Micro-Operations

Instruction execution

» execution of a sequence of steps, i.e., cycles
Fetch, Indirect, Execute & Interrupt cycles
Cycle - a sequence of micro-operations

Micro-operations

»data transfer between registers

»transfer between a register & an external bus
» ALU operation

Control Unit Atomic Operations

« CU causes the processor to step through a series of micro-operations
in the proper sequence

« CU generates the control signals that cause each micro-operation to
be executed

* Micro-Operations are the atomic operations of the Processor

« Control signals open & closes the logic gates
» transfer of data to & from the registers
> operation of the ALU

* Implementation of Control Unit
» Hardwired
» Microprogrammed, i.e., microinstructions

Constituent Elements of

Program Execution

Program Execution

N

Instruction Cycle Instruction Cycle

NGNS

Instruction Cycle

Fetch Indirect Execute

Interrupt

AN

ZAN

PAASS

Functional Specifications of a

Operations ~ Processor
Add reSSing Modes — Defined by the Instruction Set
Registers — user visible _|

|/O Module Interface Defined by the System
Memory Module Interface sus specification

Interru ptS Defined by System Bus Specification

&
Operating System Support

Execution Time Sequence of Instructions
is not necessarily the same as the
Written Sequence of Instructions in the Program
(branching instructions)

Fetch - 4 Registers

Memory Address Register (MAR)

— Connected to address lines of system bus
— Specifies address for read or write operation

Memory Buffer Register (MBR)

— Connected to data lines of system bus
— Holds data to write or last data read

Program Counter (PC)
— Holds address of next instruction to be fetched

Instruction Register (IR)
— Holds last instruction fetched

Fetch Sequence

Address of next instruction is in PC

Address (MAR) is placed on address bus

Control unit issues READ command

Result (data from memory) appears on data bus
Data from data bus copied into MBR

PC incremented by 1 (in parallel with data fetch
frO m m e m O FY) [micro-code RISC, length == 1]

Data (instruction) moved from MBR to IR
MBR is now free for further data fetches

Fetch Sequence (symbolic)

e tl1: MAR<- (PC); CU issues READ command

e t2: MBR<-(memory) simultaneously

PC <- (PC) +l
* t3: IR<-(MBR)
where tx refers to the time unit/clock cycle

e t1: MAR <- (PC)
* t2: MBR <- (memory)
 t3: PC<-(PC) +1

IR <- (MBR)

I nte 'ru pt CyC I e — completion of the execute cycle

— test for interrupt occurrences -- process pending interrupts

* t1: MBR € (PC)

¢ t2 MAR é Save_Address for PC contents

PC é address of start of interrupt processing routine,
i.e., the interrupt Processing Routine_Address
¢ Multiple types and/or levels of interrupts, hence

4 additional micro-operations may be required to obtain both
4 Save_Address & Routine_Address

¢ t3 .. Mmemo ryé (M B R) = actual saving of the PC contents

* Saving the context is done by interrupt handler routine, not
micro-ops

Execute Cycle (ADD)

* Different sequence of micro-operations for each instruction

ADD R1, X - add the contents of location X to
Register 1, place the result in R1

t1l: MAR é (|R(address(X)))
t2: MBR < (Memory)
t3: R1 € (R1) + (MBR)

* Note: there is no overlap of micro-operations

Execute Cycle (1SZ)

e |SZ X -increment and skip if zero

—t1:
— t2:
— 13:
— t4:

MAR < (IR(address(x))
MBR < (memory)
MBR € (MBR) + 1
memory < (MBR)

if (MBR) == 0 then PC < (PC) + 1
test & action operation is one micro op
performed during time unit t4

Execute Cycle (BSA)

BSA X - Branch and save address ,
subroutine call instruction
— Address of instruction following BSA is saved in X;
it will be used to return from the subroutine

— Execution continues from X+1

—t1: MAR < (IR(address(x))
- MBR é (PC) = address of next instruction

in the sequence
BSA X branches to X+1 after saving return address to location X

— t2: PC < (IR(address(X))
— memory é (MBR) - save PC contents in memory
—13: PC é (PC) +1 = start processing from X+1

X : return address
X+1: start of subroutine

X+n: return from subroutine

Instruction Cycle

Each phase decomposed into sequence of elementary
micro-operations

E.g. fetch, indirect, and interrupt cycles

Execute cycle
— One sequence of micro-operations for each opcode

Need to tie sequences together

Assume new 2-bit register

— Instruction cycle code (ICC) designates which part of cycle
Processor is in

00: Fetch
 01: Indirect
10: Execute
11: Interrupt

Flowchart for Instruction Cycle (Code)

11 (interrupt)

\

{ ICC?)

00 (fetch)

/

10 (execute) 11 indirect
A 4 L/
Setup Read Fetch
interrupt SrEE address intstruction
Yy Execute A 4
ICC =00 instruction ICC =10 Indirect
addressing?
ves J Interrupt '\ no
for enabled ICC =10 ICC =01
interrupt?
ICC =11 ICC =00
Y ¢ J’ Y

Indirect Cycle = Execute Cycle = next cycle depends upon the state of the system
Interrupt Cycle = Fetch Cycle = next cycle depends upon the state of the system

Types of Micro-operation

Transfer data between registers
Transfer data from register to external interface
Transfer data from external interface to register

Perform arithmetic or logical operations using registers for 1/0O

FunCthnS Of COHtFO' Unlt using Control Signals
* Sequencing

— CU causes the CPU to step through a series of micro-operations in
proper sequence based on the program being executed

e Execution

— CU causes each micro-operation to be performed

* Control Signals

— External: inputs indicating the state of the system

— Internal: logic required to perform the sequencing and execution
functions

Control Signals

e Clock (clock cycle time, processor cycle time)
— One micro-instruction (or set of parallel micro-instructions) per clock
cycle

* |nstruction register

— Opcode & addressing mode for current instruction
— Determines which micro-instructions are performed

° Flags — Used to determine the

— status of the CPU
— Results of previous ALU operations

* Signals from the control bus part of the system
bus

— Interrupts
— Acknowledgements

Model of Control Unit

Instruction register

Control signals
> within CPU
Flags . :>
: > Control signals
Control from control bus
Unit <
Clock 3
Control signals
to control bus

Control bus

Control Signals - output

e Control Signals within CPU

— Cause data movement register to register
— Activate specific ALU functions
— Activate a specific data path

* Control Signals to the control bus

— To memory via the system bus
— To 1/O modules

Control Signal Sources
Clock

— One micro-instruction (or set of parallel micro-instructions) per clock
cycle

Instruction Register
— Op-code for current instruction
— Determines which micro-instructions are performed

Flags
— State of CPU
— Results of previous operations

From Control Bus
— Interrupts / Bus Requests
— Acknowledgements

Control Signals Outputs

* Within CPU

— Cause data movement
— Activate specific functions

* Via Main Bus

— To memory
— To 1I/0 modules

Control Signals

Cs !|!
*) Ciq 11 (interrupt) 1cC? 00 (fetch)

t 10 (execute) 01 indirect
Cio
C., Cs Ca ¥ ¥ Y
_g., AC Setup Read Fetch
Ce G4 interrupt address intstruction
PC IR c:?»i %4—09
Co Y Execute y

(€ |'CC =00 instruction ||CC = 1D|
r&—Co Cus Control

Co > ALU © signals
—

A

Dm=

Interrupt
for enabled
interrupt?

Yes No

%._
f

A

Control
unit

Control

L 2

Clock

signals

Micro-operations Timing Active Control
Signals

Instruction register

i, MAR < (PC) C,

t.: MEBR < Memory
Fetch: b C.C
PC = (PC)+1

t.: IR — (MBE)

Decoder

el
-
el

12 MAR < (IR({Address))
Indirect: t,: MEBR < Memory
.. [R{Address) < (MBRE{Address))

ololo
e
I
b

Timing Control

=

Clock ——»]

generator Unit . Flags

n

t,: MBR = (PC)

t,: MAR < Save-address
PC = Roufine-address

t.- Memory < (MBE) C.. Cy

Intermypt:

<5
LAty
-

Fead control signal to system bus.
Write control signal to svstem bus.

[
]
[

The Internal Bus ?

Control
unit

IR

i

l

Address
lines € MAR

$

|

Data

lines —>| MBR

Internal CPU bus

"l

Y

$

!

Control
unit

!

Z

|

;

Example Simple Processor & Data
Paths

GatePC

GateMARMUX —'Y

e 1A RBLX
[y 3
= l a REG
Ae A6 DR]
FILE
LD REG —|
a3, | sR2 sSA1 a
SA2 4 la<—5R1
|:ZE:|)‘T ouUT ouT
X
g
i) Al il
ADDERZMLEX ADDRIMUX
i N\ L
'y 1 ¥ Ale
16 /J‘IIES /qﬁ 186 /'16
[10:0] o 5
SExT -
o [4:0] h
8:0
e SAZML
1 SEXT|—
15:] i e s |
- SEXT .
CONTROL 2, N B A
* T ALLIK AL
R
. i
7 e—LDJR mllﬂ LIRGL
6 LOGIC
W/ GateALU
16
/% GatebdDR
| MDR | <—LOMDR| [MAR |g—LD.MAR
S SN MIDEN AW MICEN 1 npuT
% ‘F [
¥ 1 | kBDR
ADDR. CTL ; " |:r:|
]
R ==-{ MEMORY LOHGIC ! i
> | o]
MEM EN

INMU)&-—I

Example Simple Processor & Data

™ " |
bl d BRFALLE 7, CaabaPC - CabPCo :
]] -1
—&' MARM X LoPe P
= +1 a RES
-] 1.3 s FC L - oa
!. ? FILE
T LS =
= =1 3
:E};:|-|- 5:.271.,. QT OuUT ErtsE
N
[=a]
_— e — ADCRIMAL
ADOFEZ WL ,T{ —x e s & 5
L] -] [-] [-]
= EEXT
[a]
E=ad . I—ulanzr.u:-c-"
[xa] — f y===
| SEXT
[+a] E— COMTROL L& "-L_i_"-.-"_
E=31 n DN T T T |
+f 1' § :E W, ALY ekaausr] [+1] (1] [meedomps
IFT = O Sarced ISP LD T =
[e = el necwfNIZ]E] ™ 1 7
| lF:I-:-—u:uH * - Bi ¥ L L |
- .
- — SRR
g LD-Fd = FrF. LO.Priaxik —F‘1Irr._ S et =
¥ ; 4 [za]4" Ais i
- ™, £ CaskaPEA 5 Canbm AL - G EP
e - A P SR |||n::a] - | =
k. FH v n= i Caara SR I 'xa] 1 W CamPoR Yy -"h:-\:-]

[153] -"l_':!
oL | W igahioy = LD "l o
. - & -
______ = o X o et
I I I [i
== o .1 |
s I':" CoOF _r_: T L} -
1 !
_."-""‘Iil".ﬁa_qll —ﬁ'__: l :_-_ s
e i il el __.ﬂ-" Cup]

State Machine for Example Simple Processor

BEM<=IF 11]& M+ IR[I0] & 4+ IR[E] & P m R R
[IR[15:12] —_— BEM:-R .11[IFF[¢1“E|I:|1'E.!|!|:| ZHR-2 FIJ
ATV
- rr 1 l’ 1 h

o Mg C2

Viachor -

NDR:-FER
FEF[15]«0
[F=R15]
Rr<—PC Toig l
L D[R] i
h-F o Tadd

10 1

[mn-c—mmflj E.un-c—mmsﬂ
i = T =

Cj._lnn-e—mp.unj Elnn-e—munﬂ:j

R R R R

S
1

T'1E - L »

o —
PC«—Bas=R Wil

R A

l R
E]
Ta Teta WA <l ek
W
-
NOTES a WOR =
B+ofE : Based SEXTolsei] b, -]
PC4+olR: PC + SEX Tjolsstd)
PC4ol1: PO+ SEXTMset11] %
Ta 18 Taill PC DR

"OPZmay be SFE or SEXTImmS]

To1
Taill

http://highered.mcgraw-hill.com/sites/dl/premium/0072467509/instructor/104653/figurec9.xls

Control Unit with Decoded Inputs

Clock —

Timing
generator

Instruction register

3

Flags

/ Decoder \
| 1 1
o I |
v V¥ v
IR e
To—» Control
Unit
T =
Co Ci C,,
YV

Problems With Hard Wired Designs

* Sequencing & micro-operation logic gets complex
* Difficult to design, prototype, and test

e Resultant design is inflexible, and difficult to build upon
(Pipeline, multiple computation units, etc.)

* Adding new instructions requires major design and adds
complexity quickly

Example Simple Processor Micro-Programed Control

INT R
IF[1=:11] mum CoND CONDO
EEr-.I PSF[15 -
| ' o S—
[SR 15] BEH = ‘ IR[11]
Microssqueancer D
= ropi Branch Ready Addr.
p == pi 'ﬂlclgn: miod =
P A5 A4 J3] mode g A1] I[0]
Y
Coninal S1ore %
b = 0,0, IR(15:12])
i l
¥ \ /47 IRD
Mcroinstucion | iﬂ
""#:l':' 4/39 Add remm ol nex i slals

(), COMD, IRDY)

Control Unit Organization

The Control Memory contains
sequences of microinstructions
that provide the control signals
to execute instruction cycles,
e.qg. Fetch, Indirect, Execute,
and Interrupt.

Tasks of Control Unit:
* Microinstruction sequencing

« Microinstruction execution

May be expected to complete
instruction execution in "1" clock
cycle. How is this possible?

| Instruction Register |

Control l

Unit Decoder

F

ALU i -
Flags —’Sequencin Control Address Register]
Clock »| Logic l

Read .

Control
Memory

[

| Control Buffer Register |

Next Address Control

Control Signals Control Signals
Within CPU to System Bus

Recall: Micro-sequencing

Micro-operations Timing Active Confrol
Signals
t,- MAR < (PC) C,
t,: MBR < Memory
Fetch: - C..Cg
PC « (PC) + 1 "
t;- IR = (MBR) C,
t,: MAR « (IR(Address)) L
Indirect: £, MBR < Memory C.. Cg
t,: IR{Address) « (MBR(Address)) C,
t,- MER « (PC) C,
i, MAR « Save-address
Intermpt: -
PC « Routine-address
Ly Memory < (MEBE) Ci Gy
Cp, = Fead control signal to system bus.
C = Write control signal to svstem bus.

Example of Control Memory

Microinstructions:

* Generate Control Signals

* Provide Branching

Organization

Jump to indirect or execute

Jump to execute

Jump to fetch

Jump to opcode routine

Jump to fetch or interrupt

Jump to fetch or interrupt

Jump to fetch or interrupt

Fetch
cycle
routine

Indirect
cycle
routine

Interrupt
cycle
routine

Execute cycle beginning

AND routine

ADD routine

1OF routine

Horizontal vs Vertical
Microprogramming

Horizontal Microprogrammed or
— Unpacked
— Hard
— Direct

Vertical Microprogrammed or
— Packed
— Soft
— Indirect

Microinstruction Encoding - Direct
Encoding

‘ Field Field ‘ Field
~ g ~ - ~v
Decode Decode Decode
logic logic logic

1T 17 1

Control signals

T

(a) Direct encoding

Microinstruction Encoding - Indirect

Encoding
Field Field Field ‘ .
~ - ~ - ~ d
Decode Decode Decode
logic logic logic
Decode
logic
.__Y . A J A .. \ -
i

Control signals

(b) Indirect encoding

Horizontal Micro-programming

Wide control memory word
High degree of parallel operations possible
Little encoding of control information

Faster

Vertical Micro-programming

Width can be much narrower

Control signals encoded into function codes —
need to be decoded

More complex, more complicated to program,
less flexibility

More difficult to modify

Slower

Typical Microinstruction Formats

L Microinstruction address
Jump condition
NUnconditional
NZero
NOverflow
Nindirect bit
System bus control signals
Internal CPU control signals

(a) Horizontal microinstruction

L Microinstruction address
Jump condition

} Function codes

(b) Vertical microinstruction

Example Microprogramming Formats

Simple register trans

[0,0,0[0,0,1] | | Register—MDR
| 0y 0y ﬂ1 0,1, {l| | MAR + Register
Register

Memory operations sclect
[o,0,1[0,0,0] | | Read

Special sequencing operations
| by 1y U| 0,0 II| l—l CSAR « Decoded MDR

|| 01 0 | R 1 | ‘ CSAR «— Constant (in next byte)
ALU operaltions
|I}|'1,l10|i.'l|{l| | | ACC « ACC + Register

[o,1,1]0,0,1] | | ACCe ACC - Register

[0 1,10, 1,0] | | ACCe Register

[o 1 1f01)1] | Register — ACC

(o, 1,1]1,0,0] | | ACCe Register+1
'-._,_o-"\-\r---_.'

Register
select
() Wertical microinstruction format

0 1 2 3 45 6 7 8 % 101112131415 1617 18

N R e R R R s R e e e |
_a—\lHH_A_ﬂ.—__A,_FT-__}__—Y—__JL_ﬂr__r.__—WJ_—___»
Field 1 2 3 4 5 (]
Ficld definition
1 - register transfer 4 - ALU operaticn
2 - memory aperation 5 - register selection

3 - sequencing operation 6 - Constant

{b} Horizontal micreinstruction format

* MicroProgram Counter
* Subroutines
- Stack

« Control Register (MicroProgram Format)

Next Address Decision
 Depending on ALU flags and control buffer register:

— Get next instruction

e Add 1 to control address register

— Jump to new routine based on jump microinstruction

* Load address field of control buffer register into control address register

— Jump to machine instruction routine

* Load control address register based on opcode in IR

Microprogrammed Control Unit

| Instruction Register |

Control l

Unit Decoder
ALU I Control Adiess Register
Flags Sequencin g I
Clock »| Logic l

Read

k4

Control
Memory

J

| Control Buffer Register |

Control Signals Control Signals
Within CPU to System Bus

Next Address Control

Desigh Considerations

* Necessity of speed
e Size of Microinstructions

* Address generation
— Branches
 Both conditional and unconditional

* Based on current microinstruction, condition flags,
contents of IR

e Based on format of address information

— Two address fields

— Single address field

Branch Control: Two Address Fields

control address

register

Branch based upon: wlv

* Instruction Opcode secor

* Address 1 l

* Address 2 —
memory

l

. . address aaaress control
Does require a wide S
microinstruction, but no l l |
address calculation is needed l 1 ,l,
address
branch selection

flags —3|

| multiplexer

logic

T

instruction
register

Branch Control: Single Address
Field

Branch based upon:
- Next instruction

- Address
- Opcode

Does require more

circuitry, e.g. adder

address
decoder

l

control address
register

control
memory
L J
control
buffer control | address +1 |t
register l
Y
e
flags —3 blr anph multiplexer
ogic >
address
selection T
instruction

register

Branch Control: Variable Format

One bit determines
microinstruction
format:

» Control signal format

* Branch format

Does require even
more circuitry, and is
slowest.

control
buffer
register

address

Y

+1 f—]

control address
register

A

decoder <
control
memaory
:
"
branch entire
control field
field address
field
gate and
.—f \—r- function
logic
—
g
3 br‘an:::h >
flags —»| 109IC address
selection

multiplexer

T

instruction
register

Advantages and Disadvantages of
Microprogramming

Advantage:

* Simplifies design of control unit
— Cheaper to design
— Less error-prone
— Much easier to modify
— Supports having multiple versions / models

Disadvantage:
e Slower
* More expensive to produce in quantities

