
1

A Simple JSP

<!-- CurrentTime.jsp -->

<HTML>

<HEAD>

<TITLE>

CurrentTime

</TITLE>

</HEAD>

<BODY>

Current time is <%= new java.util.Date() %>

</BODY>

</HTML>

2

A Simple JSP

Create a text file, name it currenttime.jsp

You must store the file in the following :

tomcat/webapps/examples/jsp/currenttime.jsp

Use the following URL:

http://localhost:8080/examples/jsp/currenttime.jsp

3

How Is a JSP Processed?

Web Browser Web Server

Send a request URL

HTML Page returned

Web Server Host

Host Machine File System

 /servlet/JSPFile.jsp

URL Example
 http://www.server.com:8080/servlet/JSPFile

Servlet

Engine

Process

Servlet

Generate

Response

Get Servlet JSP

Translator

Generated

Servlates

Get JSP

file

4

JSP Constructs

There are three types of scripting constructs. They are

expressions, scriptlets, and declarations.

expression

scriptlet

declaration

A JSP expression is used to insert a Java

expression directly into the output. It has the

following form:

<%= Java-expression %>

The expression is evaluated, converted into a

string, and sent to the output stream of the

servlet.

5

JSP Constructs

There are three types of scripting constructs. They are

expressions, scriptlets, and declarations.

expression

scriptlet

declaration

A JSP scriptlet enables you to insert a Java

statement into the servlet’s jspService method,

which is invoked by the service method. A JSP

scriptlet has the following form:

<% Java statement %>

6

JSP Constructs

There are three types of scripting constructs . They are

expressions, scriptlets, and declarations

expression

scriptlet

declaration

A JSP declaration is for declaring methods. It

has the following form:

<%! Java method or field declaration %>

7

JSP Comment

HTML comments have the following form:

<!-- HTML Comment -->

8

Example 27.1

Computing Factorials

<HTML>

<HEAD>

<TITLE>

Factorial

</TITLE>

</HEAD>

<BODY>

<% for (int i = 0; i <= 10; i++) { %>

Factorial of <%= i %> is

<%= computeFactorial(i) %>

<% } %>

<%! private long computeFactorial(int n) {

 if (n == 0)

 return 1;

 else

 return n * computeFactorial(n - 1);

 }

%>

</BODY>

</HTML>

JSP scriptlet

JSP expression

JSP declaration

9

JSP Predefined Variables

You can use variables in JSP.

request

 response

 out

 session

 application

 config

 pageconte
xt

 page

10

Example 27.2

Computing Loan

Write an HTML page that

prompts the user to enter loan

amount, annual interest rate,

and number of years. Clicking

the Compute Loan Payment

button invokes a JSP to

compute and display the
monthly and total loan payment.

<!-- ComputeLoan.html -->

<html>

<head>

<title>ComputeLoan</title>

</head>

<body>

Compute Loan Payment

<form method="get"

action="http://localhost:8080/examples/jsp/ComputeLoan.jsp">

<p>Loan Amount

 <input type="text" name="loanAmount">

Annual Interest Rate

 <input type="text" name="annualInterestRate">

Number of Years <input type="text" name="numberOfYears"

size="3"></p>

<p><input type="submit" name="Submit" value="Compute Loan

Payment">

 <input type="reset" value="Reset"></p>

</form>

</body>

</html>

11

<!-- ComputeLoan.jsp -->

<html>

<head>

<title>ComputeLoan</title>

</head>

<body>

<% double loanAmount = Double.parseDouble(

 request.getParameter("loanAmount"));

 double annualInterestRate = Double.parseDouble(

 request.getParameter("annualInterestRate"));

 double numberOfYears = Integer.parseInt(

 request.getParameter("numberOfYears"));

 double monthlyInterestRate = annualInterestRate / 1200;

 double monthlyPayment = loanAmount * monthlyInterestRate /

 (1 - 1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12));

 double totalPayment = monthlyPayment * numberOfYears * 12; %>

Loan Amount: <%= loanAmount %>

Annual Interest Rate: <%= annualInterestRate %>

Number of Years: <%= numberOfYears %>

Monthly Payment: <%= monthlyPayment %>

Total Payment: <%= totalPayment %>

</body>

</html>

Predefine
d variable

12

JSP Directives

if your JSP page uses a Java class from a

package other than the java.lang package, you

have to use a directive to import this package.

The general syntax for a JSP directive is as

follows:

 <%@ directive attribute="value" %>, or

 <%@ directive attribute1="value1"

 attribute2="value2"

 ...

 attributen="vlauen" %>

13

Three JSP Directives

Three possible directives are the following: page, include, and

tablib.

1. page

2. includ
e

3. tablib

14

Attributes for page Directives

 import

 contentType

 session

 buffer

 autoFlush

 isThreadSafe

 errorPage

 isErrorPage

15

Example 27.3

Computing Loan

Using the Loan Class

Use the Loan class to simplify

Example 27.2. You can create an

object of Loan class and use its

monthlyPayment() and

totalPayment() methods to compute

the monthly payment and total

payment.

<!-- ComputeLoan.jsp -->

<html>

<head>

<title>ComputeLoan Using the Loan Class</title>

</head>

<body>

<%@ page import = "chapter27.Loan" %>

<% double loanAmount = Double.parseDouble(

 request.getParameter("loanAmount"));

 double annualInterestRate = Double.parseDouble(

 request.getParameter("annualInterestRate"));

 int numberOfYears = Integer.parseInt(

 request.getParameter("numberOfYears"));

 Loan loan = new Loan(annualInterestRate, numberOfYears,

loanAmount);

%>

Loan Amount: <%= loanAmount %>

Annual Interest Rate: <%= annualInterestRate %>

Number of Years: <%= numberOfYears %>

Monthly Payment: <%= loan.monthlyPayment() %>

Total Payment: <%= loan.totalPayment() %>

</body>

</html>

Import a class. The class must be

placed in a package (e.g. package

chapter27.

16

Example 27.4 Using Error Pages

This example prompts the user to enter an integer and displays the

factorial for the integer. If a noninteger value is entered by mistake,

an error page is displayed.

17

<!-- FactorialInput.html -->

<HTML>

<HEAD>

<TITLE>

FactorialInput

</TITLE>

</HEAD>

<BODY>

<FORM method="post"

 action="http://localhost:8080/examples/jsp/ComputeFactorial.jsp">

 Enter an integer <INPUT NAME="number">

<INPUT TYPE="SUBMIT" NAME="Submit" VALUE="Compute Factorial">

<INPUT TYPE="RESET" VALUE="Reset">

</FORM>

</BODY>

</HTML>

18

<!-- ComputeFactorial.jsp -->

<HTML>

<HEAD>

<TITLE>

ComputeFactorial

</TITLE>

</HEAD>

<BODY>

<%@ page errorPage = "FactorialInputError.jsp" %>

<% int number = Integer.parseInt(request.getParameter("number")); %>

Factorial of <%= number %> is

<%= computeFactorial(number) %> <p>

<%! private long computeFactorial(int n) {

 if (n == 0)

 return 1;

 else

 return n * computeFactorial(n - 1);

 }

%>

</BODY>

</HTML>

Error page

19

<!-- FactorialInputError.jsp -->

<HTML>

<HEAD>

<TITLE>

FactorialInputError

</TITLE>

</HEAD>

<BODY>

<%@ page isErrorPage = "true" %>

Error -- Input is not an integer.

</BODY>

</HTML>

Indicate it is

error page

20

JavaBeans Component in JSP

Recall that a class is a JavaBeans component if it has the

following three features:

The class is public.

The class has a public constructor with no arguments.

The class is serializable. (This requirement is not

necessary in JSP.)

21

Using JavaBeans in JSP

To create an instance for a JavaBeans component,

use the following syntax:

<jsp:useBean id="objectName"

scope="scopeAttribute“ class="ClassName" />

This syntax is equivalent to

 <% ClassName objectName = new ClassName()

%>

except that the scope attribute specifies the scope of

the object.

22

Scope Attributes

application

session

page

request

Specifies that the object is bound to the

application. The object can be shared by all

sessions of the application.

23

Scope Attributes

application

session

page

request

Specifies that the object is bound to the client’s

session. Recall that a client’s session is

automatically created between a Web browser

and Web server. When a client from the same

browser accesses two servlets or two JSP pages

on the same server, the session is the same.

24

Scope Attributes

application

session

page

request

The default scope, which specifies that the

object is bound to the page.

25

Scope Attributes

application

session

page

request

Specifies that the object is bound to the client’s

request.

26

 How Does JSP Find an Object

When <jsp:useBean id="objectName"

scope="scopeAttribute" class="ClassName" />

is processed, the JSP engine first searches for

the object of the class with the same id and

scope. If found, the preexisting bean is used;

otherwise, a new bean is created.

27

 Another Syntax for Creating a Bean

Here is another syntax for creating a bean using the

following statement:

 <jsp:useBean id="objectName"

scope="scopeAttribute“ class="ClassName" >

 some statements

 </jsp:useBean>

The statements are executed when the bean is

created. If the bean with the same id and className

already exists, the statements are not executed.

28

Example 27.5 Testing Bean Scope

This example creates a JavaBeans component named Count and uses it to count the

number of visits to a page.

29

<!-- TestBeanScope.jsp -->

<%@ page import = "chapter27.Count" %>

<jsp:useBean id="count" scope="application" class="chapter27.Count">

</jsp:useBean>

<HTML>

<HEAD>

<TITLE>TestBeanScope</TITLE>

</HEAD>

<BODY>

<H3>

Testing Bean Scope in JSP (Application)

</H3>

<% count.increaseCount(); %>

You are visitor number <%= count.getCount() %>

From host: <%= request.getRemoteHost() %>

and session: <%= session.getId() %>

</BODY>

</HTML>

package chapter27;

public class Count {

 private int count = 0;

 /** Return count property */

 public int getCount() {

 return count;

 }

 /** Increase count */

 public void increaseCount() {

 count++;

 }

}

30

 Getting and Setting Properties

By convention, A JavaBeans component

provides the get and set methods for reading

and modifying its private properties. You can get

the property in JSP using the following syntax:

 <jsp:getProperty name="beanId“

property="sample" />

 This is equivalent to

 <%= beanId.getSample() %>

31

 Getting and Setting Properties, cont.

You can set the property in JSP using the

following syntax:

<jsp:setProperty name="beanId“

property="sample“ value="test1" />

 This is equivalent to

 <% beanId.setSample("test1"); %>

32

Associating Properties with Input Parameters

Often properties are associated with input

parameters. Suppose you want to get the value

of the input parameter named score and set it to

the JavaBeans property named score. You may

write the following code:

 <% double score = Double.parseDouble(

 request.getParameter("score")); %>

 <jsp:setProperty name="beanId"

property="score"

 value="<%= score %>" />

33

Associating Properties with Input Parameters,

cont.

This is cumbersome. JSP provides a convenient

syntax that can be used to simplify it as follows:

<jsp:setProperty name="beanId"

property="score"

 param="score" />

Instead of using the value attribute, you use the

param attribute to name an input parameter.

The value of this parameter is set to the

property.

34

Associating All Properties

Often the bean property and the parameter have the

same name. You can use the following convenient

statement to associate all the bean properties in

beanId with the parameters that match the property

names.

<jsp:setProperty name="beanId" property="*" />

35

Example 27.6 Computing Loan Using JavaBeans

Use JavaBeans to simplify Example 27.3 by associating the bean properties with
the input parameters.

<!-- ComputeLoan.jsp -->

<html>

<head>

<title>ComputeLoan Using the Loan Class</title>

</head>

<body>

<%@ page import = "chapter27.Loan" %>

<jsp:useBean id="loan" class="chapter27.Loan"></jsp:useBean>

<jsp:setProperty name="loan" property="*" />

Loan Amount: <%= loan.getLoanAmount() %>

Annual Interest Rate: <%= loan.getAnnualInterestRate() %>

Number of Years: <%= loan.getNumOfYears() %>

Monthly Payment: <%= loan.monthlyPayment() %>

Total Payment: <%= loan.totalPayment() %>

</body>

</html>

Getting

Associating the bean

properties with the
input parameters.

36

Example 27.7 Computing Factorials Using JavaBeans

Create a JavaBeans component named FactorialBean and use it to compute the

factorial of an input number in a JSP page named FactorialBean.jsp.

37

<!-- FactorialBean.jsp -->

<%@ page import = "chapter27.FactorialBean" %>

<jsp:useBean id="factorialBeanId" class="chapter27.FactorialBean" >

</jsp:useBean>

<jsp:setProperty name="factorialBeanId" property="*" />

<HTML>

<HEAD>

<TITLE>

FactorialBean

</TITLE>

</HEAD>

<BODY>

<H3>

Compute Factorial Using a Bean

</H3>

<FORM method="post">

Enter new value: <INPUT NAME="number">

<INPUT TYPE="SUBMIT" NAME="Submit" VALUE="Compute Factorial">

<INPUT TYPE="RESET" VALUE="Reset">

<P>Factorial of

<jsp:getProperty name="factorialBeanId" property="number" /> is

<%=factorialBeanId.getFactorial() %>

</FORM>

</BODY>

</HTML>

Getting

Associating the bean

properties with the
input parameters.

Getting number

38

package chatper28;

public class FactorialBean {

 private int number;

 /** Return number property */

 public int getNumber() {

 return number;

 }

 /** Set number property */

 public void setNumber(int newValue) {

 number = newValue;

 }

 /** Obtain factorial */

 public long getFactorial() {

 long factorial = 1;

 for (int i = 1; i <= number; i++)

 factorial *= i;

 return factorial;

 }

}

Getting

39

Example 27.8 Browsing Database Tables

This example creates a JSP database application that browses tables. When you

start the application, the first page prompts the user to enter the JDBC driver, URL,

username, and password for a database. After you login to the database, you can

select a table to browse. Upon clicking the Browse Table Content button, the table

content is displayed.

