Binary Sign Representations

Sign-magnitude: The left bit is the sign (0 for + numbers and 1 for - numbers).
All bits to right are the number magnitude Left bit is the sign bit Advantages to sign-magnitude:

Simple to implement.
Useful for floating point representation.

Disadvantage of sign-magnitude:
If $m=00000000$, then $m=11111111$; there are two zeros in this method as well.

In an n-bit representation, there are no extra bits! If adding 2 n -bit numbers results in $\mathrm{n}+1$ bits, the left most bit is discarded! Thus: Let $\mathrm{n}=00000000$. Then $\mathrm{m}=\mathrm{n}+1$, or $\mathrm{m}=11111111+1=(1) 00000000=$ 00000000 . The 1 is discarded, since in a computer, there are no extra columns. There are only 8 -bits, so the (9 th-column) 1 is "thrown away."
Therefore, the 2 's complement of 0 is 0 .

Finding Two's Complements: Examples

To convert a negative decimal number to 2's complement binary: Convert the decimal number to a positive binary number.
Take the 1's complement of that binary number and add 1.

- Converting negative numbers (still using a single 8 -bit byte length):
$\begin{aligned} & -50: \\ & 11001110 .\end{aligned} 50=00110010 ; 1^{\prime} \mathrm{s} \mathrm{C} .=1100$ 1101; 2's C. $=$
-127: $127=0111$ 1111; 1's C. $=10000000 ; 2$'s C. $=1000$ 0001.

- 1: $\quad 1=0000$ 0001; 1's C. = 1111 1110; 2's
 C. =1111 1111 .

But: Positive decimal numbers are converted simply to positive binary numbers as before (no 2's complement).
Example: +67 (using method of successive div.) $\rightarrow 01000011$.

Two's Complement Binary to Decimal

Converting the 2's complement to decimal is also simple. Simply do the following: Check the sign bit (left-most bit).
If the sign bit is 0 (positive number), simply convert the number directly to a positive decimal number as we learned previously.

If the sign bit is 1 , the number is a 2 's complement negative number. To convert this number to decimal: Take the 2's complement of the negative binary number. Convert the resulting + number to decimal and add a negative sign.

Two's Complement Binary to Decimal (2)

Binary 2's complement-to-decimal examples, negative numbers:
$11111111 \rightarrow 00000000+1=00000001=1 \rightarrow-1$. $10100011 \rightarrow 01011100+1=01011101=93 \rightarrow-93$.
$10001111 \rightarrow 01110000+1=01110001=113 \rightarrow-113$.
$10000010 \rightarrow 01111101+1=01111110=126 \rightarrow-126$.
But for a positive binary number:
$00000001 \rightarrow$ Not a negative number $\rightarrow 1$.
$00001111 \rightarrow$ Not a negative number $\rightarrow 15$.
$01101100 \rightarrow$ Not a negative number $\rightarrow 108$.
$01111111 \rightarrow$ Not a negative number $\rightarrow 127$.

To subtract binary number b from a, simply take the 2 's complement of b , and add to a . That is:
$\mathrm{a}-\mathrm{b}=\mathrm{a}+(2$'s comp. of b$)=\mathrm{a}+(\mathrm{b}+1)=\mathrm{a}+$ $\mathrm{b}+1$.

To add a positive and negative number, simply perform the addition and the minus sign (i.e., the left-most bit in the number) will take care of itself (assuming the result is within the range of representation).

Two's Complement Math

Subtract 01110101 from 0111 1100:
The 2's complement of 01110101 is $10001010+1=10001011$. Adding:

01111100 Check: 124
$\stackrel{+10001011}{(1) 00000111007} \quad-\underline{007}$

Add $11000001+0110$ 1110:
Note that the 2's complement of 11000001 is 0011 1111, so the first number is equivalent to -63 decimal.
Adding:

11000001	Check:
+01101110	
$(1) 00101111$	
+110	
+47	

Subtract 11011101 from 01011100 (note we are subtracting a negative number):

Adding:	01011100	Check: 92
	+ 00100011	-(-35)
	011111	+1

Add $10000001+01110010$
01110010
check: 114

+ 10000001
11110011
$+(-127)$
-13
Check: 2's C of $11110011=00001101=13$, so the number $=-13$.

