Simple Implementation of a Bus Arbiter
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Responsibilities of the Operating System

° The operating system acts as the interface between:
* The I/O hardware and the program that requests 1/O

° Three characteristics of the 1/O systems:
 The I/O system is shared by multiple program using the processor

 1/O systems often use interrupts (external generated exceptions) to
communicate information about I/O operations.

- Interrupts must be handled by the OS because they cause a
transfer to supervisor mode

* The low-level control of an I/O device is complex:
- Managing a set of concurrent events
- The requirements for correct device control are very detailed
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Operating System Requirements

[e]

Provide protection to shared /O resources

* Guarantees that a user’s program can only access the
portions of an I/O device to which the user has rights

(o]

Provides abstraction for accessing devices:
« Supply routines that handle low-level device operation

(o]

Handles the interrupts generated by I/O devices

[e]

Provide equitable access to the shared I/O resources
« All user programs must have equal access to the I/O resources

[e]

Schedule accesses in order to enhance system throughput
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OS and I/O Systems Communication Requirements

° The Operating System must be able to prevent:
 The user program from communicating with the 1/O device directly

° If user programs could perform I/O directly:
* Protection to the shared I/O resources could not be provided

° Three types of communication are required:
 The OS must be able to give commands to the I/O devices

« The I/O device must be able to notify the OS when the I/O device
has completed an operation or has encountered an error

- Data must be transferred between memory and an I/O device
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Giving Commands to I/O Devices

° Two methods are used to address the device:
« Special I/O instructions
 Memory-mapped I/O

° Special I/O instructions specify:
 Both the device number and the command word

- Device number: the processor communicates this via a
set of wires normally included as part of the 1/O bus

- Command word: this is usually send on the bus’s data lines

° Memory-mapped I/O:
» Portions of the address space are assigned to 1/O device

 Read and writes to those addresses are interpreted
as commands to the I/O devices

« User programs are prevented from issuing I/O operations directly:
- The I/O address space is protected by the address translation
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I/O Device Notifying the OS

° The OS needs to know when:
* The /O device has completed an operation
« The I/O operation has encountered an error

° This can be accomplished in two different ways:
* Polling:
- The I/O device put information in a status register
- The OS periodically check the status register
* 1/O Interrupt:

-  Whenever an I/O device needs attention from the processor,
it interrupts the processor from what it is currently doing.
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Polling: Programmed 1/O
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« Simple: the processor is totally in control and does all the work

° Disadvantage:

* Polling overhead can consume a lot of CPU time
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Interrupt Driven Data Transfer
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« User program progress is only halted during actual transfer

° Disadvantage, special hardware is needed to:

« Cause an interrupt (I/O device)
* Detect an interrupt (processor)

« Save the proper states to resume after the interrupt (processor)
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I/O Interrupt

° An l/O interrupt is just like the exceptions except:
* An I/O interrupt is asynchronous
* Further information needs to be conveyed

° An I/O interrupt is asynchronous with respect to instruction execution:
* 1/O interrupt is not associated with any instruction
* 1/O interrupt does not prevent any instruction from completion
- You can pick your own convenient point to take an interrupt

° 1/0 interrupt is more complicated than exception:
* Needs to convey the identity of the device generating the interrupt
* Interrupt requests can have different urgencies:
- Interrupt request needs to be prioritized
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Interrupt Logic

° Detect and synchronize interrupt requests
 Ignore interrupts that are disabled (masked off)
* Rank the pending interrupt requests
* Create interrupt microsequence address

* Provide select signals for interrupt microsequence
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Program Interrupt/Exception Hardware

° Hardware interrupt services:
« Save the PC (or PCs in a pipelined machine)
* Inhibit the interrupt that is being handled
* Branch to interrupt service routine
» Options:
- Save status, save registers, save interrupt information
- Change status, change operating modes, get interrupt info.

° A “good thing” about interrupt:
« Asynchronous: not associated with a particular instruction
* Pick the most convenient place in the pipeline to handle it
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Programmer’s View

prggt"gm interrupts request (e.g., from keyboard)
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° Interrupt target address options:

* General: Branch to a common address for all interrupts
Software then decode the cause and figure out what to do

« Specific: Automatically branch to different addresses based on
interrupt type and/or level--vectored interrupt
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Delegating I/0 Responsibility from the CPU: DMA

° Direct Memory Access (DMA):
 External to the CPU
 Act as a maser on the bus

 Transfer blocks of data to or from
memory without CPU intervention
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Delegating I/O Responsibility from the CPU: IOP
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Summary:

[e]

Three types of buses:
 Processor-memory buses

 1/O buses
 Backplane buses

[e]

Bus arbitration schemes:
« Daisy chain arbitration: it cannot assure fairness
« Centralized parallel arbitration: requires a central arbiter

(o]

I/0 device notifying the operating system:
« Polling: it can waste a lot of processor time
 1/O interrupt: similar to exception except it is asynchronous

(e]

Delegating I/O responsibility from the CPU
* Direct memory access (DMA)
* 1/O processor (IOP)
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