testin
g

76 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test case x y z Expected Output

14

100

99

50 Scalene

15 100

50 50

Not a triangle

16

100

50

25 Not a triangle

17 50

100

50

Not a triangle

18 50 100 25 Not a triangle

19 50 50 100

Not a triangle

20

25

50

100
Not a triangle

Softwar
e

Testin
g

Decision Table Based Testing

Table 2: Decision table terminology
Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 77

Condition

Stub

C1

C2

C3

Entry

True False

True False True False

True False True False True False ---

Action a1

Stub

a2

a3

a4

X X X

X X X

X X

X X X

Softwar
e

Testin
g

Test case design

4

Table 3: Decision table for triangle problem
Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 78

C1:x,y,z are sides of a triangle?

C2:x = y?

C3:x = z?

C4:y = z?

N Y

--

Y

N

--

Y

N

Y

N

--

Y

N

Y

N

Y

N

Y

N

a1: Not a triangle

a2: Scalene

a3: Isosceles

a : Equilateral

a5: Impossible

X

X

X X X

X

X

X

X

Softwar
e

Testin
g

Table 4: Modified decision table
Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 79

Conditions

C1 : x < y + z ?

F T T T T T T T T T T

C2 : y < x + z ? -- F T T T T T T T T T

C3 : z < x + y ? -- -- F T T T T T T T T

C4 : x = y ? -- -- -- T T T T F F F F

C5 : x = z ? -- -- -- T T F F T T F F

C6 : y = z ? -- -- -- T F T F T F T F

a1 : Not a triangle

X

X

X

a2 : Scalene X

a3 : Isosceles X X X

a4 : Equilateral X

a5 : Impossible X X X

Software
Testing

Example 8.10

Consider the triangle program specified in example 8.3. Identify the

test cases using the decision table of Table 4.

80 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Solution

There are eleven functional test cases, three to fail triangle property, three

impossible cases, one each to get equilateral, scalene triangle cases, and

three to get on isosceles triangle. The test cases are given in Table 5.

Test cases of triangle problem using decision table
81 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test case x y z Expected Output

1

4

1

2 Not a triangle

2 1

4 2

Not a triangle

3

1

2

4

Not a triangle

4 5 5

5

Equilateral

5 ? ? ? Impossible

6 ? ? ? Impossible

7 2 2

3

Isosceles

8 ? ? ? Impossible

9 2 3 2 Isosceles

10 3 2 2

Isosceles

11 3 4 5 Scalene

Software
Testing

Example 8.11

Consider a program for the determination of Previous date.
month and year with the values in the range

Its input is a triple of day,

1 ≤

1 ≤

month ≤ 12

day ≤ 31

1900 ≤ year ≤ 2025

The possible outputs are “Previous date” and “Invalid date”. Design the test cases

using decision table based testing.

82 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing Solution

The input domain can be divided into following classes:

I1=
I2=

I3=

I4=

I5=

I6=
I7=

I8=

I9=

{M1:
{M2:

{M3:

{M4:

{M5:

{M6:

{D1:

month has 30 days}

month has 31 days except March, August and January}

month is

month is

month is

month is

day = 1}

March}

August}

January}

February}

{D2: 2 ≤ day ≤ 28}
{D3: day = 29}

I10={D4: day = 30}
I11={D5: day = 31}

I12={Y1: year is a leap year}

I13={Y2: year is a common year}

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 83

Softwar
e

Testin
g The decision table is given below:

84 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Sr.No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C1: Months in M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M2 M2 M2 M2 M2

C2: days in D1 D1 D2 D2 D3 D3 D4 D4 D5 D5 D1 D1 D2 D2 D3

C3: year in Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1

a1: Impossible X X

a2: Decrement day X X X X X X X X X

a3: Reset day to 31 X X

a4: Reset day to 30 X X

a5: Reset day to 29

a6: Reset day to 28

a7: decrement month X X X X

a8: Reset month to December

a9: Decrement year

Softwar
e

Testin
g

85 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Sr.No. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C1: Months in M2 M2 M2 M2 M2 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3

C2: days in D3 D4 D4 D5 D5 D1 D1 D2 D2 D3 D3 D4 D4 D5 D5

C3: year in Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2

a1: Impossible

a2: Decrement day X X X X X X X X X X X X X

a3: Reset day to 31

a4: Reset day to 30

a5: Reset day to 29 X

a6: Reset day to 28 X

a7: decrement month X X

a8: Reset month to December

a9: Decrement year

Softwar
e

Testin
g

86 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Sr.No. 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

C1: Months in M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M5 M5 M5 M5 M5

C2: days in D1 D1 D2 D2 D3 D3 D4 D4 D5 D5 D1 D1 D2 D2 D3

C3: year in Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1

a1: Impossible

a2: Decrement day X X X X X X X X X X X

a3: Reset day to 31 X X X X

a4: Reset day to 30

a5: Reset day to 29

a6: Reset day to 28

a7: decrement month X X

a8: Reset month to December X X

a9: Decrement year X X

Softwar
e

Testin
g

87 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Sr.No. 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

C1: Months in M5 M5 M5 M5 M5 M6 M6 M6 M6 M6 M6 M6 M6 M6 M6

C2: days in D3 D4 D4 D5 D5 D1 D1 D2 D2 D3 D3 D4 D4 D5 D5

C3: year in Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2

a1: Impossible X X X X X

a2: Decrement day X X X X X X X X

a3: Reset day to 31 X X

a4: Reset day to 30

a5: Reset day to 29

a6: Reset day to 28

a7: decrement month X X

a8: Reset month to December

a9: Decrement year

Softwar
e

Testin
g

88 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test case Month Day Year Expected output

1 June 1 1964 31 May, 1964

2 June 1 1962 31 May, 1962

3 June 15 1964 14 June, 1964

4 June 15 1962 14 June, 1962

5 June 29 1964 28 June, 1964

6 June 29 1962 28 June, 1962

7 June 30 1964 29 June, 1964

8 June 30 1962 29 June, 1962

9 June 31 1964 Impossible

10 June 31 1962 Impossible

11 May 1 1964 30 April, 1964

12 May 1 1962 30 April, 1962

13 May 15 1964 14 May, 1964

14 May 15 1962 14 May, 1962

15 May 29 1964 28 May, 1964

Softwar
e

Testin
g

89 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test case Month Day Year Expected output

16 May 29 1962 28 May, 1962

17 May 30 1964 29 May, 1964

18 May 30 1962 29 May, 1962

19 May 31 1964 30 May, 1964

20 May 31 1962 30 May, 1962

21 March 1 1964 29 February, 1964

22 March 1 1962 28 February, 1962

23 March 15 1964 14 March, 1964

24 March 15 1962 14 March, 1962

25 March 29 1964 28 March, 1964

26 March 29 1962 28 March, 1962

27 March 30 1964 29 March, 1964

28 March 30 1962 29 March, 1962

29 March 31 1964 30 March, 1964

30 March 31 1962 30 March, 1962

Softwar
e

Testin
g

90 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test case Month Day Year Expected output

31 August 1 1964 31 July, 1962

32 August 1 1962 31 July, 1964

33 August 15 1964 14 August, 1964

34 August 15 1962 14 August, 1962

35 August 29 1964 28 August, 1964

36 August 29 1962 28 August, 1962

37 August 30 1964 29 August, 1964

38 August 30 1962 29 August, 1962

39 August 31 1964 30 August, 1964

40 August 31 1962 30 August, 1962

41 January 1 1964 31 December, 1964

42 January 1 1962 31 December, 1962

43 January 15 1964 14 January, 1964

44 January 15 1962 14 January, 1962

45 January 29 1964 28 January, 1964

Softwar
e

Testin
g

91 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Test case Month Day Year Expected output

46 January 29 1962 28 January, 1962

47 January 30 1964 29 January, 1964

48 January 30 1962 29 January, 1962

49 January 31 1964 30 January, 1964

50 January 31 1962 30 January, 1962

51 February 1 1964 31 January, 1964

52 February 1 1962 31 January, 1962

53 February 15 1964 14 February, 1964

54 February 15 1962 14 February, 1962

55 February 29 1964 28 February, 1964

56 February 29 1962 Impossible

57 February 30 1964 Impossible

58 February 30 1962 Impossible

59 February 31 1964 Impossible

60 February 31 1962 Impossible

Software
Testing

Cause Effect Graphing Technique

• Consider single input conditions

• do not explore combinations of input circumstances

Steps

1. Causes & effects in the specifications are identified.

A cause is a distinct input condition or an equivalence class of input conditions.

An effect is an output condition or a system transformation.

2. The semantic content of the specification is analysed and
boolean graph linking the causes & effects.

transformed into a

3. Constraints are imposed

4. graph – limited entry decision table

Each column in the table represent a test case.

5. The columns in the decision table are converted into test cases.

92 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

The basic notation for the graph is shown in fig. 8

Fig.8. 8 : Basic cause effect graph symbols

93 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Myers explained this effectively with following example. “The characters in column 1
must be an A or B. The character in column 2 must be a digit. In this situation, the

file update is made. If the character in column 1 is incorrect, message x is issued. If

the character in column 2 is not a digit, message

The causes are

c1: character in column 1 is A

c2: character in column 1 is B

y is issued”.

c3: character in column 2 is

and the effects are

e1: update made

e2: message x is issued

e3: message y is issued

a digit

94 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Fig. 9: Sample cause effect graph

95 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

The E constraint states that it must always be true that at most
one of c1 or c2 can be 1 (c1 or c2 cannot be 1 simultaneously). The

I constraint states that at least one of c1, c2 and c3 must always be
1 (c1, c2 and c3 cannot be 0 simultaneously). The O constraint

constraint R states that, for c1 to be 1, c2 must be 1 (i.e. it is

impossible for c1 to be 1 and c2 to be 0),

states that one, and only one, of c1 and c2 must be 1. The

96 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Fig. 10: Constraint symbols
Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 97

Softwar
e

Testin
g

Fig. 11: Symbol for masks constraint

98 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Fig. 12 : Sample cause effect graph with exclusive constraint

99 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Example 8.12

Consider the triangle problem specified in the example 8.3. Draw the Cause

effect graph and identify the test cases.

100 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Solution

The causes are

c1:
c2:

c3:

c4:

c5:

c6:

side

side

side

side

side

side

x

y

z

x

x

y

is

is

is

is

is

is

less

less

less

than

than

than

sum

sum

sum

of

of

of

sides y and z

sides x and y

sides x and y

equal

equal

equal

to

to

to

side y

side z

side z

and effects are

e1:
e2:

e3:

e4:

e5:

Not a triangle

Scalene triangle

Isosceles triangle

Equilateral triangle

Impossible stage

101 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

The cause effect graph is shown in fig. 13 and decision table is shown in table 6.

The test cases for this problem are available in Table 5.

Table 6: Decision table
Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 102

Conditions
C1: x < y + z ?

0

1

1

1

1

1

1

1

1

1

1

C2: y < x + z ? X 0 1 1

1 1 1 1 1 1 1

C3: z < x + y ? X

X 0

1

1

1

1 1 1

1

1

C4: x = y ? X X X 1 1 1 1 0 0 0 0

C5: x = z ? X X X 1 1 0 0 1 1 0 0

C6: y = z ? X X X 1

0 1 0 1 0 1 0

e1: Not a triangle 1 1 1

e2: Scalene 1

e3: Isosceles 1 1 1

e4: Equilateral

1

e5: Impossible 1 1 1

Softwar
e

Testin
g

Fig. 13: Cause effect graph of triangle problem

103 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Structural Testing

A complementary approach to functional testing is called structural / white box

testing. It permits us to examine the internal structure of the program.

Path Testing

Path testing is the name given to a group of test techniques based on judiciously

selecting a set of test paths through the program. If the set of paths is properly

chosen, then it means that we have achieved some measure of test thoroughness.

This type of testing involves:

1. generating a set of paths that will cover every branch in the program.

2. finding a set of test cases that will execute every path in the set of program
paths.

104 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Flow Graph

The control flow of a program can be analysed using a graphical representation

known as flow graph. The flow graph is a directed graph in which nodes are either

entire statements or fragments of a statement, and edges represents flow of control.

Fig. 14: The basic construct of the flow graph

105 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

106 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

107 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

108 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

109

Softwar
e

Testin
g

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Fig. 15: Program for previous date problem

110 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Fig. 16: Flow graph of previous date
problem

111 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

DD Path Graph

Table 7: Mapping of flow graph nodes and DD path nodes

Cont…11.
2

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Flow graph

nodes

DD Path graph

corresponding

node

Remarks

1 to 9 n1 There is a sequential flow from node 1 to 9

10 n2 Decision node, if true go to 13 else go to 44

11 n3 Decision node, if true go to 12 else go to 19

12 n4 Decision node, if true go to 13 else go to 15

13,14 n5 Sequential nodes and are combined to form new node n5

15,16,17 n6 Sequential nodes

18 n7 Edges from node 14 to 17 are terminated here

19 n8 Decision node, if true go to 20 else go to 37

20 n9 Intermediate node with one input edge and one output edge

21 n10 Decision node, if true go to 22 else go to 27

22 n11 Intermediate node

23 n12 Decision node, if true go to 24 else go to 26

Softwar
e

Testin
g

Cont….
113 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Flow graph
nodes

DD Path graph

corresponding

node

Remarks

24,25 n13 Sequential nodes

26 n14 Two edges from node 25 & 23 are terminated here

27 n15 Two edges from node 26 & 21 are terminated here. Also a decision node

28,29 n16 Sequential nodes

30 n17 Decision node, if true go to 31 else go to 33

31,32 n18 Sequential nodes

33,34,35 n19 Sequential nodes

36 n20 Three edge from node 29,32 and 35 are terminated here

37 n21 Decision node, if true go to 38 else go to 40

38,39 n22 Sequential nodes

40,41,42 n23 Sequential nodes

43 n24 Three edge from node 36,39 and 42 are terminated here

Softwar
e

Testin
g

Cont….
114 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Flow graph

nodes

DD Path graph

corresponding

node

Remarks

44 n25 Decision node, if true go to 45 else go to 82. Three edges from 18,43 & 10

are also terminated here.

45 n26 Decision node, if true go to 46 else go to 77

46 n27 Decision node, if true go to 47 else go to 51

47,48,49,50 n28 Sequential nodes

51 n29 Decision node, if true go to 52 else go to 68

52 n30 Intermediate node with one input edge & one output ege

53 n31 Decision node, if true go to 54 else go to 59

54 n32 Intermediate node

55 n33 Decision node, if true go to 56 else go to 58

56,57 n34 Sequential nodes

58 n35 Two edge from node 57 and 55 are terminated here

59 n36 Decision node, if true go to 60 else go to 63. Two edge from nodes 58 and

53 are terminated.

Softwar
e

Testin
g

115 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Flow graph

nodes

DD Path graph

corresponding

node

Remarks

60,61,62 n37 Sequential nodes

63,64,65,66 n38 Sequential nodes

67 n39 Two edge from node 62 and 66 are terminated here

68 n40 Decision node, if true go to 69 else go to 72

69,70,71 n41 Sequential nodes

72,73,74,75 n42 Sequential nodes

76 n43 Four edges from nodes 50, 67, 71 and 75 are terminated here.

77,78,79 n44 Sequential nodes

80 n45 Two edges from nodes 76 & 79 are terminated here

81 n46 Intermediate node

82,83,84 n47 Sequential nodes

85 n48 Two edges from nodes 81 and 84 are terminated here

86,87 n49 Sequential nodes with exit node

Softwar
e

Testin
g

Fig. 17: DD path graph

of previous date
problem

116 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Fig. 18: Independent paths of previous date problem

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 117

Software
Testing

Example 8.13

Consider the problem for the determination of the nature of roots of a quadratic

equation. Its input a triple of positive integers (say a,b,c) and value may be from

interval [0,100].

The program is given in fig. 19. The output may have one of the following words:

[Not a quadratic equation; real roots; Imaginary roots; Equal roots]

Draw the flow
Path graph.

graph and DD path graph. Also find independent paths from the DD

118 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Cont….
119 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Fig. 19: Code of quadratic equation problem

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 120

Softwar
e

Testin
g Solution

Fig. 19 (a) : Program flow
graph

121 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Fig. 19 (b) : DD Path graph
Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 122

Softwar
e

Testin
g

The mapping table for DD path graph is:

Cont….
123 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Flow graph
nodes

DD Path graph

corresponding

node

Remarks

1 to 10 A Sequential nodes

11 B Decision node

12 C Intermediate node

13 D Decision node

14,15 E Sequential node

16 F Two edges are combined here

17 G Two edges are combined and decision node

18 H Intermediate node

19 I Decision node

20,21 J Sequential node

22 K Decision node

23,24,25 L Sequential node

Softwar
e

Testin
g

Independent paths are:

(i)

(iii)

(v)

ABGOQRS

ABCDFGOQRS

ABGHIJNRS

(ii)

(iv)

(vi)

ABGOPRS

ABCDEFGOPRS

ABGHIKLNRS

(vi) ABGHIKMNRS

124 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Flow graph

nodes

DD Path graph

corresponding

node

Remarks

26,27,28,29 M Sequential nodes

30 N Three edges are combined

31 O Decision node

32,33 P Sequential node

34,35,36 Q Sequential node

37 R Three edges are combined here

38,39 S Sequential nodes with exit node

Software
Testing

Example 8.14

Consider a program given in Fig.8.20 for the classification of a triangle. Its input is a
triple of positive integers (say a,b,c) from the interval [1,100]. The output may be

[Scalene, Isosceles, Equilateral, Not a triangle].

Draw the flow
Path graph.

graph & DD Path graph. Also find the independent paths from the DD

125 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

126 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Fig. 20 : Code of triangle classification problem

127 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Solution :

Flow graph of
triangle problem is:

Fig.8. 20 (a): Program flow graph

128 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

The mapping table for DD path graph is:

Cont….
129 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Flow graph

nodes

DD Path graph

corresponding

node

Remarks

1 TO 9 A

Sequential nodes

10
B Decision node

11 C

Decision node

12, 13

D

Sequential nodes

14

E

Two edges are joined here

15, 16, 17

F

Sequential nodes

18

G

Decision nodes plus joining of two edges

19 H Decision node

20, 21

I
Sequential nodes

22 J

Decision node

23, 24 K Sequential nodes

25, 26, 27

L
Sequential nodes

Softwar
e

Testin
g

Fig. 20 (b): DD Path graph

130 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Flow graph
nodes

DD Path graph

corresponding

node

Remarks

28 M Three edges are combined here

29 N Decision node

30, 31 O Sequential nodes

32, 33, 34 P

Sequential nodes

35 Q Three edges are combined here

36, 37 R Sequential nodes with exit node

Softwar
e

Testin
g

DD Path graph is given in Fig. 20 (b)

Independent paths are:

(i)

(ii)

(iii)

ABFGNPQR

ABFGNOQR

ABCEGNPQR

(iv) ABCDEGNOQR

(v) ABFGHIMQR

(vi) ABFGHJKMQR

(vii)ABFGHJMQR

Fig. 20 (b): DD Path graph

131 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Cyclomatic Complexity

McCabe’s cyclomatic metric V(G) = e – n + 2P.

For example, a flow graph shown in in Fig. 21 with entry node ‘a’ and exit node ‘f’.

Fig. 21: Flow graph
Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 132

Software
Testing

The value of cyclomatic complexity can be calculated as

V(G) = 9 – 6 + 2 = 5

:

Here e = 9, n = 6 and P =1

There will be five independent paths for the flow graph illustrated in Fig. 21.

Path

Path

Path

Path

Path

1 :

2 :

3 :

4 :

5 :

a c f

a b e f

a d c f

a b e a c f or a b e a b e f

a b e b e f

133 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Several properties of cyclomatic complexity are stated below:

V(G) ≥1 1.

2. V (G) is the maximum number of independent paths in graph G.

3. Inserting & deleting functional statements to G does not affect V(G).

4. G has only one path if and only if V(G)=1.

5. Inserting a new row in G increases V(G) by unity.

6. V(G) depends only on the decision structure of G.

134 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

The role of P in the complexity calculation V(G)=e-n+2P is required to be understood

correctly. We define a flow graph with unique entry and exit nodes, all nodes

reachable from the entry, and exit reachable from all nodes. This definition would

result in all flow graphs having only one connected component. One could, however,

imagine a main program
shown in Fig. 22.

M and two called subroutines A and B having a flow graph

Fig. 22

135 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Let us denote the total graph above with 3 connected components as

V (M ∪ A ∪ B)

=
e − n +
2P

=

=

13-13+2*3

6

≠ This method with P 1 can be used to calculate the complexity of a

collection of programs, particularly a hierarchical nest of subroutines.

136 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

V (M ∪ A ∪ B) = V (M) + V (A) + V (B)
= 6

Notice that . In general, the

complexity of a collection C of flow graphs with K connected components is
equal to the summation of their complexities. To see this let Ci,1 ≤ I ≤ K

denote the k distinct connected component, and let ei and ni be the number of edges
and nodes in the ith-connected component. Then

k

∑ ei
i =1

k

∑ ni
i =1

V (C) = e − n + 2
p

= − +
2K

k

= ∑ (ei
i =1

k

− ni + 2) = ∑V

(Ci)
i =1

137 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Two alternate methods are available for the complexity calculations.

1. Cyclomatic complexity V(G) of a flow graph G is equal to the number of
predicate (decision) nodes plus one.

V(G)= ∏ +1

∏ Where
G.

is the number of predicate nodes contained in the flow graph

2. Cyclomatic
graph.

complexity is equal to the number of regions of the flow

138 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g Example 8.15

Consider a flow graph given in Fig. 23 and calculate the cyclomatic

complexity by all three methods.

Fig. 23

139 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Solution

Cyclomatic complexity can be calculated by any of the three methods.

1. V(G) = e – n + 2P

= 13 – 10 + 2 = 5

= π + 1

= 4 + 1 = 5

2. V(G)

3. V(G) = number of regions

= 5

Therefore, complexity value of a flow graph in Fig. 23 is 5.

140 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Example 8.16

Consider the previous date program with DD path graph given in Fig. 17.

Find cyclomatic complexity.

141 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Solution

Number of edges (e) = 65

Number of nodes (n) =49

(i)

(ii)

(iii)

V(G)

V(G)

V(G)

= e – n + 2P = 65 – 49 + 2

= π + 1 = 17 + 1 = 18

= 18

= Number of regions = 18

The cyclomatic complexity is 18.

142 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Example 8.17

Consider the quadratic equation problem given in example 8.13 with its DD

Path graph. Find the cyclomatic complexity:

143 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Solution

Number

Number

(i) V(G)

(ii) V(G)

(iii) V(G)

of nodes (n) = 19

of edges (e) = 24

= e – n + 2P = 24 – 19 + 2 = 7

= π + 1 = 6 + 1 = 7

= Number of regions = 7

Hence cyclomatic complexity is 7 meaning thereby, seven

independent paths in the DD Path graph.

144 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Example 8.18

Consider the classification of triangle problem given in example 8.14. Find

the cyclomatic complexity.

145 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Solution

Number

Number

(i) V(G)

(ii) V(G)

(iii) V(G)

of edges (e) = 23

of nodes (n) =18

= e – n + 2P = 23 – 18 + 2 = 7

= π + 1 = 6 + 1 = 7

= Number of regions = 7

The cyclomatic complexity is 7. Hence,
as given in example 8.14.

there are seven independent paths

146 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Graph Matrices

A graph matrix is a square matrix with one row and one column for every node in the

graph. The size of the matrix (i.e., the number of rows and columns) is equal to the

number of nodes in the flow graph. Some examples of graphs and associated

matrices are shown in fig. 24.

Fig. 24 (a): Flow graph and graph matrices
Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 147

Softwar
e

Testin
g

Fig. 24 (b): Flow graph and graph matrices

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 148

Softwar
e

Testin
g

Fig. 24 (c): Flow graph and graph matrices
Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 149

Softwar
e

Testin
g

Fig. 25 : Connection matrix of flow graph shown in Fig. 24 (c)

150 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

The square matrix represent that there are two path ab
node 2.

and cd from node 1 to

151 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing Example 8.19

Consider

matrices.

any other

the flow

Find out

node.

graph shown in the Fig. 26 and draw the graph & connection

cyclomatic complexity and two / three link paths from a node to

Fig. 26 : Flow graph

152 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Solution

The graph & connection matrices are given below :

To find two link paths, we have to generate a square of graph matrix [A] and for three

link paths, a cube of matrix [A] is required.

153 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

154 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Data Flow Testing

Data flow testing is another from of structural testing. It has
flow diagrams.

nothing to do with data

i. Statements where variables receive values.

ii. Statements where these values are used or referenced.

As we know, variables are defined and referenced throughout the program. We

may have few define/ reference anomalies:

i. A variable is defined but not used/ referenced.

ii. A variable is used but never defined.

iii. A variable is defined twice before it is used.

155 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Definitions

The definitions refer to a program P
program variables V. The G(P) has a

that has a program graph G(P) and a set of

single entry node and a single exit node. The

set of all paths in P is PATHS(P)

Defining Node: Node n E G(P) is
a

variable V E
V,

(i) defining node of the

written as DEF (V, n), if the value of the variable V is defined
at
fragment corresponding to node n.

the statement

Usage Node: Node n E G(P) is a usage node of the variable V E V, written
as

(ii)

USE (V, n), if the value of the variable V is used at statement
fragment

corresponding to node n. A usage node USE (V, n) is a predicate use (denote

as p) if statement n is a predicate statement otherwise USE (V, n) is a

computation use (denoted as c).

156 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

(iii) Definition use: A definition use path with respect to a variable v (denoted

du-path) is a path in PATHS(P) such that, for some V E V, there are define and

usage nodes DEF(v, m) and USE(v, n) such that m and n are initial and final

nodes of the path.

(iv) Definition clear : A definition clear path with respect to a variable v (denoted
dc-path) is a definition use path in PATHS(P) with initial and final nodes DEF

(V, m) and USE (V, n), such that no other node in the path is a defining node of

V.

The du-paths and dc-paths describe the flow of data across source statements from
points at which the values are defined to points at which the values are used. The

du-paths that are not definition clear are potential trouble spots.

157 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Hence, our objective is to find all du-paths and then identity those du-paths which are

not dc-paths. The steps are given in Fig. 27. We may like to generate specific test

cases for du-paths that are not dc-paths.

Fig. 27 : Steps for data flow testing
158 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Example 8.20

Consider the program of the determination of the nature of roots of a quadratic

equation. Its input is a triple of positive integers (say a,b,c) and values for each of

these may be from interval [0,100]. The
have one of the option given below:

program is given in Fig. 19. The output may

(i)

(ii)

(iii)

Not a quadratic program

real roots

imaginary roots

(iv) equal roots

(v) invalid inputs

Find all du-paths and identify those du-paths that are definition clear.

159 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Solution

Step I: The program flow graph is given in Fig. 19 (a). The variables used
program are a,b,c,d, validinput, D.

in the

Step II: DD Path graph is given in Fig. 19(b). The cyclomatic
is 7 indicating there are seven independent paths.

complexity of this graph

Step III: Define/use nodes for all variables are given below:

160 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Variable Defined at node Used at node

a 6

11,13,18,20,24,27,28

b

8

11,18,20,24,28

c

10

11,18

d

18

19,22,23,27

D

23, 27

24,28

Validinput

3, 12, 14

17,31

Software
Testing

Step IV: The du-paths are identified and are named by their beginning and ending

nodes using Fig. 19 (a).

Yes

Yes

161 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Variable Path (beginning, end) nodes Definition clear ?

a
6, 11

6, 13

6, 18

6, 20

6, 24

6, 27

6, 28

Yes

Yes

Yes

Yes

Yes

Yes

b

8, 11

8, 18

8, 20

8, 24

8, 28

Yes

Yes

Yes

Yes

Softwar
e

Testin
g

Yes

no

162 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Variable Path (beginning, end) nodes Definition clear ?

c
10, 11

10, 18

Yes

d

18, 19

18, 22

18, 23

18, 27

Yes

Yes

Yes

Yes

D

23, 24

23, 28

27, 24

27, 28

Yes

Path not possible

Path not possible

Yes

validinput

3, 17

3, 31

12, 17

12, 31

14, 17

14, 31

no

no

no

yes

yes

Software
Testing

Example 8.21

Consider the program given in Fig. 20 for the classification of a triangle. Its

input is a triple of positive integers (say a,b,c) from the interval [1,100].
output may be:

[Scalene, Isosceles, Equilateral, Not a triangle, Invalid inputs].

The

Find all du-paths and identify those du-paths that are definition clear.

163 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Solution

Step I: The program flow graph is given in Fig. 20 (a). The variables used in
the program are a,b,c, valid input.

Step II: DD Path graph is given in Fig. 20(b). The cyclomatic
this graph is 7 and thus, there are 7 independent paths.

complexity of

Step III: Define/use nodes for all variables are given below:

164 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Variable Defined at node Used at node

a 6

10, 11, 19, 22

b 7

10, 11, 19, 22

c

9

10, 11, 19, 22

valid input

3, 13, 16

18, 29

Software
Testing

Step IV: The du-paths are identified and are named by their beginning and ending

nodes using Fig. 20 (a).

Yes

Yes

165 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Variable Path (beginning, end) nodes Definition clear ?

a

5, 10

5, 11

5, 19

5, 22

Yes

Yes

Yes

b

7, 10

7, 11

7, 19

7, 22

Yes

Yes

Yes

Softwar
e

Testin
g

Yes

no

Hence total du-paths are 18 out of which four paths are not definition clear

166 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Variable Path (beginning, end) nodes Definition clear ?

c

9, 10

9, 11

9, 19

9, 22

Yes

Yes

Yes

valid input

3, 18

3, 29

12, 18

12, 29

16, 18

16, 29

no

no

no

Yes

Yes

Software
Testing

Mutation Testing

Mutation testing is a fault based technique that is similar to fault seeding, except that

mutations to program statements are made in order to determine properties about

test cases. it is basically a fault simulation technique.

Multiple copies of a program are made, and each copy is altered; this altered copy is
called a mutant. Mutants are executed with test data to determine whether the test

data are capable of detecting
mutated program.

the change between the original program and the

A mutant that is detected by a

procedure is to find a set of

programs.

test case is termed “killed” and the goal of mutation
test cases that are able to kill groups of mutant

167 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

When we mutate code there needs to be a way of measuring the degree to which the

code has been modified. For example, if the original expression is x+1 and the

mutant for that expression is x+2, that is a lesser change to the original code than a

mutant such as (c*22), where both the operand and the operator are changed. We

may have a ranking scheme, where a first order mutant is a single change to an

expression, a second order mutant is a mutation to a first order mutant, and so on.

High order mutants becomes intractable and thus in practice only low order mutants

are used.

One difficulty associated

reaching the location; if a

cases are to be designed

code.

Read (a,b,c);

If(a>b) and (b=c)

with whether mutants will be killed is the problem of

mutant is not executed, it cannot be killed. Special test

to reach a mutant. For example, suppose, we have the

then

x:=a*b*c; (make mutants; m1, m2, m3 …….)

168 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

To execute this, input domain must contain a value such that a is greater than b and

b equals c. If input domain does not contain such a value, then all mutants made at

this location should be considered equivalent to the original program, because the

statement x:=a*b*c is dead code (code that cannot be reached during execution). If

we make the mutant x+y for x+1, then we should take care about the value of y

which should not be equal to 1 for designing a test case.

The manner by which a test suite is evaluated (scored) via mutation testing is as
follows: for a specified test suite and a specific set of mutants, there will be three

types of mutants in the code i.e., killed or dead, live, equivalent. The sum of the

number of live, killed, and equivalent mutants will be the total number of
created. The score associated with a test suite T and mutants M is simply.

mutants

 # killed

×100%
total −#
equivalent

169 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g Levels of Testing

There are 3 levels of testing:

i.

ii.

iii.

Unit Testing

Integration Testing

System Testing

170 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Unit Testing

There are number of reasons in support of unit testing than testing the entire product.

1. The size of a single module is small enough that
fairly easily.

we can locate an error

2. The module is small enough that we can attempt to test it in
demonstrably exhaustive fashion.

some

3. Confusing interactions of multiple errors in widely different parts
software are eliminated.

of the

171 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

There are problems associated with testing a module in isolation. How do we run a

module without anything to call it, to be called by it or, possibly, to output

intermediate values obtained during execution? One approach is to construct an

appropriate driver routine to call if and, simple stubs to be called by it, and to insert

output statements in it.

Stubs serve to replace modules that are subordinate to (called by) the module to be

tested. A stub or dummy subprogram uses the subordinate module’s interface, may

do minimal data manipulation, prints verification of entry, and returns.

This overhead code, called scaffolding represents effort that is import
does not appear in the delivered product as shown in Fig. 29.

to testing, but

172 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Fig. 29 : Scaffolding required testing a program unit (module)

173 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Integration Testing

The purpose of unit testing is to determine that each independent module is

correctly implemented. This gives little chance to determine that the interface

between modules is also correct, and for this reason integration testing must be

performed. One specific target of integration testing is the interface: whether

parameters
utilization.

match on both sides as to type, permissible ranges, meaning and

174 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Fig. 30 : Three different integration approaches

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 175

Software
Testing

System Testing

Of the three levels of testing, the system level is closet to everyday experiences.

We test many things; a used car before we buy it, an on-line cable network

A common pattern in these familiar

terms of our expectations; not with

service before we subscribe,

forms is that we evaluate a

respect to a specification or a

and so on.
product in

standard. Consequently, goal is not to find faults,

but to demonstrate performance. Because of this we tend to approach system

testing from a functional standpoint rather than from a structural one. Since it is

so intuitively familiar, system testing in practice tends to be less formal than it

might be, and is compounded by the reduced testing interval that usually

remains before a delivery deadline.

Petschenik gives some guidelines for choosing test cases during system testing.

176 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

During system testing, we
software that are vital to the

should evaluate a number of attributes of the

user and are
the product

listed in Fig. 31. These represent the

operational correctness of and may be part of the software

specifications.

software, and procedures?

exist in the product?

Fig. 31 : Attributes of software to be tested during system testing
177 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Usable

Is the product convenient, clear, and predictable?

Secure

Is access to sensitive data restricted to those with authorization?

Compatible

Will the product work correctly in conjunction with existing data,

Dependable

Do adequate safeguards against failure and methods for recovery

Documented

Are manuals complete, correct, and understandable?

Software
Testing

Validation Testing

o

o

o

It refers to test the software as a complete product.

This should be done after unit & integration testing.

Alpha, beta & acceptance testing are nothing but the various ways of involving

customer during testing.

178 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Validation Testing

o IEEE has developed a standard (IEEE standard 1059-1993) entitled “ IEEE guide

for software verification and validation “ to provide specific guidance about

planning and documenting the tasks required by the standard

customer may write an effective plan.

so that the

o Validation testing improves the quality of software product in terms of functional

capabilities and quality attributes.

179 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

The Art of Debugging

The goal of testing is to identify errors (bugs) in the program. The process of

testing generates symptoms, and a program’s failure is a clear symptom of the

presence of an error. After getting a symptom, we begin to investigate the cause

and place of that error. After identification of place, we examine that portion to

identify the cause of the problem. This process is called debugging.

Debugging Techniques

Pressman explained few characteristics of bugs that provide some clues.

1. “The symptom and the cause may be geographically remote. That is, the

symptom may appear in one part of a program, while the cause may actually be

located in other part. Highly coupled program structures may complicate this

situation.

2. The symptom may disappear (temporarily) when another error is corrected.

180 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

3. The symptom may actually be caused by non errors (e.g. round off inaccuracies).

4. The symptom may be caused by a human error that is not easily traced.

5. The symptom may be a result of timing problems rather than processing

problems.

6. It may be difficult to accurately reproduce input conditions (e.g. a real time

application in which input ordering is indeterminate).

7. The symptom may be intermittent. This is particularly common in embedded

system that couple hardware with software inextricably.

8. The symptom may be due to causes that are distributed across a number of tasks

running on different processors”.

181 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Induction approach

) Locate the pertinent data

) Organize the data

) Devise a hypothesis

) Prove the hypothesis

182 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Fig. 32 : The inductive debugging process

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 183

Software
Testing

Deduction approach

) Enumerate the possible causes or hypotheses

) Use the data to eliminate possible causes

) Refine the remaining hypothesis

) Prove the remaining hypothesis

184 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Softwar
e

Testin
g

Fig. 33 : The inductive debugging process

185 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

Testing Tools

One way to improve the quality & quantity of testing is to make the
be

process as

pleasant as possible for the tester. This means that
powerful & natural as possible.

tools should as concise,

The two broad categories of software testing tools are :

) Static

) Dynamic

186 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

There are different types of tools available and some are listed below:

1. Static analyzers, which examine programs systematically and automatically.

2. Code inspectors, who inspect programs automatically to make sure they adhere

to minimum quality standards.

3. standards enforcers, which impose simple rules on the developer.

4. Coverage analysers, which measure the extent of coverage.

5. Output comparators, used to determine whether the output in

appropriate or not.

a program is

187 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software
Testing

6. Test file/ data generators, used to set up test inputs.

7. Test harnesses, used to simplify test operations.

8. Test archiving systems, used to provide documentation about programs.

188 Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

