
12-May-15

Tomcat

2

The Apache Jakarta Project

 The Apache Jakarta Project “creates and maintains

open source solutions on the Java platform for

distribution to the public at no charge”

 Apache Jakarta Tomcat--or just “Tomcat”--is one of

those projects

 Tomcat is a container for servlets

 Tomcat can act as a simple standalone server for Web

applications that use HTML, servlets, and JSP

 Apache is an industrial-strength, highly optimized server

that can be extended with Tomcat

3

Getting Tomcat

 The Apache Jakarta website is hard to navigate

 If you want to get Tomcat, one reasonable download site is

http://mirrors.xtria.com/apache/jakarta/tomcat-

5/v5.0.29/bin/

 You would need the whole “tarball”, which will have a name

such as jakarta-tomcat-5.0.29.tar.gz

 An excellent tutorial site is Configuring & Using Apache Tomcat,

http://www.coreservlets.com/Apache-Tomcat-Tutorial/

 This site also contains many examples you can use to test your installation

 Installing Tomcat by itself is much easier than installing Apache

and then adding Tomcat to it

4

Web apps

 A web application is basically a web site that:

 “Knows who you are”--it doesn’t just give you static pages, it
interacts with you

 Can permanently change data (such as in a database)

 A web application can consist of multiple pieces

 Static web pages (possibly containing forms)

 Servlets

 JSP

 Tomcat organizes all these parts into a single directory
structure for each web application

 ...but you have to help with the organization

5

Directories

 To create servlets, you really should have two
directory structures:

 A development directory, in which you can write and
partially debug your code

 A deployment directory, in which you put “live” code

 Tomcat requires a particular set of directories for your
web application

 It is extremely picky about having everything in the right
place!

 Since your web application must typically co-exist
with other web applications, you should use packages
to avoid name conflicts

 This further complicates the Tomcat directory structure

6

Packages

 A package statement in Java must be the very first line of code in

the file

 Example:

 package com.example.model;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class MyServlet extends HttpServlet { ... }

 This implies that

 This program is in a file named MyServlet.java, which is

 in a directory named model, which is

 in a directory named example, which is

 in a directory named com

7

Tomcat directory structure

 myApplicationDirectory/ -- this is your top level directory

 myWebForm.html

 myJspPage.jsp

 WEB-INF/ -- must have this directory, named exactly like this

 lib/ -- mostly for external .jar files

 classes/ -- must have this directory, named exactly like this

 com/ -- The com.example.model package directory

 example/

 model/

 myModel.class -- in package com.example.model;

 web/

 myServlet.class --in package com.example.web;

 web.xml -- this is the deployment descriptor, it must have this name

8

My files

 myWebForm.html

 This is the web page with a form that starts up the servlet

 com/example/web/myServlet.class

 This is the servlet I intend to use; it will use the myModel class, but to do

this it needs an import statement:

import com.example.model.myModel;

 com/example/model/myModel.class

 This does the “business logic” it is good form to keep it separate

 myJspPage.jsp

 The (optional) JSP page to create the HTML output (could be done

directly by myServlet)

 web.xml

 A file required by Tomcat to tell it what class to start with and how to refer

to that class

9

myWebForm.html

<html>

 ...

 <body>

 ...

 <form method="POST" action="NameSeenByUser.do">

 ...various form elements...

 </form>

 ...

 </body>

</html>

10

web.xml
<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

 version="2.4">

 <servlet>

 <servlet-name>Some internal name</servlet-name>

 <servlet-class>com.example.web.MyServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Some internal name</servlet-name>

 <url-pattern>/NameSeenByUser.do</url-pattern>

 </servlet-mapping>

</web-app>

11

Servlet without JSP

public class MyServlet extends HttpServlet {

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String value = request.getParameter("name");

 out.println("<html><body>I got: " + name + " = " +

 value + "</body></html>");

 }

}

12

Servlet with JSP

public class MyServlet extends HttpServlet {

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException {

 String value = request.getParameter("name");

 ...computation resulting in some Object obj...

 request.setAttribute(”objName", obj);

 RequestDispatcher view =

 request.getRequestDispatcher("result.jsp");

 view.forward(request, response);

 }

}

13

JSP (result.jsp)

<%@ page import="java.util.*" %>

<html>

<head><title>Your results</title></head>

<body>

<%

 MyObject object =

 (MyObject)request.getAttribute("objName");

 String someResult = ...computations using object...

 out.print("
And the answer is: " + someResult);

%>

</body>

</html>

14

Flow

 The user submits an HTML form

 Tomcat finds the servlet based on the URL and the
deployment descriptor (web.xml) and passes the
request to the servlet

 The servlet computes a response

 Either:

 The servlet writes an HTML page containing the response

 Or:

 The servlet forwards the response to the JSP

 The JSP embeds the response in an HTML page

 Tomcat returns the HTML page to the user

15

Alternatives to Tomcat

 Sun’s Java Web Server

 Old, no longer being developed, all in Java

 Java Web Server Development Kit (JWSDK)

 Official reference implementation

 Difficult to install and configure

 JBoss

 Open source

 Opinions vary on how easy it is to install

 Comes with built-in database

16

The End

