
Distributed databases

Concepts

Distributed Database.

 A logically interrelated collection of shared data

(and a description of this data), physically

distributed over a computer network.

Distributed DBMS.

 Software system that permits the management of

the distributed database and makes the

distribution transparent to users.

Concepts

 Collection of logically-related shared data.

 Data split into fragments.

 Fragments may be replicated.

 Fragments/replicas allocated to sites.

 Sites linked by a communications network.

 Data at each site is under control of a DBMS.

 DBMSs handle local applications autonomously.

 Each DBMS participates in at least one global

application.

Component Architecture for a DDBMS

GDD

DDBMS

DC

Computer Network

DDBMS

DC LDBMS

LDBMS : Local DBMS component

DC : Data communication component

GDD : Global Data Dictionary

site 1

site 2 DB

GDD

The Ideal Situation

 A single application should be able to operate

transparently on data that is:

spread across a variety of different DBMS's

running on a variety of different machines

supported by a variety of different operating

systems

connected together by a variety of different

communication networks

 The distribution can be geographical or local

Workable definition

A distributed database system consists of a collection of
sites connected together via some kind of
communications network, in which :

each site is a database system site in its own right;

the sites agree to work together, so that a user at any
site can access data anywhere in the network exactly
as if the data were all stored at the user's own site

It is a logical union of real databases

 It can be seen as a kind of partnership among individual
local DBMS's

 Difference with remote access or distributed processing
systems

 Temporary assumption: strict homogeneity

5

Distributed DBMS

6

Distributed Processing

 A centralized database that can be accessed

over a computer network.

Parallel DBMS

 A DBMS running across multiple processors

and disks designed to execute operations in

parallel, whenever possible, to improve

performance.

 Based on premise that single processor

systems can no longer meet requirements for

cost-effective scalability, reliability, and

performance.

 Parallel DBMSs link multiple, smaller machines

to achieve same throughput as single, larger

machine, with greater scalability and reliability.

Parallel DBMS

 Main architectures for parallel DBMSs are:

a: Shared memory.

b: Shared disk.

c: Shared nothing.

9

Parallel DBMS

Advantages of DDBMSs

 Organizational Structure

 Shareability and Local Autonomy

 Improved Availability

 Improved Reliability

 Improved Performance

 Economics

 Modular Growth

Disadvantages of DDBMSs

 Complexity

 Cost

 Security

 Integrity Control More Difficult

 Lack of Standards

 Lack of Experience

 Database Design More Complex

Types of DDBMS

 Homogeneous DDBMS

 Heterogeneous DDBMS

Homogeneous DDBMS

 All sites use same DBMS product.

 Much easier to design and manage.

 Approach provides incremental growth and

allows increased performance.

Heterogeneous DDBMS

 Sites may run different DBMS products, with

possibly different underlying data models.

 Occurs when sites have implemented their own

databases and integration is considered later.

 Translations required to allow for:

Different hardware.

Different DBMS products.

Different hardware and different DBMS products.

 Typical solution is to use gateways.

Open Database Access and Interoperability

 Open Group has formed a Working Group to provide

specifications that will create database infrastructure

environment where there is:

 Common SQL API that allows client applications to be

written that do not need to know vendor of DBMS they

are accessing.

 Common database protocol that enables DBMS from one

vendor to communicate directly with DBMS from another

vendor without the need for a gateway.

 A common network protocol that allows communications

between different DBMSs.

 Most ambitious goal is to find a way to enable

transaction to span DBMSs from different vendors

without use of a gateway.

Multidatabase System (MDBS)

 DDBMS in which each site maintains complete

autonomy.

 DBMS that resides transparently on top of

existing database and file systems and

presents a single database to its users.

 Allows users to access and share data without

requiring physical database integration.

 Non-federated MDBS (no local users) and

federated MDBS (FMDBS).

Functions of a DDBMS

 Expect DDBMS to have at least the

functionality of a DBMS.

 Also to have following functionality:

 Extended communication services.

 Extended Data Dictionary.

 Distributed query processing.

 Extended concurrency control.

 Extended recovery services.

Reference Architecture for DDBMS

 Due to diversity, no universally accepted

architecture such as the ANSI/SPARC 3-level

architecture.

 A reference architecture consists of:

Set of global external schemas.

Global conceptual schema (GCS).

Fragmentation schema and allocation schema.

Set of schemas for each local DBMS conforming to

3-level ANSI/SPARC .

 Some levels may be missing, depending on

levels of transparency supported.

Reference Architecture for DDBMS

Reference Architecture for MDBS

 In DDBMS, GCS is union of all local conceptual

schemas.

 In FMDBS, GCS is subset of local conceptual

schemas (LCS), consisting of data that each

local system agrees to share.

 GCS of tightly coupled system involves

integration of either parts of LCSs or local

external schemas.

 FMDBS with no GCS is called loosely coupled.

Reference Architecture for Tightly-

Coupled Federated MDBS

25

Components of a DDBMS

Distributed Database Design

 Three key issues:

Fragmentation.

Allocation

Replication

Distributed Database Design

 Fragmentation

Relation may be divided into a number of sub-

relations, which are then distributed.

 Allocation

Each fragment is stored at site with "optimal"

distribution.

 Replication

Copy of fragment may be maintained at several sites.

Fragmentation

 Definition and allocation of fragments carried

out strategically to achieve:

Locality of Reference

Improved Reliability and Availability

Improved Performance

Balanced Storage Capacities and Costs

Minimal Communication Costs.

 Involves analyzing most important

applications, based on quantitative/qualitative

information.

Fragmentation

 Quantitative information may include:

frequency with which an application is run;

site from which an application is run;

performance criteria for transactions and

applications.

 Qualitative information may include

transactions that are executed by application,

type of access (read or write), and predicates

of read operations.

Data Allocation

 Four alternative strategies regarding

placement of data:

Centralized

Partitioned (or Fragmented)

Complete Replication

Selective Replication

Data Allocation

 Centralized

Consists of single database and DBMS stored at one

site with users distributed across the network.

 Partitioned

Database partitioned into disjoint fragments, each

fragment assigned to one site.

Data Allocation

 Complete Replication

Consists of maintaining complete copy of database

at each site.

 Selective Replication

Combination of partitioning, replication, and

centralization.

33

Comparison of Strategies for Data

Distribution

Why Fragment?

 Usage

Applications work with views rather than entire

relations.

 Efficiency

Data is stored close to where it is most frequently

used.

Data that is not needed by local applications is not

stored.

Why Fragment?

 Parallelism

With fragments as unit of distribution, transaction

can be divided into several subqueries that operate

on fragments.

 Security

Data not required by local applications is not stored

and so not available to unauthorized users.

 Disadvantages

Performance

Integrity.

Correctness of Fragmentation

 Three correctness rules:

Completeness

Reconstruction

Disjointness.

Correctness of Fragmentation

 Completeness

 If relation R is decomposed into fragments R1, R2,

... Rn, each data item that can be found in R must

appear in at least one fragment.

 Reconstruction

 Must be possible to define a relational

operation that will reconstruct R from the

fragments.

 Reconstruction for horizontal fragmentation is

Union operation and Join for vertical .

Correctness of Fragmentation

 Disjointness

 If data item di appears in fragment Ri, then it

should not appear in any other fragment.

 Exception: vertical fragmentation, where

primary key attributes must be repeated to

allow reconstruction.

 For horizontal fragmentation, data item is a

tuple

 For vertical fragmentation, data item is an

attribute.

Types of Fragmentation

 Four types of fragmentation:

Horizontal

Vertical

Mixed

Derived.

 Other possibility is no fragmentation:

If relation is small and not updated frequently, may

be better not to fragment relation.

41

Horizontal and Vertical Fragmentation

Mixed Fragmentation

Horizontal Fragmentation

 This strategy is determined by looking at

predicates used by transactions.

 Involves finding set of minimal (complete and

relevant) predicates.

 Set of predicates is complete, if and only if, any

two tuples in same fragment are referenced

with same probability by any application.

 Predicate is relevant if there is at least one

application that accesses fragments

differently.

Transparencies in a DDBMS

 Distribution Transparency

Fragmentation Transparency

Location Transparency

Replication Transparency

Local Mapping Transparency

Naming Transparency

Transparencies in a DDBMS

 Transaction Transparency

Concurrency Transparency

Failure Transparency

 Performance Transparency

 DBMS Transparency

Distribution Transparency

 Distribution transparency allows user to

perceive database as single, logical entity.

 If DDBMS exhibits distribution transparency,

user does not need to know:

data is fragmented (fragmentation transparency),

location of data items (location transparency),

otherwise call this local mapping transparency.

 With replication transparency, user is unaware

of replication of fragments .

Naming Transparency

 Each item in a DDB must have a unique name.

 DDBMS must ensure that no two sites create a

database object with same name.

 One solution is to create central name server.

However, this results in:

loss of some local autonomy;

central site may become a bottleneck;

low availability; if the central site fails, remaining

sites cannot create any new objects.

Transaction Transparency

 Ensures that all distributed transactions

maintain distributed database’s integrity and

consistency.

 Distributed transaction accesses data stored at

more than one location.

 Each transaction is divided into number of

sub-transactions, one for each site that has to

be accessed.

 DDBMS must ensure the indivisibility of both

the global transaction and each

subtransactions.

Concurrency Transparency

 All transactions must execute independently

and be logically consistent with results

obtained if transactions executed one at a time,

in some arbitrary serial order.

 Same fundamental principles as for centralized

DBMS.

 DDBMS must ensure both global and local

transactions do not interfere with each other.

 Similarly, DDBMS must ensure consistency of

all sub-transactions of global transaction.

Concurrency Transparency

 Replication makes concurrency more complex.

 If a copy of a replicated data item is updated,

update must be propagated to all copies.

 Could propagate changes as part of original

transaction, making it an atomic operation.

 However, if one site holding copy is not

reachable, then transaction is delayed until site

is reachable.

Concurrency Transparency

 Could limit update propagation to only those

sites currently available. Remaining sites

updated when they become available again.

 Could allow updates to copies to happen

asynchronously, sometime after the original

update. Delay in regaining consistency may

range from a few seconds to several hours.

Failure Transparency

 DDBMS must ensure atomicity and durability

of global transaction.

 Means ensuring that sub-transactions of global

transaction either all commit or all abort.

 Thus, DDBMS must synchronize global

transaction to ensure that all sub-transactions

have completed successfully before recording

a final COMMIT for global transaction.

 Must do this in presence of site and network

failures.

Performance Transparency

 DDBMS must perform as if it were a centralized

DBMS.

DDBMS should not suffer any performance

degradation due to distributed architecture.

DDBMS should determine most cost-effective

strategy to execute a request.

Performance Transparency

 Distributed Query Processor (DQP) maps data

request into ordered sequence of operations

on local databases.

 Must consider fragmentation, replication, and

allocation schemas.

 DQP has to decide:

which fragment to access;

which copy of a fragment to use;

which location to use.

Performance Transparency

 DQP produces execution strategy optimized

with respect to some cost function.

 Typically, costs associated with a distributed

request include:

I/O cost;

CPU cost;

communication cost.

Date’s 12 Rules for a DDBMS

 0. Fundamental Principle

 To the user, a distributed system should look

exactly like a non-distributed system.

 1. Local Autonomy

 2. No Reliance on a Central Site

 3. Continuous Operation

 4. Location Independence

 5. Fragmentation Independence

 6. Replication Independence

Date’s 12 Rules for a DDBMS

 7. Distributed Query Processing

 8. Distributed Transaction Processing

 9. Hardware Independence

 10. Operating System Independence

 11. Network Independence

 12. Database Independence

 Last four rules are ideals.

