
Distributed databases

Concepts

Distributed Database.

 A logically interrelated collection of shared data

(and a description of this data), physically

distributed over a computer network.

Distributed DBMS.

 Software system that permits the management of

the distributed database and makes the

distribution transparent to users.

Concepts

 Collection of logically-related shared data.

 Data split into fragments.

 Fragments may be replicated.

 Fragments/replicas allocated to sites.

 Sites linked by a communications network.

 Data at each site is under control of a DBMS.

 DBMSs handle local applications autonomously.

 Each DBMS participates in at least one global

application.

Component Architecture for a DDBMS

GDD

DDBMS

DC

Computer Network

DDBMS

DC LDBMS

LDBMS : Local DBMS component

DC : Data communication component

GDD : Global Data Dictionary

site 1

site 2 DB

GDD

The Ideal Situation

 A single application should be able to operate

transparently on data that is:

spread across a variety of different DBMS's

running on a variety of different machines

supported by a variety of different operating

systems

connected together by a variety of different

communication networks

 The distribution can be geographical or local

Workable definition

A distributed database system consists of a collection of
sites connected together via some kind of
communications network, in which :

each site is a database system site in its own right;

the sites agree to work together, so that a user at any
site can access data anywhere in the network exactly
as if the data were all stored at the user's own site

It is a logical union of real databases

 It can be seen as a kind of partnership among individual
local DBMS's

 Difference with remote access or distributed processing
systems

 Temporary assumption: strict homogeneity

5

Distributed DBMS

6

Distributed Processing

 A centralized database that can be accessed

over a computer network.

Parallel DBMS

 A DBMS running across multiple processors

and disks designed to execute operations in

parallel, whenever possible, to improve

performance.

 Based on premise that single processor

systems can no longer meet requirements for

cost-effective scalability, reliability, and

performance.

 Parallel DBMSs link multiple, smaller machines

to achieve same throughput as single, larger

machine, with greater scalability and reliability.

Parallel DBMS

 Main architectures for parallel DBMSs are:

a: Shared memory.

b: Shared disk.

c: Shared nothing.

9

Parallel DBMS

Advantages of DDBMSs

 Organizational Structure

 Shareability and Local Autonomy

 Improved Availability

 Improved Reliability

 Improved Performance

 Economics

 Modular Growth

Disadvantages of DDBMSs

 Complexity

 Cost

 Security

 Integrity Control More Difficult

 Lack of Standards

 Lack of Experience

 Database Design More Complex

Types of DDBMS

 Homogeneous DDBMS

 Heterogeneous DDBMS

Homogeneous DDBMS

 All sites use same DBMS product.

 Much easier to design and manage.

 Approach provides incremental growth and

allows increased performance.

Heterogeneous DDBMS

 Sites may run different DBMS products, with

possibly different underlying data models.

 Occurs when sites have implemented their own

databases and integration is considered later.

 Translations required to allow for:

Different hardware.

Different DBMS products.

Different hardware and different DBMS products.

 Typical solution is to use gateways.

Open Database Access and Interoperability

 Open Group has formed a Working Group to provide

specifications that will create database infrastructure

environment where there is:

 Common SQL API that allows client applications to be

written that do not need to know vendor of DBMS they

are accessing.

 Common database protocol that enables DBMS from one

vendor to communicate directly with DBMS from another

vendor without the need for a gateway.

 A common network protocol that allows communications

between different DBMSs.

 Most ambitious goal is to find a way to enable

transaction to span DBMSs from different vendors

without use of a gateway.

Multidatabase System (MDBS)

 DDBMS in which each site maintains complete

autonomy.

 DBMS that resides transparently on top of

existing database and file systems and

presents a single database to its users.

 Allows users to access and share data without

requiring physical database integration.

 Non-federated MDBS (no local users) and

federated MDBS (FMDBS).

Functions of a DDBMS

 Expect DDBMS to have at least the

functionality of a DBMS.

 Also to have following functionality:

 Extended communication services.

 Extended Data Dictionary.

 Distributed query processing.

 Extended concurrency control.

 Extended recovery services.

Reference Architecture for DDBMS

 Due to diversity, no universally accepted

architecture such as the ANSI/SPARC 3-level

architecture.

 A reference architecture consists of:

Set of global external schemas.

Global conceptual schema (GCS).

Fragmentation schema and allocation schema.

Set of schemas for each local DBMS conforming to

3-level ANSI/SPARC .

 Some levels may be missing, depending on

levels of transparency supported.

Reference Architecture for DDBMS

Reference Architecture for MDBS

 In DDBMS, GCS is union of all local conceptual

schemas.

 In FMDBS, GCS is subset of local conceptual

schemas (LCS), consisting of data that each

local system agrees to share.

 GCS of tightly coupled system involves

integration of either parts of LCSs or local

external schemas.

 FMDBS with no GCS is called loosely coupled.

Reference Architecture for Tightly-

Coupled Federated MDBS

25

Components of a DDBMS

Distributed Database Design

 Three key issues:

Fragmentation.

Allocation

Replication

Distributed Database Design

 Fragmentation

Relation may be divided into a number of sub-

relations, which are then distributed.

 Allocation

Each fragment is stored at site with "optimal"

distribution.

 Replication

Copy of fragment may be maintained at several sites.

Fragmentation

 Definition and allocation of fragments carried

out strategically to achieve:

Locality of Reference

Improved Reliability and Availability

Improved Performance

Balanced Storage Capacities and Costs

Minimal Communication Costs.

 Involves analyzing most important

applications, based on quantitative/qualitative

information.

Fragmentation

 Quantitative information may include:

frequency with which an application is run;

site from which an application is run;

performance criteria for transactions and

applications.

 Qualitative information may include

transactions that are executed by application,

type of access (read or write), and predicates

of read operations.

Data Allocation

 Four alternative strategies regarding

placement of data:

Centralized

Partitioned (or Fragmented)

Complete Replication

Selective Replication

Data Allocation

 Centralized

Consists of single database and DBMS stored at one

site with users distributed across the network.

 Partitioned

Database partitioned into disjoint fragments, each

fragment assigned to one site.

Data Allocation

 Complete Replication

Consists of maintaining complete copy of database

at each site.

 Selective Replication

Combination of partitioning, replication, and

centralization.

33

Comparison of Strategies for Data

Distribution

Why Fragment?

 Usage

Applications work with views rather than entire

relations.

 Efficiency

Data is stored close to where it is most frequently

used.

Data that is not needed by local applications is not

stored.

Why Fragment?

 Parallelism

With fragments as unit of distribution, transaction

can be divided into several subqueries that operate

on fragments.

 Security

Data not required by local applications is not stored

and so not available to unauthorized users.

 Disadvantages

Performance

Integrity.

Correctness of Fragmentation

 Three correctness rules:

Completeness

Reconstruction

Disjointness.

Correctness of Fragmentation

 Completeness

 If relation R is decomposed into fragments R1, R2,

... Rn, each data item that can be found in R must

appear in at least one fragment.

 Reconstruction

 Must be possible to define a relational

operation that will reconstruct R from the

fragments.

 Reconstruction for horizontal fragmentation is

Union operation and Join for vertical .

Correctness of Fragmentation

 Disjointness

 If data item di appears in fragment Ri, then it

should not appear in any other fragment.

 Exception: vertical fragmentation, where

primary key attributes must be repeated to

allow reconstruction.

 For horizontal fragmentation, data item is a

tuple

 For vertical fragmentation, data item is an

attribute.

Types of Fragmentation

 Four types of fragmentation:

Horizontal

Vertical

Mixed

Derived.

 Other possibility is no fragmentation:

If relation is small and not updated frequently, may

be better not to fragment relation.

41

Horizontal and Vertical Fragmentation

Mixed Fragmentation

Horizontal Fragmentation

 This strategy is determined by looking at

predicates used by transactions.

 Involves finding set of minimal (complete and

relevant) predicates.

 Set of predicates is complete, if and only if, any

two tuples in same fragment are referenced

with same probability by any application.

 Predicate is relevant if there is at least one

application that accesses fragments

differently.

Transparencies in a DDBMS

 Distribution Transparency

Fragmentation Transparency

Location Transparency

Replication Transparency

Local Mapping Transparency

Naming Transparency

Transparencies in a DDBMS

 Transaction Transparency

Concurrency Transparency

Failure Transparency

 Performance Transparency

 DBMS Transparency

Distribution Transparency

 Distribution transparency allows user to

perceive database as single, logical entity.

 If DDBMS exhibits distribution transparency,

user does not need to know:

data is fragmented (fragmentation transparency),

location of data items (location transparency),

otherwise call this local mapping transparency.

 With replication transparency, user is unaware

of replication of fragments .

Naming Transparency

 Each item in a DDB must have a unique name.

 DDBMS must ensure that no two sites create a

database object with same name.

 One solution is to create central name server.

However, this results in:

loss of some local autonomy;

central site may become a bottleneck;

low availability; if the central site fails, remaining

sites cannot create any new objects.

Transaction Transparency

 Ensures that all distributed transactions

maintain distributed database’s integrity and

consistency.

 Distributed transaction accesses data stored at

more than one location.

 Each transaction is divided into number of

sub-transactions, one for each site that has to

be accessed.

 DDBMS must ensure the indivisibility of both

the global transaction and each

subtransactions.

Concurrency Transparency

 All transactions must execute independently

and be logically consistent with results

obtained if transactions executed one at a time,

in some arbitrary serial order.

 Same fundamental principles as for centralized

DBMS.

 DDBMS must ensure both global and local

transactions do not interfere with each other.

 Similarly, DDBMS must ensure consistency of

all sub-transactions of global transaction.

Concurrency Transparency

 Replication makes concurrency more complex.

 If a copy of a replicated data item is updated,

update must be propagated to all copies.

 Could propagate changes as part of original

transaction, making it an atomic operation.

 However, if one site holding copy is not

reachable, then transaction is delayed until site

is reachable.

Concurrency Transparency

 Could limit update propagation to only those

sites currently available. Remaining sites

updated when they become available again.

 Could allow updates to copies to happen

asynchronously, sometime after the original

update. Delay in regaining consistency may

range from a few seconds to several hours.

Failure Transparency

 DDBMS must ensure atomicity and durability

of global transaction.

 Means ensuring that sub-transactions of global

transaction either all commit or all abort.

 Thus, DDBMS must synchronize global

transaction to ensure that all sub-transactions

have completed successfully before recording

a final COMMIT for global transaction.

 Must do this in presence of site and network

failures.

Performance Transparency

 DDBMS must perform as if it were a centralized

DBMS.

DDBMS should not suffer any performance

degradation due to distributed architecture.

DDBMS should determine most cost-effective

strategy to execute a request.

Performance Transparency

 Distributed Query Processor (DQP) maps data

request into ordered sequence of operations

on local databases.

 Must consider fragmentation, replication, and

allocation schemas.

 DQP has to decide:

which fragment to access;

which copy of a fragment to use;

which location to use.

Performance Transparency

 DQP produces execution strategy optimized

with respect to some cost function.

 Typically, costs associated with a distributed

request include:

I/O cost;

CPU cost;

communication cost.

Date’s 12 Rules for a DDBMS

 0. Fundamental Principle

 To the user, a distributed system should look

exactly like a non-distributed system.

 1. Local Autonomy

 2. No Reliance on a Central Site

 3. Continuous Operation

 4. Location Independence

 5. Fragmentation Independence

 6. Replication Independence

Date’s 12 Rules for a DDBMS

 7. Distributed Query Processing

 8. Distributed Transaction Processing

 9. Hardware Independence

 10. Operating System Independence

 11. Network Independence

 12. Database Independence

 Last four rules are ideals.

