

Instruction Sets:

Characteristics and Functions

What is an instruction set?

• The complete collection of instructions that are
understood by a CPU

• Machine Code

• Binary

• Usually represented by assembly codes

Elements of an Instruction

• Operation code (Op code)

—Do this

• Source Operand reference

—To this

• Result Operand reference

—Put the answer here

• Next Instruction Reference

—When you have done that, do this...

Where have all the Operands gone?

• Long time passing….

• (If you don’t understand, you’re too young!)

• Main memory (or virtual memory or cache)

• CPU register

• I/O device

Instruction Cycle State Diagram

Instruction Representation

• In machine code each instruction has a unique
bit pattern

• For human consumption (well, programmers
anyway) a symbolic representation is used

—e.g. ADD, SUB, LOAD

• Operands can also be represented in this way

—ADD A,B

Simple Instruction Format

Instruction Types

• Data processing

• Data storage (main memory)

• Data movement (I/O)

• Program flow control

Number of Addresses (a)

• 3 addresses

—Operand 1, Operand 2, Result

—a = b + c;

—May be a forth - next instruction (usually implicit)

—Not common

—Needs very long words to hold everything

Number of Addresses (b)

• 2 addresses

—One address doubles as operand and result

—a = a + b

—Reduces length of instruction

—Requires some extra work

– Temporary storage to hold some results

Number of Addresses (c)

• 1 address

—Implicit second address

—Usually a register (accumulator)

—Common on early machines

Number of Addresses (d)

• 0 (zero) addresses

—All addresses implicit

—Uses a stack

—e.g. push a

— push b

— add

— pop c

—c = a + b

How Many Addresses

• More addresses

—More complex (powerful?) instructions

—More registers

– Inter-register operations are quicker

—Fewer instructions per program

• Fewer addresses

—Less complex (powerful?) instructions

—More instructions per program

—Faster fetch/execution of instructions

Design Decisions (1)

• Operation repertoire

—How many ops?

—What can they do?

—How complex are they?

• Data types

• Instruction formats

—Length of op code field

—Number of addresses

Design Decisions (2)

• Registers

—Number of CPU registers available

—Which operations can be performed on which
registers?

• Addressing modes (later…)

• RISC v CISC

Types of Operand

• Addresses

• Numbers

—Integer/floating point

• Characters

—ASCII etc.

• Logical Data

—Bits or flags

• (Aside: Is there any difference between numbers and characters?
Ask a C programmer!)

Pentium Data Types

• 8 bit Byte

• 16 bit word

• 32 bit double word

• 64 bit quad word

• Addressing is by 8 bit unit

• A 32 bit double word is read at addresses
divisible by 4

Specific Data Types

• General - arbitrary binary contents

• Integer - single binary value

• Ordinal - unsigned integer

• Unpacked BCD - One digit per byte

• Packed BCD - 2 BCD digits per byte

• Near Pointer - 32 bit offset within segment

• Bit field

• Byte String

• Floating Point

Pentium Floating Point Data Types

PowerPC Data Types

• 8 (byte), 16 (halfword), 32 (word) and 64
(doubleword) length data types

• Some instructions need operand aligned on 32
bit boundary

• Can be big- or little-endian

• Fixed point processor recognises:

—Unsigned byte, unsigned halfword, signed halfword,
unsigned word, signed word, unsigned doubleword,
byte string (<128 bytes)

• Floating point

—IEEE 754

—Single or double precision

Types of Operation

• Data Transfer

• Arithmetic

• Logical

• Conversion

• I/O

• System Control

• Transfer of Control

Data Transfer

• Specify

—Source

—Destination

—Amount of data

• May be different instructions for different
movements

—e.g. IBM 370

• Or one instruction and different addresses

—e.g. VAX

Arithmetic

• Add, Subtract, Multiply, Divide

• Signed Integer

• Floating point ?

• May include

—Increment (a++)

—Decrement (a--)

—Negate (-a)

Shift and Rotate Operations

Logical

• Bitwise operations

• AND, OR, NOT

Conversion

• E.g. Binary to Decimal

