
Memory Hierarchy  

 The memory unit is an essential component in any digital 
computer since it is needed for storing programs and data 

 Not all accumulated information is needed by the CPU at the 
same time 

 Therefore, it is more economical to use low-cost storage devices 
to serve as a backup for storing the information that is not 
currently used by CPU 



Memory Hierarchy-II 

 The memory unit that directly communicate with CPU is called the 
main memory .  
 
 

 Devices that provide backup storage are called auxiliary memory . 
 
 

 The memory hierarchy system consists of all storage devices 
employed in a computer system from the slow by high-capacity 
auxiliary memory to a relatively faster main memory, to an even 
smaller and faster cache memory. 



Memory Hierarchy-III 

 The main memory occupies a central position by being able to 
communicate directly with the CPU and with auxiliary memory 
devices through an I/O processor 

 A special very-high-speed memory called cache is used to increase 
the speed of processing by making current programs and data 
available to the CPU at a rapid rate 



Memory Hierarchy-IV 

 CPU logic is usually faster than main memory access time, with 
the result that processing speed is limited primarily by the 
speed of main memory 

 

 The cache is used for storing segments of programs currently 
being executed in the CPU and temporary data frequently 
needed in the present calculations  

 

 The typical access time ratio between cache and main memory 
is about 1to7  

 

 Auxiliary memory access time is usually 1000 times that of main 
memory 



Main Memory 

 Most of the main memory in a general 
purpose computer is made up of RAM 
integrated circuits chips, but a portion of the 
memory may be constructed with ROM chips  

 

 RAM– Random Access memory 
 In tegated RAM are available in two possible 

operating modes, Static and Dynamic 

 ROM– Read Only memory 



Random-Access Memory 
(RAM) 

 Static RAM (SRAM) 

 Each cell stores bit with a six-transistor circuit. 

 Retains value indefinitely, as long as it is kept powered. 

 Relatively insensitive to disturbances such as electrical noise. 

 Faster and more expensive than DRAM. 

 

 Dynamic RAM (DRAM) 

 Each cell stores bit with a capacitor and transistor. 

 Value must be refreshed every 10-100 ms. 

 Sensitive to disturbances. 

 Slower and cheaper than SRAM. 



SRAM vs DRAM Summary 

 Tran. Access     

 per bit  time Persist? Sensitive? Cost Applications 

 

SRAM 6 1X Yes No  100x cache memories 

 

DRAM 1 10X No Yes  1X Main memories, 

       frame buffers 



ROM 

 ROM is used for storing programs that are 
PERMENTLY resident in the computer and 
for tables of constants that do not change in 
value once the production of the computer is 
completed  

 The ROM portion of main memory is needed 
for storing an initial program called bootstrap 
loader, witch is to start the computer 
software operating when power is turned off  



Main Memory 

 A RAM chip is better suited for 
communication with the CPU if it has one or 
more control inputs that select the chip when 
needed 

 

 The Block diagram of a RAM chip is shown 
next slide, the capacity of the memory is 128 
words of 8 bits (one byte) per word 



RAM  



ROM 



Memory Address Map 

 Memory Address Map is a pictorial representation of 
assigned address space for each chip in the system 

 

 To demonstrate an example, assume that a computer 
system needs 512 bytes of RAM and 512 bytes of 
ROM 

 

 The RAM have 128 byte and need seven address 
lines, where the ROM have 512 bytes and need 9 
address lines 

 



Memory Address Map 



Memory Address Map 

 The hexadecimal address assigns a range of 
hexadecimal equivalent address for each chip 

 

 Line 8 and 9 represent four distinct binary 
combination to specify which RAM we chose  

 

 When line 10 is 0, CPU selects a RAM. And 
when it’s 1, it selects the ROM 





Auxiliary Memory  

 The average time required to reach a storage 
location in memory and obtain its contents is 
called the access time  

 

 The access time = seek time + transfer time 

 Seek time: required to position the read-write 
head to a location 

 Transfer time: required to transfer data to or from 
the device 



Cache memory  

 If the active portions of the program and data 
are placed in a fast small memory, the 
average memory access time can be reduced, 

 Thus reducing the total execution time of the 
program 

 Such a fast small memory is referred to as 
cache memory 

 The cache is the fastest component in the 
memory hierarchy and approaches the speed 
of CPU component  



Cache memory 

 When CPU needs to access memory, 
the cache is examined  

 If the word is found in the cache, it is 
read from the fast memory 

 If the word addressed by the CPU is not 
found in the cache, the main memory is 
accessed to read the word 



Cache memory 

 The performance of cache memory is 
frequently measured in terms of a 
quantity called hit ratio 

 When the CPU refers to memory and 
finds the word in cache, it is said to 
produce a hit 

 Otherwise, it is a miss 

 Hit ratio = hit / (hit+miss) 



Cache memory 

 The basic characteristic of cache memory is its fast 
access time, 

 Therefore, very little or no time must be wasted 
when searching the words in the cache 

 The transformation of data from main memory to 
cache memory is referred to as a mapping process, 
there are three types of mapping: 
 Associative mapping 

 Direct mapping 

 Set-associative mapping 



Cache memory 

 To help understand the mapping 
procedure, we have the following 
example: 

 



Associative mapping 

 The fastest and most flexible cache organization uses 
an associative memory 

 The associative memory stores both the address and 
data of the memory word 

 This permits any location in cache to store ant word 
from main memory 

 

 The address value of 15 bits is shown as a five-digit 
octal number and its corresponding 12-bit word is 
shown as a four-digit octal number 



Associative mapping 



Associative mapping 

 A CPU address of 15 bits is places in the 
argument register and the associative 
memory us searched for a matching address 

 If the address is found, the corresponding 12-
bits data is read and sent to the CPU 

 If not, the main memory is accessed for the 
word 

 If the cache is full, an address-data pair must 
be displaced to make room for a pair that is 
needed and not presently in the cache 



Direct Mapping 

 Associative memory is expensive 
compared to RAM 

 In general case, there are 2^k words in 
cache memory and 2^n words in main 
memory (in our case, k=9, n=15) 

 The n bit memory address is divided 
into two fields: k-bits for the index and 
n-k bits for the tag field 



Direct Mapping 



Direct Mapping 



Set-Associative Mapping 

 The disadvantage of direct mapping is that 
two words with the same index in their 
address but with different tag values cannot 
reside in cache memory at the same time  

 Set-Associative Mapping is an improvement 
over the direct-mapping in that each word of 
cache can store two or more word of memory 
under the same index address 



Set-Associative Mapping 



Set-Associative Mapping 

 In the slide, each index address refers 
to two data words and their associated 
tags  

 Each tag requires six bits and each data 
word has 12 bits, so the word length is 
2*(6+12) = 36 bits 



Virtual Memory 

 The address used by a programmer will be 
called a virtual address or logical address. 

 An address in main memory is called a 
physical address 



Virtual Memory 

 The term page refers to groups of 
address space of the same size 

 

 For example: if auxiliary memory 
contains 1024K and main memory 
contains 32K and page size equals to 
1K, then auxiliary memory has 1024 
pages and main memory has 32 pages 



Virtual Memory 

 Only part of the program needs to be in 
memory for execution 

 Logical address space can therefore be 
much larger than physical address 
space 

 Allows for more efficient process 
creation 

 

 

 



Virtual Memory 



 
Demand Paging  

 In stead of loading whole program into 
memory, demand paging is an 
alternative strategy to initially load 
pages only as they are needed 

 

 Lazy Swapper: Pages are only loaded 
when they are demanded during 
program execution 

 

 

 



Transfer of a page memory to 
continuous disk space 



Demand paging basic 
concepts 

 When a process is to be swapped in, 
the pager guesses which pages will be 
used before the process is swapped out 
again. 

 Instead of swapping in a whole process, 
the pager brings only those necessary 
pages into memory 



Valid-Invalid Bit 

 

 With each page table entry a  

   valid–invalid bit is associated 

   (v=> in-memory , i =>not-in-memory) 

 Initially valid–invalid bit is set to i on all 
entries 

 

 During address translation, if valid–invalid bit 
in page table entry is i => page fault 

 

 



Valid-Invalid Bit Example 



Valid-Invalid Bit Example 



Page Fault 



Page Fault 



 
Performance of Demand 
Paging  

Page Fault Rate 0 ≤p≤1.0 

 if p= 0 no page faults  

 if p= 1, every reference is a fault 

 

 Effective Access Time (EAT)= 

(1-p)*ma + p*page fault time 

 

 



Performance of Demand 
Paging 



Performance of Demand 
Paging 

 If we want performance degradation to be 
less than 10%, we need 

 

220 > 200+7,999,800*p 

20>7,999,800*p 

P<0.0000025 

 

It is important to keep the page-fault rate low 
in a demand-paging system 



 Page Replacement 

 What if there is no free frame? 

 

 

 Page replacement –find some page in 
memory, but not really in use, swap it 
out 

 In this case, same page may be 
brought into memory several times 

 

 



Basic Page Replacement 



Page Replacement 



Page Replacement Algorithms 

 Goal: 
    Want lowest page-fault rate 
 
   Evaluate algorithm by running it on a particular string 

of memory references (reference string) and 
computing the number of page faults on that string 

 
 

 In all our examples, the reference string is  
 

    1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 
 

 
 



FIFO 

 When a page must be replaced, the 
oldest page is chosen 

 



FIFO 

 When a page must be replaced, the oldest page is 
chosen 
 

 In all our examples, the reference string is  

    1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 
 3 frame  (9 page faults) 
 4 frame  (10 page faults) 

 
 Notice that the number of faults for 4 frames is 

greater than the umber of faults for 3 frames!! This 
unexpected result is known as  Belady’s anomaly 
 



 
FIFO Illustrating Belady’s 
Anomaly  



FIFO Algorithm 



Optimal Page-Replacement 
Algorithm 

 

 Replace page that will not be used for 
longest period of time 

 

 This is a design to guarantee the lowest 
page-fault rate for a fixed number of 
frames 



Optimal Page-Replacement 
Algorithm 



Optimal Page-Replacement 
Algorithm 



Optimal Page-Replacement 
Algorithm 

 Unfortunately, the optimal page-
replacement is difficult to implement, 
because it requires future knowledge of 
the reference string 



Least-recently-used (LRU) 
algorithm 

 LRU replacement associates with each 
page the time of that page’s last use 

 When a page must be replaced, LRU 
chooses the page that has not been 
used for the longest period of time 



Least-recently-used (LRU) 
algorithm 



Least-recently-used (LRU) 
algorithm 



Least-recently-used (LRU) 
algorithm 

 The major problem is how to implement LRU 
replacement: 

1. Counter:  whenever a reference to a page is made, 
the content of the clock register are copied to the 
time-of-use filed in the page table entry for the 
page.  We replace the page with the smallest time 
value 

2. Stack:  Whenever a page is referenced, it is 
removed from the stack and put on the top.  In this 
way, the most recently used page is always at the 
top of the stack 

      
 



Stack implementation 



Second-Chance Algorithm 

 Basically, it’s a FIFO algorithm 

 If the page is referenced, we set the bit into 1 

 When a page has been selected, we inspect its 
reference bit. 

 If the value is 0, we proceed to replace this page, 
otherwise, we give the page a second chance and 
move on to select the next FIFO page 

 When a page get a second chance, it’s reference bit 
is cleared, and its arrival time is reset to the current 
time 



Second-Chance Algorithm 

 When a page get a second chance, it’s 
reference bit is cleared, and its arrival 
time is reset to the current time 

 If a page is used often enough to keep 
its reference bit set, it will never be 
replaced 



Counting Based Page 
Replacement 

 Least Frequently used (LFU) page-
replacement algorithm 

 

 Most frequently used (MFU) page-
replacement algorithm 


