

Introduction to Web Services Protocols

Efficient (or indeed any) communication is dependent on a shared vocabulary and grammar.

 Because web services deals with inter-organisation communication these must be universal standards.

Talk title

Underlying standards

- The basic standards for web services are:
- XML (Extensible Markup Language)
- SOAP (simple object access protocol)
- WSDL (web services description language)
- UDDI (universal description, discovery and integration)

The state of standards

- XML 1.0 fairly stable, although Schema are in the process of replacing DTDs (currently Schema 1.1 being worked on).
- SOAP 1.2
- WSDL 2.0 (coming out, 1.2 current)
- UDDI version 3 (Aug 2003)
- **BPEL 1.1 (Business Process Execution Language)**
- choreography description language (web services work flows)

started January 2003.

Standards are still volatile and in the process of development.

Web Services Architecture

- Web Services involve three major roles
 - Service Provider
 - Service Registry
 - Service Consumer
- Three major operations surround web services
 - Publishing making a service available
 - Finding locating web services
 - Binding using web services

Making a service available (1)

In order for someone to use your service they have to know about it.

- To allow users to discover a service it is published to a registry (UDDI).
- To allow users to interact with a service you must publish a description of it's interface (methods & arguments).
- This is done using WSDL.

Talk title

Making a service available (2)

- Once you have published a description of your service you must have a host set up to serve it.
- A web server is often used to deliver services (although custom application – application communication is also possible).
- This is functionality which has to be added to the web server. In the case of the apache web server a 'container' application (Tomcat) can be used to make the application (servlet) available to apache (deploying).

The old transfer protocols are still there.

- Like the grid architecture web services is layered on top of existing, mature transfer protocols.
- HTTP, SMTP are still used over TCP/IP to pass the messages.
- Web services, like grids, can be seen as a functionality enhancement to the existing technologies.

Talk title

- All Web Services documents are written in XML
- XML Schema are used to define the elements used in Web Services communication

- Actually used to communicate with the Web Service
- Both the request and the response are SOAP messages
- The body of the message (whose grammar is defined by the WSDL) is contained within a SOAP "envelope"

"Binds" the client to the web service

Talk title

WSDL

- Describes the Web Service and defines the functions that are exposed in the Web Service
- Defines the XML grammar to be used in the messages
 - Uses the W3C Schema language

UDDI

- UDDI is used to register and look up services with a central registry
- Service Providers can publish information about their business and the services that they offer
- Service consumers can look up services that are available by
 - Business
 - Service category
 - Specific service

Talk title

date

XML

Talk title

date

What is XML

- XML stands for extensible markup language
- It is a hierarchical data description language
- It is a sub set of SGML a general document markup language designed for the American millitary.
- It is defined by w3c.

How does XML differ from HTML?

- HTML is a presentation markup language provides no information about content.
- There is only one standard definition of all of the tags used in HTML.
- XML can define both presentation style and give information about content.
- XML relies on custom documents defining the meaning of tags.

What is a Schema?

- A schema is the definition of the meaning of each of the tags within a XML document.
- Analogy: A HTML style sheet can be seen as a limited schema which only specifies the presentational style of HTML which refers to it.
- Example: in HTML the tag predefined. In XML you would need to define this in the context of your document.

Valid and well formed

- A correct XML document must be both valid and well formed.
- Well formed means that the syntax must be correct and all tags must close correctly (eg <...> </...>).
- Valid means that the document must conform to some XML definition (a DTD or Schema).

(Otherwise there can be no definition of what the tags mean)

Talk title

date

Using namespaces in XML

- To fully qualify a namespace in XML write the namespace:tag name. eg.
 <my_namespace:tag> </my_namespace:tag>
- In a globally declared single namespace the qualifier may be omitted.
- More than one namespace:

 <my_namespace:tag> </my_namespace:tag>
 <your_namespace:tag>
 </your_namespace:tag>
 can co-exist if correctly qualified.

Namespaces in programming languages

- In C/C++ defined by #includes and classes (eg. myclass::variable).
- In PERL defined by package namespace, \$local and \$my (eg. myPackage::variable).
- In JAVA defined by includes and package namespace (eg. java.lang.Object)
- Defines the scope of variables

Schema

<?xml version="1.0"?> <xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema xmlns="document" > <xs:element name = "DOCUMENT"> <xs:element name="CUSTOMER"> </xs:element> </xs:element> </xs:schema>

<?xml version="1.0"?>
<DOCUMENT xmlns="document"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
Xsi:schemaLocation="order.xsd">
<DOCUMENT>
<CUSTOMER>sam smith</CUSTOMER>
<CUSTOMER>sam smith</CUSTOMER>
</DOCUMENT>

Simple schema saved as order.xsd

XML document derived from schema.

SOAP

Talk title

date

Request Response Web Services

- Currently the most common implementation of Web Services
- Work in a very simple 'request response' paradigm

For Example:

- A Weather Service simple request for weather in an area, simple response with the weather report
- An Airline special offers service travel agents would simply make requests for latest offers and would receive the offers as a response

SOAP messages

- SOAP provides a standard 'envelope' within which a message can be delivered.
- SOAP is mechanism (protocol) for transferring information (messages) between applications which may be widely distributed.
- SOAP says nothing about the content of the message – the sender and the receiver must understand the message for themselves.
- SOAP is part of a communication stack.

Talk title

SOAP Structure(1)

- Each SOAP message will have:
 - An Envelope
 - A Header (optional)
 - A Body
 - The Body may contain a Fault element

SOAP Structure(2)

- The envelope wraps the entire soap document
- The header contains allows additional information to be passed as well as the body of the document – e.g. authentication
- The body element contains the core of the SOAP document – this will contain either the RPC call or the XML message itself
- The fault information will contain any exception information

Anatomy of a SOAP message

<?xml version=`1.0' encoding=`UTF-8'?>

<SOAP-ENV:Header>

</SOAP-ENV:Header

<SOAP ENV:Body>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

date

SOAP protocol binding


```
SOAPAction = "urn:soaphttpclient-action-uri"
Host = localhost
Content-Type = text/xml; charset=utf-8
Content-Length = 701
```

</SOAP-ENV:Envelope>

SOAP RPC

- SOAP RPC messages contain XML that represents a method call or method response
- The SOAP XML will be converted into a method call on the server and the response will be encoded into SOAP XML to be returned to the client

- SOAP errors are handled using a specialised envelope known as a Fault Envelope
- A SOAP Fault is a special element which must appear as an immediate child of the body element
- <faultcode> and <faultstring> are required.

date

Talk title

A SOAP fault


```
<?xml version=`1.0' encoding=`UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP_ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3c.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3c.org/1999/XMLSchema">
<SOAP_ENV:Body>
-<SOAP_ENV:Body>
-<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>Test fault</faultstring>
<faultactor>/soap/servlet/rpcrouter</faultactor>
<detail>
```

</detail> </SOAP-ENV:Fault>

</SOAP-ENV:Body> </SOAP-ENV:Envelope>

Talk title

date

SOAP Attachment

- Large quantities or binary data may not fit well into a XML SOAP message.
- In which case it can be sent 'out of band' by attaching it to a SOAP message

date

 Analogy : email attachments.

Talk title

Transport protocol MIME header SOAP ENVELOPE SOAP HEADER SOAP BODY FAULT Attachment

Attaching a file to a SOAP message

To add a file to a SOAP message a tag is added within the body of the message.

<?xml version='1.0' encoding='UTF-8'?> <SOAP-ENV:Envelope xmlns:SOAP_ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3c.org/1999/XMLSchema-instance" xmlns:xsd="http://www.w3c.org/1999/XMLSchema"> <SOAP_ENV:Body>

<attachment href="{URL}"/>

</SOAP-ENV:Body> </SOAP-ENV:Envelope>

Talk title

date