
SQL, the Structured 

Query Language 



Overview 

 Introduction 

 DDL Commands 

 DML Commands 

 SQL Statements, Operators, Clauses 

 Aggregate Functions 



 

 The ANSI standard language for the definition 

and manipulation of relational database.  
 

 Includes data definition language (DDL), 

statements that specify and modify database 

schemas. 
 

 Includes a data manipulation language (DML), 

statements that manipulate database content. 

Structured Query Language (SQL) 



Some Facts on SQL 

 SQL data is case-sensitive, SQL commands are not. 
 

 First Version was developed at IBM by Donald D. 

Chamberlin and Raymond F. Boyce. [SQL] 
 

 Developed using Dr. E.F. Codd's paper, “A Relational 

Model of Data for Large Shared Data Banks.” 
 

 SQL query includes references to tuples variables 

and the attributes of those variables 



SQL: DDL Commands 

 CREATE TABLE: used to create a table. 
 

 ALTER TABLE: modifies a table after it was created. 
 

 DROP TABLE: removes a table from a database. 
 



SQL: CREATE TABLE Statement 

 Things to consider before you create your table are: 

The type of data 

the table name 

what column(s) will make up the primary key 

the names of the columns 
 

 CREATE TABLE statement syntax: 
CREATE TABLE <table name> 
( field1 datatype ( NOT NULL ), 

  field2 datatype ( NOT NULL ) 

); 



SQL: Attributes Types 

Table 7.6 pg.164 



SQL: ALTER TABLE Statement 

 To add or drop columns on existing tables. 
 

 ALTER TABLE statement syntax: 
ALTER TABLE <table name> 
ADD attr datatype; 

or 

DROP COLUMN attr; 



SQL: DROP TABLE Statement 

Has two options:  

 CASCADE: Specifies that any foreign key constraint 

violations that are caused by dropping the table will 

cause the corresponding rows of the related table to 

be deleted. 

 
 RESTRICT: blocks the deletion of the table of any 
foreign key constraint violations would be created. 
 

DROP TABLE statement syntax: 
DROP TABLE <table name> [ RESTRICT|CASCADE ]; 



Example: 
CREATE TABLE FoodCart 
( 
date varchar(10), 
food varchar(20), 
profit float 
); 
 
ALTER TABLE FoodCart ( 
ADD sold int 
); 
 
ALTER TABLE FoodCart( 
DROP COLUMN profit 
); 
 
DROP TABLE FoodCart; 

profit food date 

sold profit food date 

sold food date 

FoodCart 

FoodCart 

FoodCart 



SQL: DML Commands 

 INSERT: adds new rows to a table. 
 

 UPDATE: modifies one or more attributes. 
 

 DELETE: deletes one or more rows from a table. 



SQL: INSERT Statement 

 To insert a row into a table, it is necessary to 

have a value for each attribute, and order 

matters. 
 INSERT statement syntax: 
INSERT into <table name> 
VALUES ('value1', 'value2', NULL); 
Example: INSERT into FoodCart 
   VALUES (’02/26/08', ‘pizza', 70 ); 
 
FoodCart 

70 pizza 02/26/08 

500 hotdog 02/26/08 

350 pizza 02/25/08 

sold food date 

500 hotdog 02/26/08 

350 pizza 02/25/08 

sold food date 



SQL: UPDATE Statement 

 To update the content of the table: 

UPDATE statement syntax: 

UPDATE <table name> SET <attr> = <value> 

WHERE <selection condition>; 

Example: UPDATE FoodCart SET sold = 349 

  WHERE date = ’02/25/08’ AND food = ‘pizza’; 
FoodCart 

70 pizza 02/26/08 

500 hotdog 02/26/08 

350 pizza 02/25/08 

sold food date 

70 pizza 02/26/08 

500 hotdog 02/26/08 

349 pizza 02/25/08 

sold food date 



SQL: DELETE Statement 

 To delete rows from the table: 

DELETE statement syntax: 
DELETE FROM <table name> 
WHERE <condition>; 
Example: DELETE FROM FoodCart 
  WHERE food = ‘hotdog’; 
 
FoodCart 

Note: If the WHERE clause is omitted all rows of data are deleted from the table. 

70 pizza 02/26/08 

500 hotdog 02/26/08 

349 pizza 02/25/08 

sold food date 

70 pizza 02/26/08 

349 pizza 02/25/08 

sold food date 



SQL Statements, Operations, Clauses 

 SQL Statements: 

Select 

 SQL Operations: 

Join 

Left Join 

Right Join 

Like 

 SQL Clauses: 

Order By 

Group By 

Having 



SQL: SELECT Statement 

 A basic SELECT statement includes 3 clauses 
 
 SELECT <attribute name> FROM <tables> WHERE <condition> 
 
 

 

 

SELECT 
 

Specifies the 

attributes that are 

part of the 

resulting relation 

FROM 
 

Specifies the 

tables that serve 

as the input to the 

statement 

WHERE 
 

Specifies the 

selection condition, 

including the join 

condition. 

Note: that you don't need to use WHERE 



 Using a “*” in a select statement indicates that 

every attribute of the input table is to be 

selected. 

Example: SELECT * FROM … WHERE …; 

 

 To get unique rows, type the keyword 

DISTINCT after SELECT. 

Example: SELECT DISTINCT * FROM … 

    WHERE …; 

 

 

SQL: SELECT Statement (cont.) 



Example: 
Person 

80 34 Peter 

54 54 Helena 

70 29 George 

64 28 Sally 

80 34 Harry 

Weight Age Name 

80 34 Peter 

54 54 Helena 

80 34 Harry 

Weight Age Name 

80 

54 

80 

Weight 

1) SELECT * 

    FROM person 

    WHERE age > 30; 

2) SELECT weight 

    FROM person 

    WHERE age > 30; 

3) SELECT distinct weight 

    FROM person 

    WHERE age > 30; 

54 

80 

Weight 



SQL: Join operation 

A join can be specified in the FROM clause 

which list the two input relations and the 

WHERE clause which lists the join 

condition. 

 Example: 

Biotech 1003 

Sales 1002 

IT 1001 

Division ID 

TN 1002 

MA 1001 

CA 1000 

State ID 

Emp Dept 



SQL: Join operation (cont.) 

Sales 1002 

IT 1001 

Dept.Division Dept.ID 

TN 1002 

MA 1001 

Emp.State Emp.ID 

inner join = join 

 SELECT * 

 FROM emp join dept (or FROM emp, dept) 

 on emp.id = dept.id; 



SQL: Join operation (cont.) 

IT 1001 

Sales 1002 

null null 

Dept.Division Dept.ID 

CA 1000 

TN 1002 

MA 1001 

Emp.State Emp.ID 

left outer join = left join 

 SELECT * 

 FROM emp left join dept 

 on emp.id = dept.id; 



SQL: Join operation (cont.) 

Sales 1002 

Biotech 1003 

IT 1001 

Dept.Division Dept.ID 

MA 1001 

null null 

TN 1002 

Emp.State Emp.ID 

right outer join = right join 

 SELECT * 

 FROM emp right join dept 

 on emp.id = dept.id; 



SQL: Like operation 

Pattern matching selection 

% (arbitrary string) 

 SELECT * 

 FROM emp  

 WHERE ID like ‘%01’; 

  finds ID that ends with 01, e.g. 1001, 2001, etc 

_ (a single character) 

 SELECT * 

 FROM emp  

 WHERE ID like ‘_01_’; 

  finds ID that has the second and third character 
as 01, e.g. 1010, 1011, 1012, 1013, etc 



SQL: The ORDER BY Clause 

Ordered result selection 

desc (descending order) 

 SELECT * 

 FROM emp  

 order by state desc 

  puts state in descending order, e.g. TN, MA, CA 

asc (ascending order) 

 SELECT * 

 FROM emp  

 order by id asc 

  puts ID in ascending order, e.g. 1001, 1002, 1003 



SQL: The GROUP BY Clause 

The function to divide the tuples into groups and 

returns an aggregate for each group. 

Usually, it is an aggregate function’s companion 

 SELECT food, sum(sold) as totalSold 

 FROM FoodCart  

 group by food;  

 FoodCart 

419 pizza 

500 hotdog 

totalSold food 

70 pizza 02/26/08 

500 hotdog 02/26/08 

349 pizza 02/25/08 

sold food date 



SQL: The HAVING Clause 
The substitute of WHERE for aggregate functions 

Usually, it is an aggregate function’s companion 

 SELECT food, sum(sold) as totalSold 

 FROM FoodCart  

 group by food  

 having sum(sold) > 450; 

 FoodCart 

500 hotdog 

totalSold food 

70 pizza 02/26/08 

500 hotdog 02/26/08 

349 pizza 02/25/08 

sold food date 



SQL: Aggregate Functions 

Are used to provide summarization information for 

SQL statements, which return a single value.  

 
 COUNT(attr) 
 SUM(attr) 
 MAX(attr) 
 MIN(attr) 
 AVG(attr) 
 
Note: when using aggregate functions, NULL values 

are not considered, except in COUNT(*) . 



SQL: Aggregate Functions (cont.)  

 COUNT(attr) -> return # of rows that are not null 
Ex: COUNT(distinct food) from FoodCart; -> 2 
 
 SUM(attr) -> return the sum of values in the attr 
Ex: SUM(sold) from FoodCart; -> 919 
 
 MAX(attr) -> return the highest value from the attr 
Ex: MAX(sold) from FoodCart; -> 500 

70 pizza 02/26/08 

500 hotdog 02/26/08 

349 pizza 02/25/08 

sold food date 

FoodCart 



SQL: Aggregate Functions (cont.)  

 MIN(attr) -> return the lowest value from the attr 
Ex: MIN(sold) from FoodCart; -> 70 
 
 AVG(attr) -> return the average value from the attr 
Ex: AVG(sold) from FoodCart; -> 306.33 
Note: value is rounded to the precision of the datatype 

70 pizza 02/26/08 

500 hotdog 02/26/08 

349 pizza 02/25/08 

sold food date 

FoodCart 



Riccardi, Greg. Principles of Database Systems with Internet and Java Applications. 
Addison Wesley, 2001. 
 
Ronald R. Plew, Ryan K. Stephens. Teach Yourself SQL in 24 Hours 3rd Edition. 
Sams Publishing, 2003. 
 
SQL    http://en.wikipedia.org/wiki/SQL 
 
W3C http://www.w3schools.com/sql/sql_tryit.asp 
 
Wikipedia - SQL http://en.wikipedia.org/wiki/SQL 
 
Wikipedia - join http://en.wikipedia.org/wiki/Join_(SQL)  

References 

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/SQL
http://www.w3schools.com/sql/sql_tryit.asp
http://www.w3schools.com/sql/sql_tryit.asp
http://www.w3schools.com/sql/sql_tryit.asp
http://www.w3schools.com/sql/sql_tryit.asp
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Join_(SQL)
http://en.wikipedia.org/wiki/Join_(SQL)

