Instruction Sets:
Characteristics and Functions

What is an instruction set?

e The complete collection of instructions that are
understood by a CPU

e Machine Code

e Binary

e Usually represented by assembly codes

Elements of an Instruction

e Operation code (Op code)
—Do this

e Source Operand reference
—To this

e Result Operand reference
—Put the answer here

e Next Instruction Reference
—When you have done that, do this...

Where have all the Operands gone?

e Long time passing....

e (If you don't understand, you're too young!)
e Main memory (or virtual memory or cache)
e CPU register

e I/O device

Instruction Cycle State Diagram

Instroct Orperand Orpera
Fetch Fetch I
Multple Multiple
opemnds resulis
Operand vt Operand
address Overation address
cal culatio P clenlat
Imstruction commplete, Heturn for siring
fetch next mstructon o veotor data

Instruction Representation

e In machine code each instruction has a unique
bit pattern

e For human consumption (well, programmers
anyway) a symbolic representation is used

—e.g. ADD, SUB, LOAD

e Operands can also be represented in this way
—ADD A,B

Simple Instruction Format

4 bits

6 bits

6 bits

Opcode

Operand Reference

Operand Reference

16 bits

>

Instruction Types

e Data processing

e Data storage (main memory)
e Data movement (I/0O)

e Program flow control

Number of Addresses (a)

e 3 addresses
—Operand 1, Operand 2, Result
—a=b+c
—May be a forth - next instruction (usually implicit)
—Not common
—Needs very long words to hold everything

Number of Addresses (b)

e 2 addresses
—One address doubles as operand and result
—a=a+b
—Reduces length of instruction

—Requires some extra work
— Temporary storage to hold some results

Number of Addresses (c)

e 1 address
—Implicit second address
—Usually a register (accumulator)
—Common on early machines

Number of Addresses (d)

e 0 (zero) addresses
—All addresses implicit
—Uses a stack
—e.g. push a
— push b
— add

— PopcC

—C=a+b

How Many Addresses

e More addresses
—More complex (powerful?) instructions

—More registers
— Inter-register operations are quicker

—Fewer instructions per program
e Fewer addresses
—Less complex (powerful?) instructions

—More instructions per program
—Faster fetch/execution of instructions

Design Decisions (1)

e Operation repertoire
—How many ops?
—What can they do?
—How complex are they?

e Data types

e Instruction formats
—Length of op code field
—Number of addresses

Design Decisions (2)

e Registers
—Number of CPU registers available

—Which operations can be performed on which
registers?

e Addressing modes (later...)

e RISC v CISC

Types of Operand

e Addresses

e Numbers
—Integer/floating point

e Characters
—ASCII etc.

e Logical Data

—Bits or flags

e (Aside: Is there any difference between numbers and characters?
Ask a C programmer!)

Pentium Data Types

e 8 bit Byte

e 16 bit word

e 32 bit double word

e 64 bit quad word

e Addressing is by 8 bit unit

e A 32 bit double word is read at addresses
divisible by 4

Specific Data Types

e General - arbitrary binary contents

e Integer - single binary value

e Ordinal - unsigned integer

e Unpacked BCD - One digit per byte

e Packed BCD - 2 BCD digits per byte

e Near Pointer - 32 bit offset within segment
» Bit field

e Byte String

e Floating Point

Pentium Floating Point Data Types

D Byle unsigned integer
] ik

15 1]
3l 1]
a3 1]
I'Wors Coamp
8]
IWos Camp
15]
I Twes oo lemenl |
3l]
lwee oo lemeni
a3]
sign hil
II EEf | s1gnil kamd |
3130k 22 1]
sign Ml
” ERf s gmiicamd |
(362 51 1]
sign il mieger il
exponenl signilicamd
19 64 62 ik

Waord unsigned inleger

vyubleweo insigned integer

Cuadword umsi gned integer

Byle signad inleger

Word signed inleger

vyvublewsom signed integer

uadword signed mnieger

Single precision
floating poinl

Dovuble precision
floating poinl

ouble extended precision
floating poinl

PowerPC Data Types

e 8 (byte), 16 (halfword), 32 (word) and 64
(doubleword) length data types

e Some instructions need operand alighed on 32
bit boundary

e Can be big- or little-endian

 Fixed point processor recognises:

—Unsigned byte, unsigned halfword, signed halfword,
unsigned word, signed word, unsigned doubleword,
byte string (<128 bytes)

e Floating point
—IEEE 754
—Single or double precision

Types of Operation

e Data Transfer

o Arithmetic

e Logical

e Conversion

e I/O

o System Control

e Transfer of Control

Data Transfer

e Specify
—Source
—Destination
—Amount of data
e May be different instructions for different
movements
—e.g. IBM 370

e Or one instruction and different addresses
—e.g. VAX

Arithmetic

e Add, Subtract, Multiply, Divide
e Signed Integer
e Floating point ?
e May include
—Increment (a++)

—Decrement (a--)
—Negate (-a)

Shift and Rotate Operations

{a) Logical right shifi

o TN T TN T TR gl‘”

(b1 Logical leftshift

{c) Arithmetic right shifl

DT Y Y Y e P . gl‘”

5 . " @

(d}) Arithmetic lefi shift

{1 Right totate

T T T

i) Left tolate

Logical

e Bitwise operations
e AND, OR, NOT

Conversion

e E.g. Binary to Decimal

