Instruction Sets:
Characteristics and Functions



What is an instruction set?

e The complete collection of instructions that are
understood by a CPU

e Machine Code

e Binary

e Usually represented by assembly codes



Elements of an Instruction

e Operation code (Op code)
—Do this

e Source Operand reference
—To this

e Result Operand reference
—Put the answer here

e Next Instruction Reference
—When you have done that, do this...



Where have all the Operands gone?

e Long time passing....

e (If you don't understand, you're too young!)
e Main memory (or virtual memory or cache)
e CPU register

e I/O device
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Instruction Representation

e In machine code each instruction has a unique
bit pattern

e For human consumption (well, programmers
anyway) a symbolic representation is used

—e.g. ADD, SUB, LOAD

e Operands can also be represented in this way
—ADD A,B
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Instruction Types

e Data processing

e Data storage (main memory)
e Data movement (I/0O)

e Program flow control



Number of Addresses (a)

e 3 addresses
—Operand 1, Operand 2, Result
—a=b+c
—May be a forth - next instruction (usually implicit)
—Not common
—Needs very long words to hold everything



Number of Addresses (b)

e 2 addresses
—One address doubles as operand and result
—a=a+b
—Reduces length of instruction

—Requires some extra work
— Temporary storage to hold some results



Number of Addresses (c)

e 1 address
—Implicit second address
—Usually a register (accumulator)
—Common on early machines



Number of Addresses (d)

e 0 (zero) addresses
—All addresses implicit
—Uses a stack
—e.g. push a
— push b
— add

—  PopcC

—C=a+b



How Many Addresses

e More addresses
—More complex (powerful?) instructions

—More registers
— Inter-register operations are quicker

—Fewer instructions per program
e Fewer addresses
—Less complex (powerful?) instructions

—More instructions per program
—Faster fetch/execution of instructions



Design Decisions (1)

e Operation repertoire
—How many ops?
—What can they do?
—How complex are they?

e Data types

e Instruction formats
—Length of op code field
—Number of addresses



Design Decisions (2)

e Registers
—Number of CPU registers available

—Which operations can be performed on which
registers?

e Addressing modes (later...)

e RISC v CISC



Types of Operand

e Addresses

e Numbers
—Integer/floating point

e Characters
—ASCII etc.

e Logical Data

—Bits or flags

e (Aside: Is there any difference between numbers and characters?
Ask a C programmer!)



Pentium Data Types

e 8 bit Byte

e 16 bit word

e 32 bit double word

e 64 bit quad word

e Addressing is by 8 bit unit

e A 32 bit double word is read at addresses
divisible by 4




Specific Data Types

e General - arbitrary binary contents

e Integer - single binary value

e Ordinal - unsigned integer

e Unpacked BCD - One digit per byte

e Packed BCD - 2 BCD digits per byte

e Near Pointer - 32 bit offset within segment
» Bit field

e Byte String

e Floating Point



Pentium Floating Point Data Types
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PowerPC Data Types

e 8 (byte), 16 (halfword), 32 (word) and 64
(doubleword) length data types

e Some instructions need operand alighed on 32
bit boundary

e Can be big- or little-endian

 Fixed point processor recognises:

—Unsigned byte, unsigned halfword, signed halfword,
unsigned word, signed word, unsigned doubleword,
byte string (<128 bytes)

e Floating point
—IEEE 754
—Single or double precision



Types of Operation

e Data Transfer

o Arithmetic

e Logical

e Conversion

e I/O

o System Control

e Transfer of Control



Data Transfer

e Specify
—Source
—Destination
—Amount of data
e May be different instructions for different
movements
—e.g. IBM 370

e Or one instruction and different addresses
—e.g. VAX



Arithmetic

e Add, Subtract, Multiply, Divide
e Signed Integer
e Floating point ?
e May include
—Increment (a++)

—Decrement (a--)
—Negate (-a)



Shift and Rotate Operations
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Logical

e Bitwise operations
e AND, OR, NOT



Conversion

e E.g. Binary to Decimal



