
1 



Software 
Maintenance 

What is Software Maintenance? 

Software Maintenance is a 
of 

very broad activity that includes error 

corrections, enhancements capabilities, deletion of obsolete capabilities, 

and optimization. 

2 



Software 
Maintenance 

Categories of Maintenance 

• Corrective maintenance 

This refer to modifications initiated by defects in the software. 

• Adaptive maintenance 

It includes modifying the software to 
environment. 

match changes in the ever changing 

• Perfective maintenance 

It means improving processing efficiency or performance, or restructuring 

the software to improve changeability. This may include enhancement of 

existing system functionality, improvement in computational efficiency etc. 

3 



Software 
Maintenance 

• Other types of maintenance 

There are long term effects of corrective, adaptive and perfective changes. 

This leads to increase in the complexity of the 
deteriorating structure. The work is required to be 

software, which reflect 

done to 
named 

maintain it or to 

reduce it, if possible. This work may be as preventive 

maintenance. 

4 



Softwar
e 

Maintenanc
e 

Fig. 1: Distribution of maintenance effort 

5 

Perfective  

Adaptive  

Preventive 

Corrective 



Software 
Maintenance 

Problems During Maintenance 

) Often the program is written by another person or group of persons. 

) Often the program is changed by 
clearly. 

person who did not understand it 

) Program listings are not structured. 

) High staff turnover. 

) Information gap. 

) Systems are not designed for change. 

6 



Software 
Maintenance 

Maintenance is Manageable 

A common misconception about maintenance is that it is not manageable. 

Report of survey 
observations: 

conducted by Lientz & Swanson gives some interesting 

Table 1: Distribution of maintenance effort 
7 

1 Emergency debugging 12.4% 

 

2 
 

Routine debugging 
 

9.3% 
 

3 
 

Data environment adaptation 
 

17.3% 
 

4 
 

Changes in hardware and OS 
 

6.2% 
 

5 
 

Enhancements for users 41.8% 

 

6 
 

Documentation Improvement 
 

5.5% 
 

7 
 

Code efficiency improvement 
 

4.0% 
 

8 
 

Others 
 

3.5% 



Softwar
e 

Maintenanc
e 

Kinds of maintenance requests 

Table 2: Kinds of maintenance requests 

8 

 

1 
 

New reports 
 

40.8% 
 

2 
 

Add data in existing reports 
 

27.1% 
 

3 
 

Reformed reports 
 

10% 
 

4 
 

Condense reports 
 

5.6% 

5 Consolidate reports 6.4% 

 

6 
 

Others 
 

10.1% 



Software 
Maintenance 

Potential Solutions to Maintenance Problems 

) Budget and effort reallocation 

) Complete replacement of the system 

) Maintenance of existing system 

9 



Softwar
e 

Maintenanc
e 

The Maintenance Process 

Fig. 2: The software 
maintenance process 

10 



Software 
Maintenance 

• Program Understanding 

The first phase consists of analyzing the program in order to understand. 

• 

The 

Generating Particular Maintenance Proposal 

second phase consists of generating a particular maintenance 

proposal to accomplish the implementation of the maintenance objective. 

• Ripple Effect 

The third phase consists of accounting for 
consequence of program modifications. 

all of the ripple effect as a 

11 



Software 
Maintenance 

• Modified Program Testing 

The fourth phase consists of testing the modified program to ensure that 
the modified program has at least the same reliability level as before. 

• Maintainability 

Each of these four phases and their associated software quality 
factors 

attributes 

are critical to the maintenance process. All of these must be 

combined to form maintainability. 

12 



Software 
Maintenance 

Maintenance Models 

• Quick-fix Model 

This is basically an adhoc approach to maintaining software. It is a fire 

fighting approach, waiting for the problem to occur and then trying to fix it 

as quickly as possible. 

Problem 
found 

Fix it 

Fig. 3: The quick-fix model 13 



Software 
Maintenance 

• Iterative Enhancement Model 

) Analysis 

) Characterization of proposed modifications 

) Redesign and implementation 

14 



Software 
Maintenance 

Analyze existing system 

Redesign current 

version and 

implementation 

Characterize 

proposed 

modifications 

Fig. 4: The three stage cycle of iterative enhancement 

15 



Software 
Maintenance 

• Reuse Oriented Model 

The reuse model has four main steps: 

1. Identification of the parts of the old system that are 
reuse. 

Understanding these system parts. 

candidates for 

2. 

3. Modification of the old  system parts appropriate to the new 

requirements. 

Integration of the modified parts into the new system. 4. 

16 



Softwar
e 

Maintenanc
e 

Old system New system 

Requirements analysis Requirements analysis 

Components 
library Design Design 

Source code Source code 

Test data Test data 

Fig. 5: The reuse model 

17 



Software 
Maintenance 

• Boehm’s Model 

Boehm proposed a model for the maintenance process 
the economic models and principles. 

based upon 

Boehm represent the maintenance process as a closed loop cycle. 

18 



Softwar
e 

Maintenanc
e 

Proposed changes Approved changes 

Results New version of 
software 

Fig. 6: Boehm’s model 

19 

Evaluation 
Change 

implementation 

Management decisions 



Software 
Maintenance 

• Taute Maintenance Model 

It is a typical maintenance model and has eight phases in cycle fashion. The 

phases are shown in Fig. 7 

Fig. 7: Taute maintenance model 
20 



Softwar
e 

Maintenanc
e 

Phases : 

1. Change request phase 

2. Estimate phase 

3. Schedule phase 

4. Programming phase 

5. Test phase 

6. Documentation phase 

7. Release phase 

8. Operation phase 

21 



Software 
Maintenance 

Estimation of maintenance costs 

Table 3: Defect repair ratio 

22 

Phase Ratio 

Analysis 1 

Design 10 

Implementation 100 



Software 
Maintenance 

• Belady and Lehman Model 

M = P + Ke (c-d) 

where 

M : Total effort expended 

P : Productive effort that involves analysis, design, coding, testing and 

evaluation. 

K : An empirically determined constant. 

c :  Complexity measure due to lack of good design and documentation. 

d :  Degree to which maintenance team is familiar with the software. 

23 



Software 
Maintenance 

Example – 9.1 

The development effort for a software project is 500 person months. The 

empirically determined constant (K) is 0.3. The complexity of the code is 

quite high and is equal to 8. Calculate the total effort expended (M) if 

(i) maintenance team has good level of understanding of the project (d=0.9) 

(ii) maintenance team has poor understanding of the project (d=0.1) 

24 



Softwar
e 

Maintenanc
e 

Solution 

Development effort (P) = 500 PM  

K = 0.3 

C = 8 

(i) maintenance team has good level of understanding of the project (d=0.9) 

M = P + Ke (c-d) 

0.3e(8-0.9) = 500 + 

= 500 + 363.59 = 863.59 PM 

(ii) maintenance team has poor understanding of the project (d=0.1) 

M = P + Ke (c-d) 

0.3e(8-0.1) = 500 + 

= 500 + 809.18 = 1309.18 PM 

25 



Software 
Maintenance 

• Boehm Model 

Boehm used a quantity called Annual Change Traffic (ACT). 

“The fraction of a software product’s source instructions which undergo 
change during a year either through addition, deletion or modification”. 

KLOCadded  + KLOCdeleted   
ACT = 

KLOCtotal 

AME = ACT x SDE 

Where, SDE : Software development effort in person 

ACT : Annual change Traffic 

EAF : Effort Adjustment Factor 

months 

AME = ACT * SDE * EAF 

26 



Software 
Maintenance 

Example – 9.2 

Annual Change Traffic (ACT) for a software system is 15% per year. The 
development effort is 600 PMs. Compute estimate for Annual Maintenance 

Effort (AME). If life time of the project is 10 years, what is the total effort of 

the project ? 

27 



Software 
Maintenance 

Solution 

The development effort = 600 PM 

Annual Change Traffic (ACT) = 15% 

Total duration for which effort is to be calculated = 10 years 

The maintenance effort is a fraction of development effort and 

be constant. 

AME = ACT x SDE 

is assumed to 

= 0.15 x 600 = 90 PM 

Maintenance effort for 10 years = 10 x 90 = 90 PM 

Total effort = 600 + 900 = 1500 PM 

28 



Software 
Maintenance 

Example – 9.3 

A software project has development effort of 500 PM. It is assumed that 10% 

code 

1. 

2. 

3. 

4. 

5. 

will be modified per year. Some of the cost multipliers 

Required software Reliability (RELY) : high 

Date base size (DATA) : high Analyst  

capability (ACAP) : high Application  

experience (AEXP) : Very high 

Programming language experience (LEXP) : high 

are given as: 

Other multipliers are nominal. Calculate the Annual Maintenance Effort 

(AME). 

29 



Software 
Maintenance 

Solution 

Annual change traffic (ACT) = 10% 

Software development effort (SDE) = 500 Pm 

Using Table 5 of COCOMO model, effort adjustment factor can be 

calculated given below : 

RELY = 1.15 

ACAP = 0.86 

AEXP = 0.82 

LEXP = 0.95 

DATA = 1.08 

30 



Software 
Maintenance 

Other values are nominal values. Hence, 

EAF = 1.15 x 0.86 x 0.82 x 0.95 x 1.08 = 0.832 

AME = ACT * SDE * EAF 

= 0.1 * 500 * 0.832 = 41.6 PM 

AME = 41.6 PM 

31 



Software 
Maintenance 

Regression Testing 

Regression testing is the process of retesting the modified parts of the 

software and  ensuring that no new errors  have been introduced into 

previously test code. 

“Regression  testing  tests both  the  modified  code and other parts of the 

program that  may be affected by the program  change.  It  serves many 

purposes : 

) increase confidence in the correctness of the modified program 

locate errors in the modified program  

preserve the quality and reliability of software 

ensure the software’s continued operation 

) 

) 

) 

32 



Software 
Maintenance 

• Development Testing Versus Regression Testing 

33 

Sr. 

No. 

Development testing Regression testing 

1. 
 

We create test suites and test plans 
 

We can make use of existing test suite and 

test plans 

2. 
 

We test all software components 
 

We retest affected components that have 

been modified by modifications. 

3.  

Budget gives time for testing 
 

Budget   often   does   not   give   time   for 

regression testing. 

4. 
 

We perform testing just once on a 

software product 

 

We perform regression testing many times 

over the life of the software product. 

5. 
 

Performed  under  the  pressure  of 

release date of the software 

 

Performed in crisis situations, under greater 
time constraints. 



Software 
Maintenance 

• Regression Test Selection 

Regression testing is  very  expensive  activity  and  consumes significant 
this effort/ amount of effort / cost. Many techniques are available to reduce 

cost. 

1. Reuse the whole test suite 

2. Reuse the existing test suite, but to apply a regression test 

selection technique to select an appropriate subset of the test suite 
to be run. 

34 



Softwar
e 

Maintenanc
e 

return  
 

 

Fig. 8: code fragment A and B 

35 

Fragment A Fragment B  

(modified form of A) 

S1 y = (x - 1) * (x + 1) S1’ y = (x -1) * (x + 1) 

S2 if (y = 0) S2’ if (y = 0) 

S3 return (error) S3’ return (error) 

S4 else S4’ else 

 

S5 

 

  1 
 

return           
  y 

 

 

S5’ 

 

       1    
  y − 3  



Softwar
e 

Maintenanc
e 

Fig. 9: Test cases for code fragment A of Fig. 8 

36 

Test cases 

Test number Input Execution History 

t1 x = 1 S1, S2, S3 

t2 x = -1 S1, S2, S3 

t3 x = 2 S1, S2, S5 

t4 x = 0 S1, S2, S5 



Software 
Maintenance 

If we execute all test cases, we will detect this divide by zero fault. But we 

have to minimize the test suite. From the fig. 9, it is clear that test cases t3 

and t4 have the same execution history i.e. S1, S2, S5. If few test cases have 

the same execution history; minimization methods select only one test case. 

Hence, either t3 or t4 will be selected. If we select t4 then fine otherwise fault 

not found. 

Minimization methods can omit some test cases that might expose fault in 
the modified software and so, they are not safe. 

A safe regression test selection technique is one that,  under certain 

assumptions, selects every test case from the original test suite that can 
expose faults in the modified program. 

37 



Software 
Maintenance 

• Selective Retest Techniques 

techniques may be more economical than the “retest-all” Selective retest 
technique. 

Selective retest techniques are broadly classified in three categories : 

techniques : They are based on test coverage criteria. 1. Coverage 

They locate coverable program components that have been modified, 
and select test cases that exercise these components. 

2. Minimization techniques:  They  work  like  coverage  techniques, 

except that they select minimal sets of test cases. 

3. Safe techniques: They do not focus on coverage criteria; instead they 

select  every  test  case  that  cause  a  modified  program  to  produce 

different output than its original version. 

38 



Software 
Maintenance 

Rothermal   identified categories in which regression test selection 

techniques can be compared and evaluated. These categories are: 

Inclusiveness measures the extent to which a technique chooses test 

cases that will cause the modified program to produce different output than 

the original program, and thereby expose faults caused by modifications. 

Precision measures the ability of a technique to avoid choosing test cases 

that will not cause the modified program to produce different output than 

the original program. 

Efficiency measures the computational cost, and thus, practically, of a 

technique. 

Generality measures the ability of a technique to handle realistic and 

diverse language constructs, arbitrarily complex modifications, and realistic 

testing applications. 

39 



Software 
Maintenance 

Reverse Engineering 

Reverse 
unknown 

engineering is  the  process  followed  in  order to find difficult, 

and hidden information about a software system. 

40 



Software 
Maintenance 

• Scope and Tasks 

The areas there reverse engineering is applicable include (but not limited to): 

1. 

2. 

3. 

Program comprehension 

Redocumentation and/ or document generation 

Recovery  of  design  approach  and  design  details 

abstraction 

Identifying reusable components 

Identifying components that need restructuring 

Recovering business rules, and 

Understanding high level system description 

at any level of 

4. 

5. 

6. 

7. 

41 



Software 
Maintenance 

Reverse Engineering encompasses a wide array of tasks related to understanding 

and modifying software system. This array of tasks can be broken into 
classes. 

a number of 

) Mapping between application and program domains 

Problem/ 
application domain 

Mapping 

Programming/ 
implement domain 

Fig. 10: Mapping between application and domains program 
42 



Software 
Maintenance 

) Mapping between concrete and abstract levels 

) Rediscovering high level structures 

) Finding missing links between program syntax and 

semantics 

) To extract reusable component 

43 



Software 
Maintenance 

• Levels of Reverse Engineering 

Reverse Engineers detect low level implementation constructs 
them with their high level counterparts. 

and replace 

The process eventually results in an incremental formation of an overall 

architecture of the program. 

44 



Softwar
e 

Maintenanc
e 

Fig. 11: Levels of abstraction 

45 



Software 
Maintenance 

Redocumentation 

Redocumentation is the recreation of a semantically equivalent 

representation within the same relative abstraction level. 

Design recovery 

Design recovery entails identifying and extracting meaningful higher level 

abstractions beyond those obtained directly from examination of the source 

code. This may be achieved from a combination of code, existing design 

documentation, personal experience, and knowledge of the problem and 

application domains. 

46 



Software 
Maintenance 

Software RE-Engineering 

Software re-engineering is concerned with taking existing legacy systems 

and re-implementing them to make them more maintainable. 

The critical distinction between re-engineering and new software 
Fig.12. development is the starting point for the development as shown in 

47 



Softwar
e 

Maintenanc
e 

Existing 

software 

system 

System 
specification 

Understanding 

and 

transformation 

Design and 
implementation 

Re-engineered 
system 

New system 

Fig. 12: Comparison of new software development with re-engineering 

48 



Software 
Maintenance 

The following suggestions may be useful for the modification 
code: 

of the legacy 

  

  

  

  

  

  

  

  

Study code well before attempting changes 

Concentrate on overall control flow and not coding 

Heavily comment internal code 

Create Cross References 

Build Symbol tables 

Use own variables, constants and declarations to localize 

Keep detailed maintenance document 

Use modern design techniques 

the effect 

49 



Software 
Maintenance 

• Source Code Translation 

1. Hardware  platform update:  The  organization  may  wish  to 

change its standard hardware platform. Compilers for the original 
language may not be available on the new platform. 

2. Staff Skill   Shortages:   There   may   be   lack   of   trained 

maintenance staff for the original language. This is a particular 

problem where programs were written in some non standard 

language that has now gone out of general use. 

3. Organizational policy changes: An organization may decide to 

standardize on a particular language to minimize its support 

software costs. Maintaining many versions of old compilers can 

be very expensive. 

50 



Software 
Maintenance 

• Program Restructuring 

1. Control flow driven restructuring: This involves the imposition 
of a clear control structure within the source code and can be 

either inter modular or intra modular in nature. 

2. Efficiency 
function or 

driven restructuring: This involves restructuring a 
algorithm to make it more efficient. A simple example 

is the replacement of an IF-THEN-ELSE-IF-ELSE 
a CASE construct. 

construct with 

51 



Softwar
e 

Maintenanc
e 

Fig. 13: Restructuring a program 

52 



Software 
Maintenance 

3. Adaption driven restructuring:  This  involves  changing  the 

coding style in order to adapt the program to a new programming 
language or new operating environment, for instance changing 

an imperative 
LISP. 

program in PASCAL into a functional program in 

53 



Software 
Maintenance 

Configuration Management 

The process of software development and maintenance is controlled is 

is 

to 

called configuration management. The configuration management 

different  in development  and maintenance phases of life cycle due 

different environments. 

• Configuration Management Activities 

The 

1. 

2. 

3. 

4. 

activities are divided into four broad categories. 

The identification of the components and changes 

The control of the way by which the changes are made 

Auditing the changes 

Status accounting recording and documenting all the activities 

that have take place 

54 



Software 
Maintenance 

The following documents are required for these activities 

  

  

  

  

  

  

Project plan 

Software requirements specification document 

Software design description document 

Source code listing 

Test plans / procedures 

User manuals 

/ test cases 

55 



Software 
Maintenance 

• Software Versions 

Two types of versions namely revisions (replace) and variations (variety). 

Version Control : 

A  version  control  tool  is the  first stage  towards  being  able to manage 

multiple versions. Once it is in place, a detailed record of every version of 
the software must be kept. This comprises the 

  Name of each source code component, including the variations and 
revisions 

  

  

  

The 

The 

The 

versions of the various compilers and linkers used 

name of the software staff who constructed the component 

date and the time at which it was constructed 

56 



Software 
Maintenance 

• Change Control Process 

Change control process comes into effect when the  software and 

associated documentation are delivered to configuration management 

change request form (as shown in fig. 14), which should record the 

recommendations regarding the change. 

57 



Softwar
e 

Maintenanc
e 

Fig. 14: Change request form 

58 



Software 
Maintenance 

Documentation 

Software documentation is the written record of the facts about a 

software system recorded with the intent to convey purpose, content 

and clarity. 

59 



Softwar
e 

Maintenanc
e 

• User Documentation 

the system. 

and how it can be used. 

working, security and upgrading. 

Table 5: User Documentation 

60 

S.No. Document Function 

1. 
 

System Overview 
 

Provides general description of system’s functions. 

2. 
 

Installation Guide 
 

Describes how to set up the system, customize it to 

local hardware needs and configure it to particular 

hardware and other software systems. 

3.  

Beginner’s Guide 

 

Provides simple explanations of how to start using 

4.  

Reference Guide 

 

Provides in depth description of each system facility 

5. 
 

Enhancement 
 

Booklet Contains a summary of new features. 

6. 
 

Quick reference card 

 

Serves as a factual lookup. 

7.  

System administration 

 

Provides  information  on  services  such  as  net- 



Software 
Maintenance 

• System Documentation 

It refers to those documentation containing all facets of system, including 

analysis, 
diagnosis 

specification, design, implementation, testing, security, error 

and recovery. 

61 



Softwar
e 

Maintenanc
e 

• System Documentation 

62 

S.No. Document Function 

1. 
 

System Rationale 
 

Describes the objectives of the entire system. 

2. 
 

SRS 
 

Provides   information   on   exact   requirements  of 
system as agreed between user and developers. 

3. 
 

Specification/ Design 
 

Provides description of: 

(i)   How system requirements are implemented. 

(ii)  How the system is decomposed into a set of 

interacting program units. 

(iii) The function of each program unit. 

4.  

Implementation 
 

Provides description of: 

(i)   How the detailed system design is expressed in 
some formal programming language. 

(ii)  Program actions in the form of intra program 

comments. 



Softwar
e 

Maintenanc
e 

Table 6: System Documentation 

63 

S.No. Document Function 

5. 
 

System Test Plan 
 

Provides  description  of  how  program  units  are 

tested individually and how the whole system is 

tested after integration. 

6.  

Acceptance Test Plan 
 

Describes  the  tests  that  the  system  must  pass 
before users accept it. 

7. 
 

Data Dictionaries 
 

Contains description of all terms that relate to the 

software system in question. 


