DMA Configurations (1)

- Single Bus, Detached DMA controller
- Each transfer uses bus twice
 - -I/O to DMA then DMA to memory
- CPU is suspended twice

DMA Configurations (2)

(b) Single-bus, Integrated DMA-I/O

- Single Bus, Integrated DMA controller
- Controller may support >1 device
- Each transfer uses bus once

-DMA to memory

CPU is suspended once

DMA Configurations (3)

(c) I/O bus

- Separate I/O Bus
- Bus supports all DMA enabled devices
- Each transfer uses bus once

-DMA to memory

CPU is suspended once

Intel 8237A DMA Controller

- Interfaces to 80x86 family and DRAM
- When DMA module needs buses it sends HOLD signal to processor
- CPU responds HLDA (hold acknowledge)
 - DMA module can use buses
- E.g. transfer data from memory to disk
 - 1. Device requests service of DMA by pulling DREQ (DMA request) high
 - 2. DMA puts high on HRQ (hold request),
 - CPU finishes present bus cycle (not necessarily present instruction) and puts high on HDLA (hold acknowledge). HOLD remains active for duration of DMA
 - 4. DMA activates DACK (DMA acknowledge), telling device to start transfer
 - DMA starts transfer by putting address of first byte on address bus and activating MEMR; it then activates IOW to write to peripheral. DMA decrements counter and increments address pointer. Repeat until count reaches zero
 - 6. DMA deactivates HRQ, giving bus back to CPU

8237 DMA Usage of Systems Bus

HRQ = HOLD request

Fly-By

- While DMA using buses processor idle
- Processor using bus, DMA idle
 —Known as fly-by DMA controller
- Data does not pass through and is not stored in DMA chip
 - -DMA only between I/O port and memory
 - Not between two I/O ports or two memory locations
- Can do memory to memory via register
- 8237 contains four DMA channels
 - -Programmed independently
 - -Any one active
 - -Numbered 0, 1, 2, and 3

I/O Channels

- I/O devices getting more sophisticated
- e.g. 3D graphics cards
- CPU instructs I/O controller to do transfer
- I/O controller does entire transfer
- Improves speed
 - -Takes load off CPU
 - -Dedicated processor is faster

I/O Channel Architecture

Interfacing

- Connecting devices together
- Bit of wire?
- Dedicated processor/memory/buses?
- E.g. FireWire, InfiniBand

IEEE 1394 FireWire

- High performance serial bus
- Fast
- Low cost
- Easy to implement
- Also being used in digital cameras, VCRs and TV

FireWire Configuration

- Daisy chain
- Up to 63 devices on single port
 —Really 64 of which one is the interface itself
- Up to 1022 buses can be connected with bridges
- Automatic configuration
- No bus terminators
- May be tree structure

Simple FireWire Configuration

FireWire 3 Layer Stack

- Physical
 - Transmission medium, electrical and signaling characteristics
- Link
 - -Transmission of data in packets
- Transaction
 - -Request-response protocol

FireWire Protocol Stack

FireWire - Physical Layer

- Data rates from 25 to 400Mbps
- Two forms of arbitration
 - -Based on tree structure
 - Root acts as arbiter
 - -First come first served
 - -Natural priority controls simultaneous requests
 - i.e. who is nearest to root
 - -Fair arbitration
 - -Urgent arbitration

FireWire - Link Layer

- Two transmission types
 - -Asynchronous
 - Variable amount of data and several bytes of transaction data transferred as a packet
 - To explicit address
 - Acknowledgement returned
 - —Isochronous
 - Variable amount of data in sequence of fixed size packets at regular intervals
 - Simplified addressing
 - No acknowledgement

FireWire Subactions

(c) Example isochronous subactions

InfiniBand

- I/O specification aimed at high end servers
 - —Merger of Future I/O (Cisco, HP, Compaq, IBM) and Next Generation I/O (Intel)
- Version 1 released early 2001
- Architecture and spec. for data flow between processor and intelligent I/O devices
- Intended to replace PCI in servers
- Increased capacity, expandability, flexibility

InfiniBand Architecture

- Remote storage, networking and connection between servers
- Attach servers, remote storage, network devices to central fabric of switches and links
- Greater server density
- Scalable data centre
- Independent nodes added as required
- I/O distance from server up to
 - -17m using copper
 - 300m multimode fibre optic
 - -10km single mode fibre
- Up to 30Gbps

InfiniBand Switch Fabric

TCA = target channel adapter

InfiniBand Operation

- 16 logical channels (virtual lanes) per physical link
- One lane for management, rest for data
- Data in stream of packets
- Virtual lane dedicated temporarily to end to end transfer
- Switch maps traffic from incoming to outgoing lane

InfiniBand Protocol Stack

QP = queue pair

Foreground Reading

- Check out Universal Serial Bus (USB)
- Compare with other communication standards e.g. Ethernet