Topics

- Arithmetic
- Signed and unsigned numbers
- Addition and Subtraction
- Logical operations
- ALU: arithmetic and logic unit
- Multiply
- Divide
- Floating Point
 - notation
 - add
 - multiply

Arithmetic

- Where we've been:
 - Performance (seconds, cycles, instructions)
 - Abstractions:

Instruction Set Architecture

Assembly Language and Machine Language

- What's up ahead:
 - Implementing the Architecture

operation

Binary numbers (1)

- Bits have no inherent meaning (no semantics)
- Decimal number system, e.g.:

 $4382 = 4x10^3 + 3x10^2 + 8x10^1 + 2x10^0$

- Can use arbitrary base g; value of digit c at position i: c x gⁱ
- Binary numbers (base 2)

• $(a_{n-1} a_{n-2} \dots a_1 a_0)_{two} = a_{n-1} \times 2^{n-1} + a_{n-2} \times 2^{n-2} + \dots + a_0 \times 2^0$

Binary numbers (2)

- So far numbers are *unsigned*
- With n bits 2ⁿ possible combinations

1 bit	2 bits	3 bits	4 bits	decimal value
0	00	000	0000	0
1	01	001	0001	1
	10	010	0010	2
	11	011	0011	3
		100	0100	4
		101	0101	5
		110	0110	6
		111	0111	7
			1000	8
			1001	9

- ♦ a₀ : *least significant* bit (lsb)
- ♦ a_{n-1}: most significant bit (msb)

Binary numbers (3)

 Binary numbers (base 2) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001... decimal: 0...2ⁿ-1

• Of course it gets more complicated:

- numbers are finite (overflow)
- fractions and real numbers
- negative numbers
- e.g., no MIPS subi instruction;
- however, addi can add a negative number

How do we represent negative numbers? i.e., which bit patterns will represent which numbers?

Conversion

- Decimaal -> binair
 - Divide by 2 Remainder

4382	
2191	0
1095	1
547	1
273	1
136	1
68	0
34	0
17	0
8	1
4	0
2	0
1	0
0	1

$$4382_{ten} =$$

1 0001 0001 1110_{two}

Hexadecimal: base 16. Octal: base 8 1010 1011 0011 1111_{two} = ab3f_{hex}

Signed binary numbers

Possible representations:

Issues: balance, number of zeros, ease of operationsWhich one is best? Why?

Two's complement 3+6 = -7 !! overflow **I** -3 positive -4 negative -5 -6 -8

32 bit signed numbers:

maxint

• Range [-2³¹..2³¹-1] • $(a_{n-1} a_{n-2} ... a_1 a_0)_{2's-compl} = -a_{n-1} \times 2^{n-1} + a_{n-2} \times 2^{n-2} + ... + a_0 \times 2^0$ = $-2^n + a_{n-1} \times 2^{n-1} + ... + a_0 \times 2^0$

Two's Complement Operations

- Negating a two's complement number: invert all bits and add 1
 - remember: "negate" and "invert" are quite different!
- Proof: $a + \overline{a} = 11111.1111b = -1 d =>$ $-a = \overline{a} + 1$

Two's Complement Operations

Converting n bit numbers into numbers with more than n bits:

- MIPS 8 bit, 16 bit values / immediates converted to 32 bits
- Copy the most significant bit (the sign bit) into the other bits

0010 -> 0000 0010

1010 -> 1111 1010

• MIPS "sign extension" example instructions:

lb	load	byte	(signed)
			· · · /

- Ibu load byte (unsigned)
- slti set less than immediate (signed)
- sltiu set less than immediate (unsigned)

Addition & Subtraction

- Just like in grade school (carry/borrow 1s)
 0111 0111
 0110 0110
 0101
- Two's complement operations easy
 - subtraction using addition of negative numbers
 0110 - 0101 + 1010
- Overflow (result too large for finite computer word):
 - e.g., adding two n-bit numbers does not yield an n-bit number 0111
 - + <u>0001</u> note that overflow term is somewhat misleading,
 - *it does not mean a carry "overflowed"*

Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive
- Consider the operations A + B, and A B
 - Can overflow occur if B is 0 ?
 - Can overflow occur if A is 0 ?

Effects of Overflow

- When an exception (interrupt) occurs:
 - Control jumps to predefined address for exception (*interrupt vector*)
 - Interrupted address is saved for possible resumption in exception program counter (EPC); new instruction: mfc0 (move from coprocessor0)
 - Interrupt handler handles exception (part of OS).
 registers \$k0 and \$k1 reserved for OS
- Details based on software system / language
 C ignores integer overflow; FORTRAN not
- Don't always want to detect overflow

 new MIPS instructions: addu, addiu, subu
 note: addiu and sltiu still sign-extends!

Logic operations

Sometimes operations on individual bits needed:

Logic operation	C operation	MIPS instruction
Shift left logical	<<	sll
Shift right logical	>>	srl
Bit-by-bit AND	&	and, andi
Bit-by-bit OR		or, ori

- and and and i can be used to turn off some bits;
 or and ori turn on certain bits
- Of course, AND en OR can be used for logic operations.
 Note: Language C's logical AND (& &) and OR (||) are conditional
- andi and ori perform no sign extension !

Exercise: gates

Given: 3-input logic function of A, B and C, 2-outputs

Output D is true if at least 2 inputs are true Output E is true if odd number of inputs true

- Give truth-table
- Give logic equations
- Give implementation with AND and OR gates, and Inverters.

An ALU (arithmetic logic unit)

- Let's build an ALU to support the andi and ori instructions
 - we'll just build a 1 bit ALU, and use 32 of them

Review: The Multiplexor

 Selects one of the inputs to be the output, based on a control input

note: we call this a 2-input mux even though it has 3 inputs!

 Lets build our ALU and use a MUX to select the outcome for the chosen operation

Different Implementations

Not easy to decide the "best" way to build something

- Don't want too many inputs to a single gate
- Don't want to have to go through too many gates
- For our purposes, ease of comprehension is important

Let's look at a 1-bit ALU for addition (= full-adder):

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

What about subtraction (a – b) ?

- Two's complement approach: just negate b and add
- How do we negate?
- A very clever solution:

Tailoring the ALU to the MIPS

Need to support the set-on-less-than instruction (slt)

- remember: slt rd, rs, rt is an arithmetic instruction
- produces a 1 if rs < rt and 0 otherwise
 </pre>
- use subtraction: (a-b) < 0 implies a < b</p>
- Need to support test for equality
 - ♦ beq \$t5, \$t6, label
 - ♦ jump to label if \$t5 = \$t6
 - use subtraction: (a-b) = 0 implies a = b

Supporting 'slt'

 Can we figure out the idea? (fig. 4.17 2nd ed.)

bit 31

Supporting the 'slt' operation

Test for equality

- a-b = 0 ⇔a=b
 Notice control lines:
 - 000 = and
 - 001 = or
 - 010 = add
 - 110 = subtract
 - 111 = slt

Note: signal Zero is a 1 when the result is zero!
The Zero output is always calculated

ALU symbol

Conclusions

We can build an ALU to support the MIPS instruction set

- key idea: use multiplexor to select the output we want
- we can efficiently perform subtraction using two's complement
- we can replicate a 1-bit ALU to produce a 32-bit ALU
- Important points about hardware
 - all of the gates are always working
 - or not efficient from energy perspective !!
 - the speed of a gate is affected by the number of connected outputs it has to drive (so-called Fan-Out)
 - the speed of a circuit is affected by the number of gates in series (on the "critical path" or the "deepest level of logic")
 - Unit of measure: FO4 = inverter with Fan-Out of 4
 - P4 (heavily superpipelined) has about 15 FO4 critical path

Problem: Ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?
 - Two extremes: ripple carry and sum-of-products
 - How many logic layers do we need for these two extremes?

Can you see the ripple? How could you get rid of it?

$$c_{1} = b_{0}c_{0} + a_{0}c_{0} + a_{0}b_{0}$$

$$c_{2} = b_{1}c_{1} + a_{1}c_{1} + a_{1}b_{1} \qquad c_{2} = (..subst c_{1}..)$$

$$c_{3} = b_{2}c_{2} + a_{2}c_{2} + a_{2}b_{2} \qquad c_{3} =$$

$$c_{4} = b_{3}c_{3} + a_{3}c_{3} + a_{3}b_{3} \qquad c_{4} =$$

Not feasible! Why not?

Carry-lookahead adder (1)

- An approach in-between our two extremes
- Motivation:
 - If we didn't know the value of carry-in, what could we do?
 - When would we always generate a carry?
 - When would we propagate the carry?

 $g_i = a_i b_i$ $p_i = a_i + b_i$

Carry-lookahead adder (2)

Did we get rid of the ripple?

 $G0 = g_3 + (p_3 \cdot g_2) + (p_3 \cdot p_2 \cdot g_1) + (p_3 \cdot p_2 \cdot p_1 \cdot g_0)$

Carry-lookahead adder (3)

- Use principle to build bigger adders
- Can't build a 16 bit adder this way... (too big)
- Could use ripple carry of 4bit CLA adders
- Better: use the CLA principle again!

Multiplication (1)

- More complicated than addition
 - accomplished via shifting and addition
- More time and more area
- Let's look at 3 versions based on gradeschool algorithm

0010(multiplicand)* 1011(multiplier)

- Negative numbers: convert and multiply
 - there are better techniques, we won't look at them now

Multiplication (2)

First implementation Product initialized to 0

Multiplicand

Fast multiply: Booth's Algorithm

Exploit the fact that: 011111 = 100000 - 1 Therefore we can replace multiplier, e.g.:

0001111100 = 001000000 - 100

Rules:

Current bit	Bit to the right	Explanation	Operation
1	0	Begin 1s	Subtract multiplicand
1	1	Middle of 1s	nothing
0	1	End of 1s	Add multiplicand
0	0	Middle of 0s	nothing

Booth's Algorithm (2)

- Booth's algorithm works for signed 2's complement as well (without any modification)

We get b*a =
$$\sum_{i=0}^{31} (a_{i-1} - a_i) * b * 2^i =$$

 $b * \left[a_{31} * -2^{31} + \sum_{i=0}^{30} a_i * 2^i \right]$

This is exactly what we need !

Division

- Similar to multiplication: repeated subtract
- The book discusses again three versions

Divide (1)

• Well known algorithm:

Dividend Divisor 1000/1001010\1001 Quotient -1000 10 101 1010 -1000 10 Remainder

Multiply / Divide in MIPS

 MIPS provides a separate *pair of 32-bit registers* for the result of a multiply and divide: Hi and Lo

- There are also unsigned variants of mult and div: multu and divu

Shift instructions

- sll
- srl
- sra
- Why not 'sla' instruction ?

Shift: a quick way to multiply and divide with power of 2 (strength reduction). Is this always allowed?

Floating Point (a brief look)

- We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., .00000001
 - very large numbers, e.g., 3.15576×10^9
- Representation:
 - sign, exponent, significand: $(-1)^{sign} \times significand \times 2^{exponent}$
 - more bits for significand gives more accuracy
 - more bits for exponent increases range
- IEEE 754 floating point standard:
 - single precision : 8 bit exponent, 23 bit significand
 - double precision: 11 bit exponent, 52 bit significand

IEEE 754 floating-point standard

- Leading "1" bit of significand is implicit
- Exponent is "biased" to make sorting easier
 - all 0s is smallest exponent all 1s is largest
 - bias of 127 for single precision and 1023 for double precision
 - summary: $(-1)^{sign} \times (1+significand) \times 2^{exponent-bias}$

Example:

- ♦ decimal: -.75 = -3/4 = -3/2²
- ♦ binary : -.11 = -1.1 x 2⁻¹
- floating point: exponent = -1+bias = 126 = 01111110
- IEEE single precision:

 31
 30
 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 10

 1
 0
 1
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Floating Point Complexities

- Operations more complicated: align, renormalize, ...
- In addition to overflow we can have "underflow"
- Accuracy can be a big problem
 - IEEE 754 keeps two extra bits, guard and round, and additional sticky bit (indicating if one of the remaining bits unequal zero)
 - four rounding modes
 - positive divided by zero yields "infinity"
 - zero divide by zero yields "not a number"
 - other complexities
- Implementing the standard can be tricky
- Not using the standard can be even worse
 - see text for description of 80x86 and Pentium bug!

Floating Point on MIPS

- Separate register file for floats: 32 single precision registers; can be used as 16 doubles
- MIPS-1 floating point instruction set (pg 288/291)
 - addition add.f (f =s (single) or f=d (double))
 - subtraction sub.f
 - multiplication mul.f
 - division div.f
 - comparison c.x.f where x=eq, neq, lt, le, gt or ge
 - sets a bit in (implicit) condition reg. to true or false
 - branch bc1t (branch if true) and bclf (branch if false)
 - c1 means instruction from coprocessor one !
 - load and store: lwc1, swc1
- Study examples on page 293, and 294-296

Floating Point on MIPS

MIPS has 32 single-precision FP registers (\$f0,\$f1, ...,\$f31) or 16 double-precision (\$f0,\$f2,...)

MIPS FP instructions:

FP add single	add.s	\$f0,\$f1,\$f2	f0 = f1 + f2
FP substract single	sub.s	\$f0,\$f1,\$f2	f0 = f1-f2
FP multiply single	mul.s	\$f0,\$f1,\$f2	f0 = f1xf2
FP divide single	div.s	\$f0,\$f1,\$f2	f0 = f1/f2
FP add double	add.d	\$f0,\$f2,\$f4	f0 = f2 + f4
FP substract double	sub.d	\$f0,\$f2,\$f4	f0 = f2-f4
FP multiply double	mul.d	\$f0,\$f2,\$f4	f0 = f2xf4
FP divide double	div.d	\$f0,\$f2,\$f4	f0 = f2/f4
load word coprocessor 1	lwc1	\$f0,100(\$s1)	f0 = Memory[\$s1+100]
store word coprocessor 1	swc1	\$f0,100(\$s1)	Memory[\$s1+100] = \$f(
branch on copr.1 true	bc1t	25	if (cond) goto PC+4+10
branch on copr.1 false	bc1f	25	if (!cond) goto PC+4+10
FP compare single	c.lt.s	\$f0,\$f1	cond = (\$f0 < \$f1)
FP compare double	c.ge.d	\$f0,\$f2	$cond = (\$f0 \ge \$f2)$

Conversion: decimal → IEEE 754 FP

Decimal number (base 10)

 $123.456 = 1x10^{2} + 2x10^{1} + 3x10^{0} + 4x10^{-1} + 5x10^{-2} + 6x10^{-3}$

Binary number (base 2)

 $101.011 = 1x2^{2} + 0x2^{1} + 1x2^{0} + 0x2^{-1} + 1x2^{-2} + 1x2^{-3}$

- Example conversion: 5.375
 - Multiply with power of 2, to get rid of fraction: $5.375 = 5.375 \times 16 / 16 = 86 \times 2^{-4}$
 - Convert to binary, and normalize to 1.xxxxx
 86 x 2⁻⁴ = 1010110 x 2⁻⁴ = 1.01011 x 2²
 - Add bias (127 for single precision) to exponent: exponent field = 2 + 127 = 129 = 1000 0001
 - IEEE single precision format (remind the leading "1" bit):

0 1000001 010110000000000000000000

Floating point on Intel 80x86

- 8087 coprocessor announced in 1980 as an extension of the 8086 (similar 80287, 80387)
- 80 bit internal precision (extended double format)
- 8 entry stack architecture
- addressing modes:
 - one operand = TOS
 - other operand is TOS, ST(i) or in Memory
- Four types of instructions (table 4.49 page 303):
 - data transfer
 - arithmetic
 - compare
 - transcendental (tan, sin, cos, arctan, exponent, logarithm)

Fallacies and pitfalls

Associative law does not hold:

(x+y) + z is not always equal x + (y+z)

(see example pg 304)

Summary

- Computer arithmetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
 - two's complement
 - IEEE 754 floating point
- Computer instructions determine "meaning" of the bit patterns
- Performance and accuracy are important so there are many complexities in real machines (i.e., algorithms and implementation).

• We are ready to move on (and implement the processor)

you may want to look back (Section 4.12 is great reading!)