
Introduction to Web

Technologies

Internet History

 1969 – Defense Advanced Research Project
Agency (DARPA) creates ARPANET
 Internet project creates protocols (TCP/IP)

• Transmission Control Protocol (TCP)
• Internet Protocol (IP)
• Allows computers to talk over networks
• Creates the “Internet” – 4 nodes

 Links together DARPA supported sites
 1979 – USENET started

 Interconnection of Computer Science
Departments

• Duke and UNC-Chapel Hill
 First emoticon created

• -) (tongue in cheek)
• 1982 :-) and :- (get added

Internet History Continued

 1985 – first domain name –
Symbolics.com

 1986 – NSFNET
 government support for major Internet

backbone

 1988 – Internet Worm affects 6,000 of
60,000 Internet sites
 30 seconds on NBC evening news
 Son of National Security Agency Chief

Scientist

Web History

 1991 – World Wide Web released by CERN
 First Web Server

• WhatYouSeeIsWhatYouGet (WYSYWIG)

 First Web Site
• (Stanford Linear Accelerator)

 1992 – 50 Web servers
 1993 – first Internet

Worms/Spiders/Wanderers/Robots
 First search engines
 Mosaic – first graphical browser for Web
 341,000% growth rate in WWW

Web History Continued

 Yahoo – Yet Another Hierarchical Officious
Oracle
 2 Ph.D. Students from Stanford

 Peaks about Dec. 2001 at 40 million web servers
 Keys to success:

 Client-server architecture
• Users all over world can run programs on my computer
• Don’t need to ship software, just publish the url
• Don’t have to create a GUI – just create a web page
• Browser runs on client, displays web page

• Sends messages to server
• Receives and displays answers

URL- Universal Resource

Locator

 Unique address for a resource on the

Internet

 Scheme://hostname[:port]/path/filename
 Scheme:

• http: HyperText Transfer Protocol

• ftp: File Transfer Protocol

• mailto: send email

• News: newsnet news

HTML – HyperText Markup

Language

 Create textual description of appearance

of documents

 Document Structure

<HTML>
<HEAD> <TITLE> My Lecture </TITLE>

</HEAD>

<BODY> I have to say something.

</BODY>

</HTML>

Meta Document Information

 “meta” - information about

 Meta document - information about the

document

 Meta data – information about the data

 Meta tags
<META NAME="name"

HTTP-EQUIV="FieldName"

CONTENT="value" >

MetaTags

<META HTTP-EQUIV="Refresh"

CONTENT="2;URL=http:nextdoc.html">
- in 2 sec. redirect browser to

nextdoc.html.

<META NAME="keywords"

CONTENT="Web, HTML, tags">
- Set keywords for the document, used by

search engines to index your document

Basic HTML Tags

 - bold
 - unnumbered list
 first thing
 second thing

 - ordered (numbered) list
<p> </p> - paragraph begin and end

 - line break
<pre> </pre> - preformatted text
<h1> </h1> - big heading (also h2 .. h6)
<i> </i> - italics
<center> </center> - center
<!-- comment -->

A Minimal HTML Document

<html>
 <head>
 <TITLE>A Simple HTML Example</TITLE>
 </head>
 <body>
 <H1>HTML is Easy To Learn</H1>
 <P>Welcome to the world of HTML. This is the first
 paragraph. While short, it is still a paragraph!
 </P>
 <P>And this is the second paragraph.
 </P>
 </body>

</html>

Special Characters and

Links

- Special Characters

- unlike rest of HTML, case

sensitive

 < - less than <

 > - greater than >

 - non-blocking space

Linking to Documents and

Images

- Links to Documents and Images
- The displayed text is called the “anchor”

 Document in same
 directory

 Full path to a page

<img src="images/sgauch.jpg" WIDTH=190
HEIGHT= 200>

Tables - Syntax

<TABLE>
 <TR>
 <TD> Row 1, Cell 1 </TD>
 <TD> Row 1, Cell 2 </TD>
 </TR> <!-- end of first row definition -->
 <TR> <!-- start of last row definition -->
 <TD> Row 2, Cell 1 </TD>
 <TD> Row 2, Cell 2 </TD>
 </TR> <!-- end of last row definition -->
</TABLE> <!-- end of table definition -->

Tables – Output

Row 1, Cell 1

Row 1, Cell2

Row 2, Cell 1

Row 2, Cell 2

Creating HTML Files

 Text Editor

 vi, notepad, emacs, pico, …

 Don’t need to learn a new editor

 Have control over output

 Need to know syntax of HTML

 HTML Authoring Tools

 Allaire, Netscape, DreamWeaver

 WYSIWYG

 General Purpose WSYIWYG

 Word

 Creates enormous, ugly HTML code

 Badly formatted, lots of unnecessary tags

CGI – Common Gateway

Interface

 An html web page is static

(unchanging)

 Text document sent from server to

browser

 CGI program creates dynamic

information

 Program is executed upon demand

 Generates fresh content for each

request

CGI Overview

 Developer creates an HTML page
with a <FORM> on it

 Specifies the name of the program

 Names some variables that can hold
data

 User enters information into the Web
page (fills in the variables in the
<FORM> and clicks <SUBMIT>

 Browser sends the information to the
URL

CGI Overview continued

 Server unpacks the HTTP message

 Finds the name of the program to call

 Finds the data

 Server calls the program and passes in the
data

 Program generates output and writes it to
“standard out” (the screen, usually)

 Server takes the output and passes it along
to the browser

 Browser displays the output on the user’s
screen

Forms

 Forms are part of regular HTML

documents

 There may be more than one form in

a document

 Forms may not be nested

<FORM ACTION=“url”> … </FORM>

INPUT

 Forms receive input from the user

 Each input area has its own name and type
of input it may receive

 Forms may receive input from

 Text

 Radio

 Checkbox

 Submit

 Reset

 Password

Submitting Information via a

FORM

 When SUBMIT is pushed, the contents of

the form get sent to the server in the form:

programname?var1=value1&var2=value2

 You may send the data via POST or GET

 You choose this when you write the HTML

page with the FORM in it

POST and GET

 POST

 cgi program reads from stdin (i.e., the
keyboard)

 No limit on the amount of data sent

 GET

 CGI program reads from an environment
variable (QUERY_STRING)

 Limit on length of data sent (1,000?
Characters?)

 Recommend that you use POST

A Simple Perl Program

tiny.pl

#!/usr/bin/perl

#Prints “Hello Susan”

 use strict; # syntax checking

 use warnings; # runtime checking

 my $username = ‘Susan’; # "declare" variable

 print "Hello, $username.\n"; # print out greeting

A Simple CGI Program

tinyPL.cgi

#!/usr/bin/perl

#Prints static Web page “Hello Susan”

 use strict; # syntax checking

 use warnings; # runtime checking

 use CGI qw(:standard); # use the CGI library

 my $username = ‘Susan’; # "declare" the variable

 print header(); # output http, <HTML>

 start_html(“First CGI program”); # add a title

 print "Hello, $username.\n";

 print end_html(); # output </HTML> etc

Program Output

Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US"
xml:lang="en-US">

<head>

<title>First CGI program</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1" />

</head>

<body>

Hello Susan.

</body>

</html>

Call the program

In browser bar, type

http://www.csce.uark.edu/~sgauch/cgicode/tinyPL.cgi

What it looks like

Passing Parameters to a CGI

program

adduserPL.cgi
#!/usr/bin/perl

use strict;

use warnings;

use CGI qw(:standard); #use the CGI library

 my $cgiform = new CGI; #Create a CGI object

 #Extract username and password from the form-passed parameters

 my $username = $cgiform->param("username");

 my $password = $cgiform->param("password");

 #Output the username and password

 print header();

 print start_html("Add a User");

 print "<h2>Username: $username</h2>\n";

 print "<h2>Password: $password</h2>\n";

 print end_html();

Calling it from a Web Page

<html><head><title> Add a New User </title></head>

<body bgcolor=white>

<FORM ACTION="adduserPL.cgi“METHOD="POST">

 <center><table width=70% cellpadding=5 border=1 bgcolor=#008080>

 <tr>

 <td align=center>

 Become a Registered Customer

 </td>

 </tr>

 </table></center><p>

 <table border="0">

 <tr>

 <td>Choose your username: </td>

 <td><INPUT TYPE="text" SIZE="20" NAME="username"></td>

 </tr>

 <tr>

 <td>Choose your password: </td>

 <td><INPUT TYPE="text" SIZE="20" NAME="password"></td>

 </tr>

 </table>

 <p><input type="submit" value="Add Me">

</form></body></html>

What the Web Page Looks

Like

What the results are

Creating CGI Programs

First step – Create and view a static html page

Create your public_html directory

Set permissions so the world can read & execute it

Create a simple html page (index.htm)

Check that you can view it from

http://www.csce.uark.edu/~yourusername/

Second step – Test existing cgi program

Copy tiny.html and tinyPL.cgi to your public_html
directory

Test that they work

Copy adduserPL.html and adduserPL.cgi to your
public_html directory

Test that they work

http://www.csce.uark.edu/~yourusername/

Creating CGI Programs

Third step – Check that your program produces valid HTML
output

Create a program that runs from the command line

Put the program in your public_html/ (cgi-bin directory
optional)

Name the program ending in .cgi

Set the variables in the program

e.g., $username = “sgauch”;

Save the output to a file

perl myprog.cgi > output.html

Remove everything before <html> in nano

View the file in a browser

Creating CGI programs

Fourth step – Check that the permissions are set so others besides
you can execute the program

Have a friend login and run your program from their directory

e.g., perl /users/myusername/.public_html/cgi-bin/myprogram.cgi >
output

Fifth step – Create a web page to call a simple program

Design a form that calls a dummy cgi

That cgi should just print out “hello world”

Put the form in your .public_html directory

View the form in the browser

Click submit

Check that you see “hello world”

Creating CGI programs continued

Sixth step – Create a web page to call a simple version of
your final program that confirms parameters are passed

In your perl program, comment out all parts of the
program

Just print the parameters to confirm you’re getting them

Call this program from the form

Seventh step – Run the full program

Remove comments and test the REAL progrram

Debugging CGI programs

- Permissions problems
- inadequate permissions

- Test this by having someone besides yourself execute the
code

- Do and ls –l on the directory structure
- It should be drwxr-wr-x on all directories

- Chmod 755 my directory

- Chmod 644 for your perl program

- Path problems
- Test this by creating and calling a really simple cgi program

- Invalid HTML produced
- Call this and save output to a file

- View file in a browser

Common Problems

#!/usr/bin/perl must be the first line in the file

Even before any other comments

Remember to call the print header() function

It must occur before any other print statements

On some systems, the filename must end .cgi not .pl

On some systems, the executables must be in

public_html/cgi-bin directory

Useful Links

 www.sergey.com/web_course/

 JumpStart to the Web Technologies

 http://www.isoc.org/internet/history/

 History of the Internet and Web

 http://www.w3schools.com/html/

 A thorough description of HTML tags

 http://www.cgi101.com/book/

 A good tutorial on CGI programming

http://www.sergey.com/web_course/
http://www.isoc.org/internet/history/
http://www.w3schools.com/html/
http://www.cgi101.com/book/

