
        

Topics 

 Arithmetic 

 Signed and unsigned numbers 

 Addition and Subtraction 

 Logical operations 

 ALU: arithmetic and logic unit 

 Multiply 

 Divide 

 Floating Point 

 notation 

 add 

 multiply 

 



        

32 

32 

32 

operation 

result 

a 

b 

ALU 

Arithmetic 
 Where we've been: 

 Performance (seconds, cycles, instructions) 

 Abstractions: 

   Instruction Set Architecture 

   Assembly Language and Machine Language 

 What's up ahead: 

 Implementing the Architecture 



        

 Bits have no inherent meaning (no semantics) 

 Decimal number system, e.g.: 

  4382 = 4x103 + 3x102 + 8x101 + 2x100 

 Can use arbitrary base g; value of digit c at position i: 
 c x gi 

 Binary numbers (base 2) 

    n-1   n-2   …    1      0 

 
     

    an-1    an-2     …      a1      a0 

 

     

    2n-1    2n-2     …      21      20 

 

 

 (an-1 an-2... a1 a0) two = an-1 x 2n-1 + an-2 x 2n-2 + … + a0 x 20  

Binary numbers (1) 

position 

 

digit 

 

weight 



        

Binary numbers (2) 

 So far numbers are unsigned 

 With n bits 2n possible combinations 

 

 

 

 

 

 

 

 

 

 

 a0   : least significant bit (lsb) 

 an-1: most significant bit (msb) 

1 bit       2 bits       3 bits         4 bits   decimal value 

  0 00 000 0000   0 

  1 01 001 0001   1 

 10 010 0010   2 

 11 011 0011   3 

  100 0100   4 

  101 0101   5 

  110 0110   6 

  111 0111   7 

   1000   8 

   1001   9 



        

 Binary numbers (base 2) 
 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001... 

 decimal:  0...2n-1 

 

 Of course it gets more complicated: 
 - numbers are finite (overflow) 
 - fractions and real numbers 
 - negative numbers 
 e.g., no MIPS subi instruction;  

 however, addi can add a negative number 

 
How do we  represent negative numbers? 

 i.e., which bit patterns will represent which numbers? 

Binary numbers (3) 



        

Conversion 
 Decimaal -> binair 

  Divide by 2    Remainder 

 

 

 

 

 

 

 

 

 

 

 

 

 Hexadecimal: base 16.      Octal: base 8 

1010 1011 0011 1111two = ab3fhex 

4382 

2191  0 

1095  1 

547  1 

273  1 

136  1 

68  0 

34  0 

17  0 

8  1 

4  0 

2  0 

1  0 

0  1 

        4382ten = 

1 0001 0001 1110two 



        

     Sign Magnitude:         One's Complement               Two's 

Complement 

 000 = +0  000 = +0  000 = +0 

 001 = +1  001 = +1  001 = +1 

 010 = +2  010 = +2  010 = +2 

 011 = +3  011 = +3  011 = +3 

 100 = -0  100 = -3  100 = -4 

 101 = -1  101 = -2  101 = -3 

 110 = -2  110 = -1  110 = -2 

 111 = -3  111 = -0  111 = -1 

 

 Issues:  balance, number of zeros, ease of operations 

 Which one is best?  Why?  

Signed binary numbers 

Possible representations: 



        

Two’s complement 

0000 

1000 

0100 

0010 

0110 

0001 

0011 

0101 

0111 1001 

1010 

1011 

1100 

1101 

1110 

1111 
0 

1 

2 

3 

4 

5 

6 

7 
8 

9 

10 

11 

12 

13 

14 

15 

-1 

-2 

-3 

-4 

-5 

-6 

-7 
-8 

positive 
negative 

(let’s restrict to 4 bits) 



        

Two’s complement 
0000 

1000 

0100 

0010 

0110 

0001 

0011 

0101 

0111 1001 

1010 

1011 

1100 

1101 

1110 

1111 
0 

1 

2 

3 

4 

5 

6 

7 
8 

9 

10 

11 

12 

13 

14 

15 

-1 

-2 

-3 

-4 

-5 

-6 

-7 
-8 

3+2=5 

positive 
negative 



        

Two’s complement 

0000 

1000 

0100 

0010 

0110 

0001 

0011 

0101 

0111 1001 

1010 

1011 

1100 

1101 

1110 

1111 
0 

1 

2 

3 

4 

5 

6 

7 
8 

9 

10 

11 

12 

13 

14 

15 

-1 

-2 

-3 

-4 

-5 

-6 

-7 
-8 

3+ (-5) = -2 

positive 
negative 



        

Two’s complement 

0000 

1000 

0100 

0010 

0110 

0001 

0011 

0101 

0111 1001 

1010 

1011 

1100 

1101 

1110 

1111 
0 

1 

2 

3 

4 

5 

6 

7 
8 

9 

10 

11 

12 

13 

14 

15 

-1 

-2 

-3 

-4 

-5 

-6 

-7 
-8 

3+6 = -7 !! 

overflow 

positive 
negative 



        

Two’s complement 

0000 

1000 

0100 

0010 

0110 

0001 

0011 

0101 

0111 1001 

1010 

1011 

1100 

1101 

1110 

1111 
0 

1 

2 

3 

4 

5 

6 

7 
8 

9 

10 

11 

12 

13 

14 

15 

-1 

-2 

-3 

-4 

-5 

-6 

-7 
-8 

-3 + (-6) = 7 !! 

underflow 

positive 
negative 



        

 32 bit signed numbers: 
 
0000 0000 0000 0000 0000 0000 0000 0000two = 0ten 
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten 
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten 
... 
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten 
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten 
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten 
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten 
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten 
... 
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten 
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten 
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten 
 

 Range [-2 31 .. 2 31 -1] 

 (an-1 an-2... a1 a0) 2’s-compl = -an-1 x 2n-1 + an-2 x 2n-2 + … + a0 x 20 
                               = - 2n  +  an-1 x 2n-1 + …          + a0 x 20  

maxint 

minint 

Two’s complement 



        

 Negating a two's complement number:  invert all bits 

and add 1 

 remember:  “negate” and “invert” are quite different! 

 

 Proof: 

     a + a = 1111.1111b = -1 d     => 

                  -a = a + 1  

Two's Complement Operations 



        

Two's Complement Operations 

Converting n bit numbers into numbers with more than n bits: 

 MIPS 8 bit, 16 bit values / immediates converted to 32 bits 

 Copy the most significant bit (the sign bit) into the other bits 

  0010  -> 0000 0010 

  1010  -> 1111 1010 

 MIPS "sign extension" example instructions: 

lb  load byte (signed) 

lbu load byte (unsigned) 

slti set less than immediate (signed) 

sltiu set less than immediate (unsigned) 



        

Addition & Subtraction 
 Just like in grade school  (carry/borrow 1s) 

   0111    0111      0110 
     + 0110           - 0110  - 0101 
 

 Two's complement operations easy 
 subtraction using addition of negative numbers 

    0110     0110  
  - 0101  + 1010  
 

 Overflow  (result too large for finite computer word): 
 e.g.,  adding two n-bit numbers does not yield an n-bit number 

    0111  
 + 0001   note that overflow term is somewhat misleading, 

    1000  it does not mean a carry “overflowed” 



        

 No overflow when adding a positive and a negative number 

 

 No overflow when signs are the same for subtraction 

 

 Overflow occurs when the value affects the sign: 

 overflow when adding two positives yields a negative  

 or, adding two negatives gives a positive 

 or, subtract a negative from a positive and get a negative 

 or, subtract a positive from a negative and get a positive 

 

 Consider the operations A + B, and A – B 

 Can overflow occur if B is 0 ? 

 Can overflow occur if A is 0 ? 

Detecting Overflow 



        

 When an exception (interrupt) occurs: 
 Control jumps to predefined address for exception 

(interrupt vector) 

 Interrupted address is saved for possible resumption in 
exception program counter (EPC); new instruction: mfc0 
(move from coprocessor0) 

 Interrupt handler handles exception (part of OS). 
registers $k0 and $k1 reserved for OS 

 

 Details based on software system / language 
 C ignores integer overflow; FORTRAN not 

 

 Don't always want to detect overflow 
 — new MIPS instructions:  addu, addiu, subu 
 note:   addiu   and sltiu still sign-extends! 

Effects of Overflow 



        

Logic operations 
 Sometimes operations on individual bits needed: 

 

Logic operation  C operation MIPS instruction 

Shift left logical  <<  sll 

Shift right logical >>  srl 

Bit-by-bit AND  &  and, andi 

Bit-by-bit OR  |  or, ori 

 

 and and andi can be used to turn off some bits;  

or and ori turn on certain bits 

 Of course,  AND en OR can be used for logic operations.  

 Note: Language C’s logical AND (&&) and  OR (||) are conditional 

 andi and ori perform no sign extension ! 



        

Given: 3-input logic function of A, B and C, 2-outputs 

 

   Output D is true if at least 2 inputs are true 

   Output E is true if odd number of inputs true 

  

 Give truth-table 

 

 Give logic equations 

 

 Give implementation with AND and OR gates, and 

Inverters. 

Exercise: gates 



        

 Let's build an ALU to support the andi and ori 

instructions 

 we'll just build a 1 bit ALU, and use 32 of them 

 

 

 

 

 

 

 

 

 b 

a 

operation 

result 

An ALU (arithmetic logic unit) 



        

 Selects one of the  inputs to be the output, based on a 

control input 

 

 

 

 

 

 

 

 

 Lets build our ALU and use a MUX to select the 

outcome for the chosen operation 

S 

C 
A 

B 

0 

1 

Review:  The Multiplexor 

note: we call this a 2-input mux 

         even though it has 3 inputs! 



        

 Not easy to decide the “best” way to build something 

 Don't want too many inputs to a single gate 

 Don’t want to have to go through too many gates 

 For our purposes, ease of comprehension is important 

 Let's look at a 1-bit ALU for addition (= full-adder): 

Different Implementations 

cout = a b + a cin + b cin 
sum = a xor b xor cin 

   How could we build a 1-bit ALU for add, and, and or? 

   How could we build a 32-bit ALU? 

CarryOut 

CarryIn 

Sum 

a 

b 

+ 



        

Building a 32 bit ALU 

b

0

2

Result

Operation

a

1

CarryIn

CarryOut

Result31

a31

b31

Result0

CarryIn

a0

b0

Result1

a1

b1

Result2

a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn



        

 Two's complement approach:  just negate b and add 

 How do we negate? 

 

 A very clever solution: 

What about subtraction  (a – b)  ? 

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b



        

 Need to support the set-on-less-than instruction (slt) 

 remember:  slt rd,rs,rt is an arithmetic instruction 

 produces a 1 if rs < rt and 0 otherwise 

 use subtraction:  (a-b) < 0 implies a < b 

 

 Need to support test for equality  

 beq $t5, $t6, label 

 jump to label  if  $t5 = $t6 

 use subtraction:  (a-b) = 0 implies a = b 

Tailoring the ALU to the MIPS 



Supporting 'slt' 

 Can we figure out the 
idea? 
(fig. 4.17 2nd ed.) 

0

3

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b 2

Less

0

3

Result

Operation

a

1

CarryIn

0

1

Binvert

b 2

Less

Set

Overflow


detection
Overflow

a.

b.

bits 0-30 

bit 31 



        

Set

a31

0

ALU0 Result0

CarryIn

a0

Result1

a1

0

Result2

a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Binvert

CarryIn

Less

CarryIn

CarryOut

ALU1

Less

CarryIn

CarryOut

ALU2

Less

CarryIn

CarryOut

ALU31

Less

CarryIn

Supporting 
the ‘slt’ 
operation 



        

Test for equality 

 a-b = 0 a=b 

 Notice control lines: 

 
000 = and 

001 = or 

010 = add 

110 = subtract 

111 = slt 

 

 

•Note:  signal Zero is a 1 when the  

   result is zero! 

•The Zero output is always calculated 
Set

a31

0

Result0
a0

Result1
a1

0

Result2
a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0

Less

CarryIn

CarryOut

ALU1

Less

CarryIn

CarryOut

ALU2

Less

CarryIn

CarryOut

ALU31

Less

CarryIn



        

ALU symbol 

ALU 

zero 

result 

overflow 

operation 

a 

b 

carry-out 

32 

32 

32 



        

Conclusions 
 We can build an ALU to support the MIPS instruction set 

 key idea:  use multiplexor to select the output we want 

 we can efficiently perform subtraction using two’s complement 

 we can replicate a 1-bit ALU to produce a 32-bit ALU 

 Important points about hardware 

 all of the gates are always working 

 not efficient from energy perspective !! 

 the speed of a gate is affected by the number of connected outputs 

it has to drive (so-called Fan-Out) 

 the speed of a circuit is affected by the number of gates in series 

 (on the “critical path” or the “deepest level of logic”) 

 Unit of measure: FO4 = inverter with Fan-Out of 4 

 P4 (heavily superpipelined) has about 15 FO4 critical path 



        

 Is a 32-bit ALU as fast as a 1-bit ALU? 

 Is there more than one way to do addition? 
 Two extremes:  ripple carry and sum-of-products 

 How many logic layers do we need for these two extremes? 
 

Can you see the ripple?  How could you get rid of it? 
 

c1 = b0c0 + a0c0 + a0b0 

c2 = b1c1 + a1c1 + a1b1   c2 = (..subst c1..)  

c3 = b2c2 + a2c2 + a2b2  c3 =  

c4 = b3c3 + a3c3 + a3b3  c4 =  

 

     Not feasible!  Why not? 

 

Problem:  Ripple carry adder is slow 



        

 An approach in-between our two extremes 

 Motivation:  

 If we didn't know the value of carry-in, what could we do? 

 When would we always generate a carry?         gi = ai bi  

 When would we propagate the carry?                pi = ai + bi 

Carry-lookahead adder (1) 

Cin 

Cout 
Cout = Gi + Pi Cin 

a 

b 



        

Carry-lookahead adder (2) 

 Did we get rid of the ripple? 

 

 
c1 = g0 + p0c0  

c2 = g1 + p1c1  c2 = g1 + p1(g0 + p0c0)  
c3 = g2 + p2c2  c3 =  
c4 = g3 + p3c3  c4 = 

 Feasible ? 

 

 

a0 
b0 
a1 
b1 
a2 
b2 
a3 
b3 

Cin 

P0 

G0 

ALU 

Result0-3 
4 

P0 = p0.p1.p2.p3 

G0= g3+(p3.g2)+(p3.p2.g1)+(p3.p2.p1.g0) 



        

 Use principle to build 

bigger adders  

 Can’t build a 16 bit adder 

this way... (too big) 

 Could use ripple carry of 4-

bit CLA adders 

 Better:  use the CLA 

principle again!  

  

Carry-lookahead 
adder (3) 
 

CarryIn

Result0--3

ALU0

CarryIn

Result4--7

ALU1

CarryIn

Result8--11

ALU2

CarryIn

CarryOut

Result12--15

ALU3

CarryIn

C1

C2

C3

C4

P0
G0

P1
G1

P2
G2

P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

ci + 4

pi + 2
gi + 2

pi + 3
gi + 3

a0

b0

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9


a10

b10

a11

b11

a12

b12

a13

b13

a14

b14

a15

b15

Carry-lookahead unit



        

 More complicated than addition 

 accomplished via shifting and addition 

 More time and more area 

 Let's look at 3 versions based on gradeschool 

algorithm 

 
      0010     (multiplicand) 

  __*_1011     (multiplier) 

 

 Negative numbers:  convert and multiply 

 there are better techniques, we won’t look at them now 

Multiplication (1) 



        

Multiplication (2) 

Done

1. Test


Multiplier0

1a. Add multiplicand to product and


place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No:  < 32 repetitions

Yes:  32 repetitions

64-bit ALU

Control test

Multiplier

Shift right

Product

Write

Multiplicand

Shift left

64 bits

64 bits

32 bits

First implementation 

Product initialized to 0 



        

Multiplication (3) 

Multiplier

Shift right

Write

32 bits

64 bits

32 bits

Shift right

Multiplicand

32-bit ALU

Product Control test

Done

1. Test


Multiplier0

1a. Add multiplicand to the left half of


the product and place the result in


the left half of the Product register

2. Shift the Product register right 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No:  < 32 repetitions

Yes:  32 repetitions

Second version 



        

Multiplication (4) 

Control


testWrite

32 bits

64 bits

Shift right
Product

Multiplicand

32-bit ALU

Done

1. Test


Product0

1a. Add multiplicand to the left half of


the product and place the result in


the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?

Start

Product0 = 0Product0 = 1

No:  < 32 repetitions

Yes:  32 repetitions

Final version 

Product initialized with multiplier 



        

Fast multiply: Booth’s Algorithm 

 Exploit the fact that: 011111 = 100000 - 1 

Therefore we can replace multiplier, e.g.: 

  
0001111100  = 0010000000 - 100 

 Rules: 

Current
bit

Bit to the
right

Explanation Operation

1 0 Begin 1s Subtract
multiplicand

1 1 Middle of 1s nothing

0 1 End of 1s Add
multiplicand

0 0 Middle of 0s nothing



        

Booth’s Algorithm (2) 

 Booth’s algorithm works for signed 2’s complement as 

well (without any modification) 

 Proof: let’s multiply b * a 

(ai-1 - ai ) indicates what to do:  0  : do nothing 

+1: add b 

-1 : subtract 

We get b*a =  























i

i

i

i

i

i

i

aab

baa

22

2)(

30

0

31

31

31

0

1

This is exactly what we need ! 



        

Division 

 Similar to multiplication: repeated subtract 

 

 The book discusses again three versions 



        

Divide (1) 

 Well known algorithm: 

                       Dividend 

Divisor  1000/1001010\1001  Quotient 

                      -1000 

                             10 

       101 

       1010 

      -1000 

           10   Remainder 



        

Division (2) 

 Implementation: 

6 4 - b i t   A L U 

C o n t r o l   t e s t 
W r i t e 

6 4   b i t s 

6 4   b i t s 

3 2   b i t s 

Divisor 
Shift right 

Remainder 

Quotient 

Shift left 

Start 

1. Substract the Divisor register from the 

Remainder register and place the 

result in the Remainder register 

Test Remainder 

2.a Shift the Quotient register 

to the left, setting the  

rightmost bit to 1 

2.b Restore the original value by  

adding  the Divisor register. Also,  

shift a 1 into the Quotient register 

Shift Divisor Register right 1 bit 

Done 

33rd repetition? 

>= 0 < 0 

yes 

no 



        

Multiply / Divide in MIPS 

 MIPS provides a separate pair of 32-bit registers for 
the result of a multiply and divide: Hi and Lo 
 
mult  $s2,$s3   # Hi,Lo = $s2 * $s3 

div   $s2,$s3   # Hi,Lo = $s2 mod $s3, 

        $s2 / $s3 

 

 Copy result to general purpose register 
mfhi  $s1       # $s1 = Hi 

mflo  $s1       # $s1 = Lo 

 

 There are also unsigned variants of mult and div: 
multu and divu 



        

Shift instructions 

 

 sll 

 srl 

 sra 

 

 Why not ‘sla’ instruction ? 

 

Shift: a quick way to multiply and divide with power of 2 

(strength reduction). Is this always allowed? 



        

Floating Point  (a brief look) 

 We need a way to represent 

 numbers with fractions, e.g., 3.1416 

 very small numbers, e.g., .000000001 

 very large numbers, e.g., 3.15576  109 

 Representation: 

 sign, exponent, significand:    (–1)sign   significand    2exponent   

 more bits for significand gives more accuracy 

 more bits for exponent increases range 

 IEEE 754 floating point standard:   

 single precision :  8 bit exponent, 23 bit significand 

 double precision:  11 bit exponent, 52 bit significand 



        

IEEE 754 floating-point standard 

 Leading “1” bit of significand is implicit 

 

 Exponent is “biased” to make sorting easier 

 all 0s is smallest exponent all 1s is largest 

 bias of 127 for single precision and 1023 for double precision 

 summary:   (–1)sign  (1significand)   2exponent – bias  

 

 Example: 

 decimal:  -.75 = -3/4 = -3/22 

 binary   :  -.11 = -1.1 x 2-1 

 floating point:  exponent = -1+bias = 126 = 01111110 

 IEEE single precision: 

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 1   0   1   1   1   1   1   1   0   1   0   0   0   0   0   0   0   0   0   0   0   0  0 0 0 0 0 0 0 0 0 0 



        

Floating Point Complexities 

 Operations more complicated: align, renormalize, ... 

 In addition to overflow we can have “underflow” 

 Accuracy can be a big problem 

 IEEE 754 keeps two extra bits, guard and round, and additional 

sticky bit (indicating if one of the remaining bits unequal zero) 

 four rounding modes 

 positive divided by zero yields “infinity” 

 zero divide by zero yields “not a number” 

 other complexities 

 Implementing the standard can be tricky 

 Not using the standard can be even worse 

 see text for description of 80x86 and Pentium bug! 



        

Floating Point on MIPS 

 Separate register file for floats: 32 single precision 

registers; can be used as 16 doubles 

 MIPS-1 floating point instruction set (pg 288/291) 

 addition add.f  (f =s (single) or f=d (double)) 

 subtraction sub.f 

 multiplication mul.f 

 division div.f 

 comparison c.x.f  where x=eq, neq, lt, le, gt or ge 

 sets a bit in (implicit) condition reg. to true or false 

 branch bc1t (branch if true) and bclf (branch if false) 

 c1 means instruction from coprocessor one ! 

 load and store: lwc1, swc1 

 Study examples on page 293, and 294-296 



        

Floating Point on MIPS 
 MIPS has 32 single-precision FP registers ($f0,$f1, 

…,$f31) or 16 double-precision ($f0,$f2,...) 

 MIPS FP instructions: 

FP add single  add.s $f0,$f1,$f2 $f0 = $f1+$f2 

FP substract single sub.s $f0,$f1,$f2 $f0 = $f1-$f2 

FP multiply single mul.s $f0,$f1,$f2 $f0 = $f1x$f2 

FP divide single  div.s $f0,$f1,$f2 $f0 = $f1/$f2 

FP add double  add.d $f0,$f2,$f4 $f0 = $f2+$f4 

FP substract double sub.d $f0,$f2,$f4 $f0 = $f2-$f4 

FP multiply double mul.d $f0,$f2,$f4 $f0 = $f2x$f4 

FP divide double  div.d $f0,$f2,$f4 $f0 = $f2/$f4 

load word coprocessor 1 lwc1 $f0,100($s1) $f0 = Memory[$s1+100] 

store word coprocessor 1 swc1 $f0,100($s1) Memory[$s1+100] = $f0 

branch on copr.1 true bc1t 25  if (cond) goto PC+4+100 

branch on copr.1 false bc1f 25  if (!cond) goto PC+4+100 

FP compare single c.lt.s $f0,$f1  cond = ($f0 < $f1) 

FP compare double c.ge.d $f0,$f2  cond = ($f0 >= $f2)  



        

Conversion: decimal  IEEE 754 FP 
 Decimal number (base 10) 

123.456 = 1x102+2x101+3x100+4x10-1+5x10-2+6x10-3 

 Binary number (base 2) 

101.011 = 1x22+0x21+1x20+0x2-1+1x2-2+1x2-3 

 Example conversion: 5.375 

 Multiply with power of 2, to get rid of fraction: 

5.375 = 5.375x16 / 16 = 86 x 2-4 

 Convert to binary, and normalize to 1.xxxxx 

86 x 2-4 = 1010110 x 2-4 = 1.01011 x 22 

 Add bias (127 for single precision) to exponent: 

exponent field = 2 + 127 = 129 = 1000 0001 

 IEEE single precision format (remind the leading “1” bit): 

sign    exponent                        significand 

0 10000001 01011000000000000000000 



        

Floating point on Intel 80x86 

 8087 coprocessor announced in 1980 as an 

extension of the 8086 

(similar 80287, 80387) 

 80 bit internal precision (extended double format) 

 8 entry stack architecture 

 addressing modes: 

 one operand = TOS 

 other operand is TOS, ST(i) or in Memory 

 Four types of instructions (table 4.49 page 303): 

 data transfer 

 arithmetic 

 compare 

 transcendental (tan, sin, cos, arctan, exponent, logarithm) 



        

Fallacies and pitfalls 

 Associative law does not hold: 

 

    (x+y) + z is not always equal x + (y+z) 

 

(see example pg 304) 



        

Summary 

 Computer arithmetic is constrained by limited precision 

 Bit patterns have no inherent meaning but standards do exist 

 two’s complement 

 IEEE 754 floating point 

 

 Computer instructions determine “meaning” of  the bit patterns 

 

 Performance and accuracy are important so there are many 
complexities in real machines (i.e., algorithms and 
implementation). 
 
 
 

 We are ready to move on (and implement the processor) 
 
 you may want to look back (Section 4.12 is great reading!) 


