
Micro-Operations

• Instruction execution

execution of a sequence of steps, i.e., cycles

• Fetch, Indirect, Execute & Interrupt cycles

• Cycle - a sequence of micro-operations

• Micro-operations

data transfer between registers

transfer between a register & an external bus

ALU operation

Control Unit Atomic Operations

• CU causes the processor to step through a series of micro-operations

in the proper sequence

• CU generates the control signals that cause each micro-operation to

be executed

• Micro-Operations are the atomic operations of the Processor

• Control signals open & closes the logic gates

 transfer of data to & from the registers

 operation of the ALU

• Implementation of Control Unit

 Hardwired

 Microprogrammed, i.e., microinstructions

Constituent Elements of
Program Execution

Functional Specifications of a
Processor • Operations

• Addressing Modes Defined by the Instruction Set

• Registers – user visible

• I/O Module Interface Defined by the System

• Memory Module Interface Bus Specification

• Interrupts Defined by System Bus Specification

 &

 Operating System Support

Execution Time Sequence of Instructions

is not necessarily the same as the

Written Sequence of Instructions in the Program

(branching instructions)

Fetch - 4 Registers

• Memory Address Register (MAR)
– Connected to address lines of system bus
– Specifies address for read or write operation

• Memory Buffer Register (MBR)
– Connected to data lines of system bus
– Holds data to write or last data read

• Program Counter (PC)
– Holds address of next instruction to be fetched

• Instruction Register (IR)
– Holds last instruction fetched

Fetch Sequence

• Address of next instruction is in PC

• Address (MAR) is placed on address bus

• Control unit issues READ command

• Result (data from memory) appears on data bus

• Data from data bus copied into MBR

• PC incremented by 1 (in parallel with data fetch
from memory) [micro-code RISC, length == 1]

• Data (instruction) moved from MBR to IR

• MBR is now free for further data fetches

Fetch Sequence (symbolic)

• t1: MAR <- (PC); CU issues READ command

• t2: MBR <- (memory) simultaneously

 PC <- (PC) +I

• t3: IR <- (MBR)
 where tx refers to the time unit/clock cycle

 ------------------ or ------------------
• t1: MAR <- (PC)
• t2: MBR <- (memory)
• t3: PC <- (PC) +1
 IR <- (MBR)

Interrupt Cycle – completion of the execute cycle

– test for interrupt occurrences -- process pending interrupts

• t1: MBR  (PC)

• t2: MAR  Save_Address for PC contents

 PC  address of start of interrupt processing routine,

 i.e., the interrupt Processing Routine_Address

♦ Multiple types and/or levels of interrupts, hence

♦ additional micro-operations may be required to obtain both

♦ Save_Address & Routine_Address

• t3: memory(MBR) - actual saving of the PC contents

• Saving the context is done by interrupt handler routine, not
micro-ops

Execute Cycle (ADD)

• Different sequence of micro-operations for each instruction

• ADD R1, X - add the contents of location X to
Register 1 , place the result in R1

• t1: MAR  (IR(address(X)))

• t2: MBR  (Memory)

• t3: R1  (R1) + (MBR)

• Note: there is no overlap of micro-operations

Execute Cycle (ISZ)
• ISZ X - increment and skip if zero

– t1: MAR  (IR(address(x))

– t2: MBR  (memory)

– t3: MBR  (MBR) + 1

– t4: memory  (MBR)

 if (MBR) == 0 then PC  (PC) + 1

 test & action operation is one micro op

 performed during time unit t4

Execute Cycle (BSA)
– subroutine call instruction

BSA X - Branch and save address
– Address of instruction following BSA is saved in X;

 it will be used to return from the subroutine

– Execution continues from X+1

– t1: MAR  (IR(address(X))
– MBR  (PC) - address of next instruction

 in the sequence
 BSA X branches to X+1 after saving return address to location X

– t2: PC  (IR(address(X))

– memory  (MBR) - save PC contents in memory

– t3: PC  (PC) + 1 - start processing from X+1

X : return address

X+1: start of subroutine

…

…

X+n: return from subroutine

Instruction Cycle

• Each phase decomposed into sequence of elementary
micro-operations

• E.g. fetch, indirect, and interrupt cycles
• Execute cycle

– One sequence of micro-operations for each opcode
• Need to tie sequences together
• Assume new 2-bit register

– Instruction cycle code (ICC) designates which part of cycle
processor is in
• 00: Fetch
• 01: Indirect
• 10: Execute
• 11: Interrupt

Flowchart for Instruction Cycle (Code)
Operation of the Processor  Performance of a Sequence of Micro-Operations

Indirect Cycle  Execute Cycle  next cycle depends upon the state of the system

Interrupt Cycle  Fetch Cycle  next cycle depends upon the state of the system

Types of Micro-operation

• Transfer data between registers

• Transfer data from register to external interface

• Transfer data from external interface to register

• Perform arithmetic or logical operations using registers for I/O

Functions of Control Unit using Control Signals

• Sequencing
– CU causes the CPU to step through a series of micro-operations in

proper sequence based on the program being executed

• Execution
– CU causes each micro-operation to be performed

• Control Signals
– External: inputs indicating the state of the system

– Internal: logic required to perform the sequencing and execution
functions

Control Signals

• Clock (clock cycle time, processor cycle time)

– One micro-instruction (or set of parallel micro-instructions) per clock
cycle

• Instruction register
– Opcode & addressing mode for current instruction
– Determines which micro-instructions are performed

• Flags – Used to determine the

– status of the CPU
– Results of previous ALU operations

• Signals from the control bus part of the system
bus
– Interrupts
– Acknowledgements

Model of Control Unit

Control Signals - output

• Control Signals within CPU
– Cause data movement register to register

– Activate specific ALU functions

– Activate a specific data path

• Control Signals to the control bus
– To memory via the system bus

– To I/O modules

Control Signal Sources
• Clock

– One micro-instruction (or set of parallel micro-instructions) per clock
cycle

• Instruction Register
– Op-code for current instruction

– Determines which micro-instructions are performed

• Flags
– State of CPU

– Results of previous operations

• From Control Bus
– Interrupts / Bus Requests

– Acknowledgements

Control Signals Outputs

• Within CPU

– Cause data movement

– Activate specific functions

• Via Main Bus

– To memory

– To I/O modules

Control Signals

The Internal Bus ?

 Example Simple Processor & Data
Paths

Example Simple Processor & Data
Paths

State Machine for Example Simple Processor

http://highered.mcgraw-hill.com/sites/dl/premium/0072467509/instructor/104653/figurec9.xls

Control Unit with Decoded Inputs

Problems With Hard Wired Designs

• Sequencing & micro-operation logic gets complex

• Difficult to design, prototype, and test

• Resultant design is inflexible, and difficult to build upon

 (Pipeline, multiple computation units, etc.)

• Adding new instructions requires major design and adds
complexity quickly

Example Simple Processor Micro-Programed Control

Control Unit Organization

Tasks of Control Unit:

• Microinstruction sequencing

• Microinstruction execution

The Control Memory contains
sequences of microinstructions
that provide the control signals
to execute instruction cycles,
e.g. Fetch, Indirect, Execute,
and Interrupt.

May be expected to complete
instruction execution in “1” clock
cycle. How is this possible?

Recall: Micro-sequencing

Example of Control Memory
Organization

Microinstructions:

• Generate Control Signals

• Provide Branching

Horizontal vs Vertical
Microprogramming

Horizontal Microprogrammed or

– Unpacked

– Hard

– Direct

Vertical Microprogrammed or

– Packed

– Soft

– Indirect

Microinstruction Encoding - Direct
Encoding

Microinstruction Encoding - Indirect
Encoding

Horizontal Micro-programming

• Wide control memory word

• High degree of parallel operations possible

• Little encoding of control information

• Faster

Vertical Micro-programming

• Width can be much narrower

• Control signals encoded into function codes –
need to be decoded

• More complex, more complicated to program,
less flexibility

• More difficult to modify

• Slower

Typical Microinstruction Formats

Example Microprogramming Formats

• MicroProgram Counter

• Subroutines

• Stack

• Control Register (MicroProgram Format)

Next Address Decision

• Depending on ALU flags and control buffer register:

– Get next instruction

• Add 1 to control address register

– Jump to new routine based on jump microinstruction

• Load address field of control buffer register into control address register

– Jump to machine instruction routine

• Load control address register based on opcode in IR

Microprogrammed Control Unit

Design Considerations

• Necessity of speed

• Size of Microinstructions

• Address generation

– Branches

• Both conditional and unconditional

• Based on current microinstruction, condition flags,
contents of IR

• Based on format of address information
– Two address fields

– Single address field

– Variable format

Branch Control: Two Address Fields

Branch based upon:

• Instruction Opcode

• Address 1

• Address 2

Does require a wide
microinstruction, but no
address calculation is needed

Branch Control: Single Address
Field

Branch based upon:

• Next instruction

• Address

• Opcode

Does require more

circuitry, e.g. adder

Branch Control: Variable Format

One bit determines
microinstruction
format:

• Control signal format

• Branch format

Does require even
more circuitry, and is
slowest.

Advantages and Disadvantages of
Microprogramming

Advantage:
• Simplifies design of control unit

– Cheaper to design
– Less error-prone
– Much easier to modify
– Supports having multiple versions / models

Disadvantage:
• Slower
• More expensive to produce in quantities

