Simple Implementation of a Bus Arbiter

ReqA
—

ReqB

ReqC
—)

cs 152 buses.1

= 1918139y (¥q-¢€

v

v

Clk

v

\ 4

—

GO SetGrA 13
PO Rqu [K GrantA R
Priority Clk > |
Pl G| SetGrB e
Rqu GrantB R
P2 ADOE K
—1=
EN G2 SetGrC 13
ReqC [GrantC R
Clk -
—1=

©DAP & SIK 1995

Responsibilities of the Operating System

° The operating system acts as the interface between:
* The I/O hardware and the program that requests 1/O

° Three characteristics of the 1/O systems:
 The I/O system is shared by multiple program using the processor

 1/O systems often use interrupts (external generated exceptions) to
communicate information about I/O operations.

- Interrupts must be handled by the OS because they cause a
transfer to supervisor mode

* The low-level control of an I/O device is complex:
- Managing a set of concurrent events
- The requirements for correct device control are very detailed

cs 152 buses.2 ©DAP & SIK 1995

Operating System Requirements

[e]

Provide protection to shared /O resources

* Guarantees that a user’s program can only access the
portions of an I/O device to which the user has rights

(o]

Provides abstraction for accessing devices:
« Supply routines that handle low-level device operation

(o]

Handles the interrupts generated by I/O devices

[e]

Provide equitable access to the shared I/O resources
« All user programs must have equal access to the I/O resources

[e]

Schedule accesses in order to enhance system throughput

cs 152 buses.3 ©DAP & SIK 1995

OS and I/O Systems Communication Requirements

° The Operating System must be able to prevent:
 The user program from communicating with the 1/O device directly

° If user programs could perform I/O directly:
* Protection to the shared I/O resources could not be provided

° Three types of communication are required:
 The OS must be able to give commands to the I/O devices

« The I/O device must be able to notify the OS when the I/O device
has completed an operation or has encountered an error

- Data must be transferred between memory and an I/O device

cs 152 buses.4 ©DAP & SIK 1995

Giving Commands to I/O Devices

° Two methods are used to address the device:
« Special I/O instructions
 Memory-mapped I/O

° Special I/O instructions specify:
 Both the device number and the command word

- Device number: the processor communicates this via a
set of wires normally included as part of the 1/O bus

- Command word: this is usually send on the bus’s data lines

° Memory-mapped I/O:
» Portions of the address space are assigned to 1/O device

 Read and writes to those addresses are interpreted
as commands to the I/O devices

« User programs are prevented from issuing I/O operations directly:
- The I/O address space is protected by the address translation

cs 152 buses.5 ©DAP & SIK 1995

I/O Device Notifying the OS

° The OS needs to know when:
* The /O device has completed an operation
« The I/O operation has encountered an error

° This can be accomplished in two different ways:
* Polling:
- The I/O device put information in a status register
- The OS periodically check the status register
* 1/O Interrupt:

- Whenever an I/O device needs attention from the processor,
it interrupts the processor from what it is currently doing.

cs 152 buses.6 ©DAP & SIK 1995

Polling: Programmed 1/O

CPU

|

Memory

° Advantage:

I0C

.
device

IA

!

Is the
data
ready?
]

yes | no

read
data

l

store
data

done?‘ no
yes

busy wait loop
not an efficient
way to use the CPU
unless the device
is very fast!

but checks for 1/O

completion can be

dispersed among
computation
intensive code

« Simple: the processor is totally in control and does all the work

° Disadvantage:

* Polling overhead can consume a lot of CPU time

cs 152 buses.7

©DAP & SIK 1995

Interrupt Driven Data Transfer

CPU

|

Memory

° Advantage:

I0C

.
device

\

user
(1) 110
interrup program
nop
(2) Tave PC
(3) interrupt
service addr
—lread |~
: service
(4)\ rti routine
memory

« User program progress is only halted during actual transfer

° Disadvantage, special hardware is needed to:

« Cause an interrupt (I/O device)
* Detect an interrupt (processor)

« Save the proper states to resume after the interrupt (processor)

cs 152 buses.8

©DAP & SIK 1995

I/O Interrupt

° An l/O interrupt is just like the exceptions except:
* An I/O interrupt is asynchronous
* Further information needs to be conveyed

° An I/O interrupt is asynchronous with respect to instruction execution:
* 1/O interrupt is not associated with any instruction
* 1/O interrupt does not prevent any instruction from completion
- You can pick your own convenient point to take an interrupt

° 1/0 interrupt is more complicated than exception:
* Needs to convey the identity of the device generating the interrupt
* Interrupt requests can have different urgencies:
- Interrupt request needs to be prioritized

cs 152 buses.9 ©DAP & SIK 1995

Interrupt Logic

° Detect and synchronize interrupt requests
 Ignore interrupts that are disabled (masked off)
* Rank the pending interrupt requests
* Create interrupt microsequence address

* Provide select signals for interrupt microsequence
| —(_
uSeq. Async
addr & "F‘,te"“pt - Synchronizer |interrupt
.) riority Circuits requests
sele_Ct Network .
logic
I —
Interrupt Mask Reg / \
Sync. Async.
Inputs Q D Q D Inputs
1 =
3 | 3 |
Clk CIk

cs 152 buses.10

©DAP & SIK 1995

Program Interrupt/Exception Hardware

° Hardware interrupt services:
« Save the PC (or PCs in a pipelined machine)
* Inhibit the interrupt that is being handled
* Branch to interrupt service routine
» Options:
- Save status, save registers, save interrupt information
- Change status, change operating modes, get interrupt info.

° A “good thing” about interrupt:
« Asynchronous: not associated with a particular instruction
* Pick the most convenient place in the pipeline to handle it

cs 152 buses.11 ©DAP & SIK 1995

Programmer’s View

prggt"gm interrupts request (e.g., from keyboard)
(1)
Add
Div (2) Save PC and “branch” to interrupt target address
| Sub 1 ,Save processor
status/state
Service the
(keyboard)
interrupt
Restore processor
status/state
[» (3) get PC
I

° Interrupt target address options:

* General: Branch to a common address for all interrupts
Software then decode the cause and figure out what to do

« Specific: Automatically branch to different addresses based on
interrupt type and/or level--vectored interrupt

cs 152 buses.12 ©DAP & SIK 1995

Delegating I/0 Responsibility from the CPU: DMA

° Direct Memory Access (DMA):
 External to the CPU
 Act as a maser on the bus

 Transfer blocks of data to or from
memory without CPU intervention

cs 152 buses.13

CPU sends a starting address,
direction, and length count
to DMAC. Then issues "start".

N

CF"U
Merlnory DI\lIIAC |c{c

DMAC provides handshake
signals for Peripheral
Controller, and Memory
Addresses and handshake
signals for Memory.

©DAP & SIK 1995

Delegating I/O Responsibility from the CPU: IOP

CPU IOP — (D1
main memory | LD2
Mem bus
—|Dn
110
bus

(1) Issues /CP (4) IOP interrupts
> CPU when done

instruction \
to IOP

2)
m memory

Device to/from memory
transfers are controlled
by the IOP directly.

IOP steals memory cycles.

cs 152 buses.14

target device

/ where cmnds are
/

OP

Device

Address

IOP looks in memory for commands

Cnt

Other

\special
requests

how
much

OP| Addr
what/
to do
where
to put
data

©DAP & SIK 1995

Summary:

[e]

Three types of buses:
 Processor-memory buses

 1/O buses
 Backplane buses

[e]

Bus arbitration schemes:
« Daisy chain arbitration: it cannot assure fairness
« Centralized parallel arbitration: requires a central arbiter

(o]

I/0 device notifying the operating system:
« Polling: it can waste a lot of processor time
 1/O interrupt: similar to exception except it is asynchronous

(e]

Delegating I/O responsibility from the CPU
* Direct memory access (DMA)
* 1/O processor (IOP)

cs 152 buses.15 ©DAP & SIK 1995

