Topics

- Arithmetic
- Signed and unsigned numbers
- Addition and Subtraction
- Logical operations
- ALU: arithmetic and logic unit
- Multiply
- Divide
- Floating Point
- notation
- add
- multiply

Arithmetic

- Where we've been:
- Performance (seconds, cycles, instructions)
- Abstractions:

Instruction Set Architecture
Assembly Language and Machine Language

- What's up ahead:
- Implementing the Architecture

Binary numbers (1)

- Bits have no inherent meaning (no semantics)
- Decimal number system, e.g.:

$$
4382=4 \times 10^{3}+3 \times 10^{2}+8 \times 10^{1}+2 \times 10^{0}
$$

- Can use arbitrary base g; value of digit c at position i: $\mathrm{c} \times \mathrm{g}^{\mathrm{i}}$
- Binary numbers (base 2)

$n-1$	$n-2$	\cdots	1	0

- $\left(a_{n-1} a_{n-2} \ldots a_{1} a_{0}\right)_{t w o}=a_{n-1} \times 2^{n-1}+a_{n-2} \times 2^{n-2}+\ldots+a_{0} \times 2^{0}$

Binary numbers (2)

- So far numbers are unsigned
- With n bits 2^{n} possible combinations

1 bit	2 bits	3 bits	4 bits	decimal value
0	00	000	0000	0
1	01	001	0001	1
	10	010	0010	2
	11	011	0011	3
		100	0100	4
		101	0101	5
		110	0110	6
		111	0111	7
			1000	8
			1001	9

- a_{0} : least significant bit (Isb)
- $\mathrm{a}_{\mathrm{n}-1}$: most significant bit (msb)

Binary numbers (3)

- Binary numbers (base 2)

000000010010001101000101011001111000 1001... decimal: $0 . . .2^{\mathrm{n}}-1$

- Of course it gets more complicated:
- numbers are finite (overflow)
- fractions and real numbers
- negative numbers
- e.g., no MIPS subi instruction;
- however, addi can add a negative number

How do we represent negative numbers?
i.e., which bit patterns will represent which numbers?

Conversion

- Decimaal -> binair

Divide by 2 Remainder

4382		
2191	0	$4382_{\text {ten }}=$
1095	1	$1000100011110_{\text {two }}$
547	1	
273	1	
136	1	
68	0	
34	0	
17	1	
8	0	
4	0	
2	0	
1	1	

- Hexadecimal: base 16. Octal: base 8

$$
101010110011{1111_{\text {two }}=a b 3 f_{\text {hex }}}
$$

Signed binary numbers

Possible representations:

Sign Magnitude: Complement

$$
\begin{aligned}
& 000=+0 \\
& 001=+1 \\
& 010=+2 \\
& 011=+3 \\
& 100=-0 \\
& 101=-1 \\
& 110=-2 \\
& 111=-3
\end{aligned}
$$

One's Complement

$$
\begin{aligned}
& 000=+0 \\
& 001=+1 \\
& 010=+2 \\
& 011=+3 \\
& 100=-3 \\
& 101=-2 \\
& 110=-1 \\
& 111=-0
\end{aligned}
$$

Two's

$$
\begin{aligned}
& 000=+0 \\
& 001=+1 \\
& 010=+2 \\
& 011=+3 \\
& 100=-4 \\
& 101=-3 \\
& 110=-2 \\
& 111=-1
\end{aligned}
$$

Issues: balance, number of zeros, ease of operations

- Which one is best? Why?

Two's complement

(let's restrict to 4 bits)

Two's complement

Two's complement

Two's complement

Two's complement

Two's complement

- 32 bit signed numbers:

- Range [-2 $\left.{ }^{31} . .2^{31}-1\right]$
$\begin{aligned}-\left(a_{n-1} a_{n-2} \ldots a_{1} a_{0}\right)_{2^{\prime} \text { s-compl }} & =-a_{n-1} \times 2^{n-1}+a_{n-2} \times 2^{n-2}+\ldots+a_{0} \times 2^{0} \\ & =-2^{n}+a_{n-1} \times 2^{n-1}+\ldots \quad+a_{0} \times 2^{0}\end{aligned}$

Two's Complement Operations

- Negating a two's complement number: invert all bits and add 1
- remember: "negate" and "invert" are quite different!
- Proof:

$$
a+\bar{a}=1111.1111 b=-1 d \quad=>
$$

$$
-\mathrm{a}=\overline{\mathrm{a}}+1
$$

Two's Complement Operations

Converting n bit numbers into numbers with more than n bits:

- MIPS 8 bit, 16 bit values / immediates converted to 32 bits
- Copy the most significant bit (the sign bit) into the other bits

$$
\begin{array}{llll}
0010 & \text {-> } 0000 & 0010 \\
1010 & \text {-> } 1111 & 1010
\end{array}
$$

- MIPS "sign extension" example instructions:

lb	load byte (signed)
Ibu	load byte (unsigned)
slti	set less than immediate (signed)
sltiu	set less than immediate (unsigned)

Addition \& Subtraction

- Just like in grade school (carry/borrow 1s)

$\underline{0111}$	-0111	-0110
0110	-0110	-0101

- Two's complement operations easy
- subtraction using addition of negative numbers

$$
-\frac{0110}{-0101}+\frac{0110}{1010}
$$

- Overflow (result too large for finite computer word):
- e.g., adding two n-bit numbers does not yield an n-bit number 0111
$+\frac{0001}{1000}$ note that overflow term is somewhat misleading, 1000 it does not mean a carry "overflowed"

Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
- overflow when adding two positives yields a negative
- or, adding two negatives gives a positive
- or, subtract a negative from a positive and get a negative
- or, subtract a positive from a negative and get a positive
- Consider the operations $A+B$, and $A-B$
- Can overflow occur if B is 0 ?
- Can overflow occur if A is 0 ?

Effects of Overflow

- When an exception (interrupt) occurs:
- Control jumps to predefined address for exception (interrupt vector)
- Interrupted address is saved for possible resumption in exception program counter (EPC); new instruction: mfc0 (move from coprocessor0)
- Interrupt handler handles exception (part of OS). registers $\$ \mathrm{k} 0$ and $\$ \mathrm{k} 1$ reserved for OS
- Details based on software system / language
- C ignores integer overflow; FORTRAN not
- Don't always want to detect overflow
— new MIPS instructions: addu, addiu, subu note: addiu and sltiu still sign-extends!

Logic operations

- Sometimes operations on individual bits needed:

Logic operation	C operation	MIPS instruction
Shift left logical	\ll	sll
Shift right logical	\gg	ssl
Bit-by-bit AND	$\&$	and, andi
Bit-by-bit OR	।	or, ori

- and and andi can be used to turn off some bits; or and ori turn on certain bits
- Of course, AND en OR can be used for logic operations.
- Note: Language C's logical AND ($\& \&)$ and OR (। ।) are conditional
- andi and ori perform no sign extension !

Exercise: gates

Given: 3-input logic function of A, B and C, 2-outputs
Output D is true if at least 2 inputs are true Output E is true if odd number of inputs true

- Give truth-table
- Give logic equations
- Give implementation with AND and OR gates, and Inverters.

An ALU (arithmetic logic unit)

- Let's build an ALU to support the andi and ori instructions
- we'll just build a 1 bit ALU, and use 32 of them

Review: The Multiplexor

- Selects one of the inputs to be the output, based on a control input

note: we call this a 2-input mux even though it has 3 inputs!

- Lets build our ALU and use a MUX to select the outcome for the chosen operation

Different Implementations

- Not easy to decide the "best" way to build something
- Don't want too many inputs to a single gate
- Don't want to have to go through too many gates
- For our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU for addition (= full-adder):


```
cout =a b +a cin +b cin
sum = a xor b xor cin
```

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

What about subtraction $(a-b)$?

- Two's complement approach: just negate band add
- How do we negate?
- A very clever solution:

Tailoring the ALU to the MIPS

- Need to support the set-on-less-than instruction (slt)
- remember: slt rd,rs,rt is an arithmetic instruction
- produces a 1 if rs < rt and 0 otherwise
- use subtraction: $(a-b)<0$ implies $a<b$
- Need to support test for equality
- beq \$t5, \$t6, label
- jump to label if $\$ \mathrm{t} 5=\$ \mathrm{t} 6$
- use subtraction: $(a-b)=0$ implies $a=b$

Supporting 'slt'

Can we figure out the idea?
(fig. $4.172^{\text {nd }}$ ed.)

bits 0-30
a.

Test for equality

$a-b=0 \Leftrightarrow a=b$
Notice control lines:
$000=$ and
$001=$ or
$010=$ add
$110=$ subtract
$111=$ slt
-Note: signal Zero is a 1 when the result is zero!
-The Zero output is always calculated

ALU symbol

Conclusions

- We can build an ALU to support the MIPS instruction set
- key idea: use multiplexor to select the output we want
- we can efficiently perform subtraction using two's complement
- we can replicate a 1-bit ALU to produce a 32-bit ALU
- Important points about hardware
- all of the gates are always working
- not efficient from energy perspective !!
- the speed of a gate is affected by the number of connected outputs it has to drive (so-called Fan-Out)
- the speed of a circuit is affected by the number of gates in series (on the "critical path" or the "deepest level of logic")
- Unit of measure: FO4 = inverter with Fan-Out of 4
- P4 (heavily superpipelined) has about 15 FO4 critical path

Problem: Ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?
- Two extremes: ripple carry and sum-of-products
- How many logic layers do we need for these two extremes?

Can you see the ripple? How could you get rid of it?

$$
\begin{array}{ll}
\mathrm{c}_{1}=\mathrm{b}_{0} \mathrm{c}_{0}+\mathrm{a}_{0} \mathrm{c}_{0}+\mathrm{a}_{0} \cdot \mathrm{~b}_{0} & \\
\mathrm{c}_{2}=\mathrm{b}_{1} \mathrm{c}_{1}+\mathrm{a}_{1} \mathrm{c}_{1}+\mathrm{a}_{1} \mathrm{~b}_{1} & \mathrm{c}_{2}=\left(\ldots \text { subst } \mathrm{c}_{1} \ldots\right) \\
\mathrm{c}_{3}=\mathrm{b}_{2} \mathrm{c}_{2}+\mathrm{a}_{2} \mathrm{c}_{2}+\mathrm{a}_{2} \cdot \mathrm{~b}_{2} & \mathrm{c}_{3}= \\
\mathrm{c}_{4}=\mathrm{b}_{3} \mathrm{c}_{3}+\mathrm{a}_{3} \mathrm{c}_{3}+\mathrm{a}_{3} \cdot \mathrm{~b}_{3} & \mathrm{c}_{4}=
\end{array}
$$

Not feasible! Why not?

Carry-lookahead adder (1)

- An approach in-between our two extremes
- Motivation:
- If we didn't know the value of carry-in, what could we do?
- When would we always generate a carry?

$$
\begin{aligned}
g_{i} & =a_{i} b_{i} \\
p_{i} & =a_{i}+b_{i}
\end{aligned}
$$

- When would we propagate the carry?

Carry-lookahead adder (2)

- Did we get rid of the ripple?

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} c_{1} \\
& c_{3}=c_{2}=g_{1}+p_{1}\left(g_{0}+p_{0} c_{0}\right) \\
& c_{4}=g_{3}+p_{3} c_{3}= \\
& c_{4}=
\end{aligned}
$$

Feasible?

$$
\begin{aligned}
& \mathrm{P} 0=\mathrm{p}_{0} \cdot \mathrm{p}_{1} \cdot \mathrm{p}_{2} \cdot \mathrm{p}_{3} \\
& \mathrm{G} 0=\mathrm{g}_{3}+\left(\mathrm{p}_{3} \cdot \mathrm{~g}_{2}\right)+\left(\mathrm{p}_{3} \cdot \mathrm{p}_{2} \cdot \mathrm{~g}_{1}\right)+\left(\mathrm{p}_{3} \cdot \mathrm{p}_{2} \cdot \mathrm{p}_{1} \cdot \mathrm{~g}_{0}\right)
\end{aligned}
$$

Carry-lookahead adder (3)

- Use principle to build bigger adders
- Can't build a 16 bit adder this way... (too big)
- Could use ripple carry of 4bit CLA adders
- Better: use the CLA principle again!

Multiplication (1)

- More complicated than addition
- accomplished via shifting and addition
- More time and more area
- Let's look at 3 versions based on gradeschool algorithm

	0010
$\times \quad 1011$	(multiplicand)

- Negative numbers: convert and multiply
- there are better techniques, we won't look at them now

Multiplication (2)

First implementation Product initialized to 0

Multiplication (3)

Second version

Multiplication (4)

Final version
 Product initialized with multiplier

Fast multiply: Booth's Algorithm

- Exploit the fact that: $011111=100000$ - 1 Therefore we can replace multiplier, e.g.:

$$
0001111100=0010000000-100
$$

- Rules:

Current bit	Bit to the right	Explanation	Operation
1	0	Begin 1s	Subtract multiplicand
1	1	Middle of 1s	nothing
0	1	End of 1s	Add multiplicand
0	0	Middle of 0s	nothing

Booth's Algorithm (2)

- Booth's algorithm works for signed 2's complement as well (without any modification)
- Proof: let's multiply b * a $\left(a_{i-1}-a_{i}\right)$ indicates what to do: 0 : do nothing
+1 : add b
-1 : subtract

$$
\begin{aligned}
\text { We get } \mathrm{b} * \mathrm{a}= & \sum_{i=0}^{31}\left(a_{i-1}-a_{i}\right) * b * 2^{i}= \\
& b *\left[a_{31} *-2^{31}+\sum_{i=0}^{30} a_{i} * 2^{i}\right]
\end{aligned}
$$

Division

- Similar to multiplication: repeated subtract

The book discusses again three versions

Divide (1)

- Well known algorithm:

Dividend
Divisor 1000/1001010\1001 Quotient
-1000
10
101
1010
-1000
10 Remainder

- Implementation:

Multiply / Divide in MIPS

- MIPS provides a separate pair of 32-bit registers for the result of a multiply and divide: Hi and Lo

$$
\begin{array}{clll}
\text { mult } & \$ s 2, \$ s 3 & \# \text { Hi,Lo }=\$ s 2 \star \$ s 3 \\
\text { div } & \$ s 2, \$ s 3 & \# \text { Hi,Lo }= & \$ s 2 \bmod \$ s 3, \\
& & \$ s 2 / \$ s 3
\end{array}
$$

- Copy result to general purpose register

mfhi	$\$ s 1$
mflo	$\$ s 1$

- There are also unsigned variants of mult and div: multu and divu

Shift instructions

- Sll
- Srl
- sra
- Why not ‘sla’ instruction?

Shift: a quick way to multiply and divide with power of 2 (strength reduction). Is this always allowed?

Floating Point (a brief look)

- We need a way to represent
- numbers with fractions, e.g., 3.1416
- very small numbers, e.g., . 000000001
- very large numbers, e.g., 3.15576×10^{9}
- Representation:
- sign, exponent, significand: $(-1)^{\text {sign }} \times$ significand $\times 2^{\text {exponent }}$
- more bits for significand gives more accuracy
- more bits for exponent increases range
- IEEE 754 floating point standard:
- single precision : 8 bit exponent, 23 bit significand
- double precision: 11 bit exponent, 52 bit significand

IEEE 754 floating-point standard

- Leading " 1 " bit of significand is implicit
- Exponent is "biased" to make sorting easier
- all 0s is smallest exponent all 1 s is largest
- bias of 127 for single precision and 1023 for double precision
- summary: $(-1)^{\text {sign }} \times(1+$ significand $) \times 2^{\text {exponent }}$ - bias
- Example:
- decimal: $-.75=-3 / 4=-3 / 2^{2}$
- binary : -. $11=-1.1 \times 2^{-1}$
- floating point: exponent $=-1+$ bias $=126=01111110$
- IEEE single precision:

Floating Point Complexities

- Operations more complicated: align, renormalize, ...
- In addition to overflow we can have "underflow"
- Accuracy can be a big problem
- IEEE 754 keeps two extra bits, guard and round, and additional sticky bit (indicating if one of the remaining bits unequal zero)
- four rounding modes
- positive divided by zero yields "infinity"
- zero divide by zero yields "not a number"
- other complexities
- Implementing the standard can be tricky
- Not using the standard can be even worse
- see text for description of 80×86 and Pentium bug!

Floating Point on MIPS

- Separate register file for floats: 32 single precision registers; can be used as 16 doubles
- MIPS-1 floating point instruction set (pg 288/291)
- addition add.f (f =s (single) or f=d (double))
- subtraction sub.f
- multiplication mul.f
- division div.f
- comparison c.x.f where $\mathrm{x}=\mathrm{eq}, \mathrm{neq}$, lt , le, gt or ge
sets a bit in (implicit) condition reg. to true or false
- branch bc1t (branch if true) and bclf (branch if false)
c1 means instruction from coprocessor one !
- load and store: Iwc1, swc1
- Study examples on page 293, and 294-296

Floating Point on MIPS

- MIPS has 32 single-precision FP registers (\$f0, \$f1,
..., \$£31) or 16 double-precision (\$f0, \$f2, ...)
- MIPS FP instructions:

FP add single	add.s	\$f0,\$f1,\$f2	\$f0 $=$ \$ $1+\$ \mathrm{f} 2$
FP substract single	sub.s	\$f0,\$f1,\$f2	\$f0 $=$ \$f1-\$f2
FP multiply single	mul.s	\$f0,\$f1,\$f2	\$f0 $=$ \$ flx \$ f 2
FP divide single	div.s	\$f0,\$f1,\$f2	\$f0 $=$ \$f1/\$f2
FP add double	add.d	\$f0,\$f2,\$f4	\$f0 $=$ \$ $2+$ \$ f 4
FP substract double	sub.d	\$f0,\$f2,\$f4	\$f0 $=$ \$ 2 - $\$ \mathrm{f} 4$
FP multiply double	mul.d	\$f0,\$22,\$f4	\$f0 $=$ \$ 2 x \$ f4
FP divide double	div.d	\$f0,\$22,\$f4	\$f0 $=$ \$ $2 /$ / f4
load word coprocessor 1	lwc1	\$f0,100(\$s1)	\$f0 = Memory[\$s1+100]
store word coprocessor 1	swc 1	\$f0,100(\$s1)	Memory[\$s1+100] = \$f0
branch on copr. 1 true	bc1t	25	if (cond) goto PC+4+100
branch on copr. 1 false	bc1f	25	if (!cond) goto PC+4+100
FP compare single	c.lt.s	\$f0,\$f1	cond $=(\$ \mathrm{f0} 0$ \$f1)
FP compare double	c.ge.d	\$f0,\$f2	cond $=(\$ \mathrm{f0}>=\$ \mathrm{f} 2)$

Conversion: decimal \rightarrow IEEE 754 FP

Decimal number (base 10)

$$
123.456=1 \times 10^{2}+2 \times 10^{1}+3 \times 10^{0}+4 \times 10^{-1}+5 \times 10^{-2}+6 \times 10^{-3}
$$

Binary number (base 2)

$$
101.011=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}+1 \times 2^{-3}
$$

Example conversion: 5.375

- Multiply with power of 2 , to get rid of fraction:

$$
5.375=5.375 \times 16 / 16=86 \times 2^{-4}
$$

- Convert to binary, and normalize to 1.xxxxx

$$
86 \times 2^{-4}=1010110 \times 2^{-4}=1.01011 \times 2^{2}
$$

- Add bias (127 for single precision) to exponent:

$$
\text { exponent field }=2+127=129=10000001
$$

- IEEE single precision format (remind the leading "1" bit):

Floating point on Intel 80x86

- 8087 coprocessor announced in 1980 as an extension of the 8086 (similar 80287, 80387)
- 80 bit internal precision (extended double format)
- 8 entry stack architecture
- addressing modes:
- one operand = TOS
- other operand is TOS, ST(i) or in Memory
- Four types of instructions (table 4.49 page 303):
- data transfer
- arithmetic
- compare
- transcendental (tan, sin, cos, arctan, exponent, logarithm)

Fallacies and pitfalls

- Associative law does not hold:
$(x+y)+z$ is not always equal $x+(y+z)$
(see example pg 304)

Summary

- Computer arithmetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
- two's complement
- IEEE 754 floating point
- Computer instructions determine "meaning" of the bit patterns
- Performance and accuracy are important so there are many complexities in real machines (i.e., algorithms and implementation).
- We are ready to move on (and implement the processor) you may want to look back (Section 4.12 is great reading!)

