

Optimistic Methods for Concurrency

Control

What is Concurrency Control

Process of managing simultaneous execution of transactions in a
shared database, to ensure the serializability of transactions, is known
as concurrency control.

Why we need Concurrency

Control

Simultaneous execution of transactions over a shared database

can create several data integrity and consistency problems:

• Lost Updates.

• Uncommitted Data.

• Inconsistent retrievals.

When we need Concurrency

Control

Concurrent access to data is desirable when:

1.The amount of data is sufficiently great that at any given time

only fraction of the data can be in primary memory & rest should

be swapped from secondary memory as needed.

2. Even if the entire database can be present in primary memory,

there may be multiple processes.

Concurrency Control Techniques

• Pessimistic concurrency control

 – Locking

• Optimistic concurrency control

Pessimistic Concurrency Control

•Pessimistic Concurrency Control assumes that conflicts will

happen

•Pessimistic Concurrency Control techniques detect conflicts as

soon as they occur and resolve them using blocking.

Locking

•Locking is “pessimistic” because it assumes that conflicts will

happen.

•The concept of locking data items is one of the main techniques
used for controlling the concurrent execution of transactions.

•A lock is a variable associated with a data item in the database.
Generally there is a lock for each data item in the database.

•A lock describes the status of the data item with respect to possible
operations that can be applied to that item. It is used for
synchronising the access by concurrent transactions to the database
items.

– A transaction locks an object before using it

– When an object is locked by another transaction, the
requesting transaction must wait

Disadvantages of locking

•Lock management overhead.

•Deadlock detection/resolution.

•Concurrency is significantly lowered, when congested nodes are

locked.

•To allow a transaction to abort itself when mistakes occur, locks

can’t be released until the end of transaction, thus currency is

significantly lowered

•(Most Important) Conflicts are rare. (We might get better

performance by not locking, and instead checking for conflicts at

commit time.)

Optimistic Concurrency Control

•Optimistic Concurrency Control assumes that conflicts between

transactions are rare.

•Does not require locking

•Transaction executed without restrictions

•Check for conflicts just before commit

Optimistic Concurrency Control

(Terminology used)

•ReadSet(Ti): Set of objects read by Transaction Ti.

•WriteSet(Ti): Set of objects modified by Transaction Ti.

Phases for Optimistic

Concurrency Control

•Read Phase

•Validation Phase

•Write Phase

R V W

Read Phase

•No global writes take place

•Whenever the first write to a given object is requested, a copy

is made, and all subsequent writes are directed to the copy.

•When the transaction completes, it requests its validation and

write phases.

Write Phase

•If the validation fails, the transaction will be backed up and started

again as a new transaction

•If validation succeeds, then the transaction enters the write phase

where locally written data are made global.

Validation Phase

•Checks are performed to ensure serializibility is not violated if the

transaction updates are applied to the database.

•For read only validation consists of checks to ensure that the values

read are the current values for the corresponding data items. If not

interference has occurred, and the transaction is backed up and

restarted.

•For a transaction that has updates, validation consists of

determining whether the current transaction leaves the database in a

consistent state, with serializibility maintained. If not, transaction is

backed up and restarted.

•The scheduling of transactions is done by assigning transaction

numbers to transactions

Validation Phase

•Each Transaction Ti is explicitly assigned a unique integer

transaction number t(i)

•There must exist a serially equivalend schedule in which transaction

Ti comes before transaction Tj whenever t(i) < t(j).

Validation Phase

To guarantee this numbering criteria one of the following three

conditions must hold:

1) Ti completes its write phase before Tj starts its read phase.

2) The write set of Ti does not intersect the read set of Tj , and Ti

complete its write phase before Tj starts its write phase.

3) The write set of Ti does not intersect the read set or write set of

Tj , and Ti completes its read phase before Tj complete its read

phase.

Condition 1

Condition 1 states that Ti actually completes before Tj starts, i.e

they execute completely in serial order

R V W

R V W

Condition 2
Condition 2 states that the writes of Ti do not affect the read

phase of Tj, and that Ti finishes writing before Tj starts

writing.

WS(Ti) disjoint from RS(Tj)

 Ti does not overwrite Tj

Tj does not read any dirty data since Tj read data when Ti is

still modifying it.

R V W

R V W

Condition 3

Condition 3 is similar to Condition 2 but does not require that Ti

finish writing before Tj starts writing; it simply requires that Ti

does not affect the read phase or the write phase of Tj

–WS(Ti) disjoint from RS(Tj)

This condition allows Ti and Tj to write objects at the same time,

but there is no overlapping for the sets written by these two

transactions.

–WS(Ti) disjoint from WS(Tj).

 R V W

R V W

Assigning Transaction Numbers

•Transactions numbers should be assigned in order, since if Ti

completes before Tj starts Ti < Tj.

Solution: Maintain a global counter, when transaction number is

needed increment the counter and return the value.

•Transaction number must be assigned somewhere before

validation, since validation require knowledge of the transaction

number for the transaction being validated.

– Transaction numbers can be assigned at the beginning of the

read phase. But this is not optimistic.

– Therefore these are usually assigned at the end of read phase

Practical Considerations

•Space for WriteSets: To validate, Tj must have WriteSets for all
Ti where Ti < Tj and Ti was active when Tj began. There may
be many such transactions, and we may run out of space.

Solution:

– Concurrency Control maintain some finite number of most

recent write sets, where the number is large enough to

validate almost all transactions

– If old write sets are unavailable the validation fails and the

transaction is backed up.

Practical Considerations

•Starvation: What should be done when validation repeatedly fails ?

Solution:

– If the concurrency control detects a starving transaction, it will

be restarted, but without releasing the critical section semaphore,

and transaction is run to the completion by write locking the

database

Serial Validation

•Implementation of Condition number 1 and 2. Since Condition

3 is not used, last part of condition 3 implies that write phases

must be serial (writes won’t be interleaved).

– Ti finishes writing before Tj starts reading (serial)

– WS(Ti) disjoint from RS(Tj), and Ti finish writing before

Tj starts writing.

Serial Validation

(implementation)
•Place the assignment of a transaction number, validation and

the subsequent write phase all in a critical section. (Since

nothing else goes on concurrently, no need to check for

Condition 3)

– Write sets of all transactions started form the beginning to

the end of this transaction are checked to see whether they

intersect with the read set of current transaction.

– If validation succeed write phase is committed, otherwise

transaction is backed up.

•Optimization for Read-only Transactions:

– Since there is no write phase we don’t need critical section

Parallel Validation

•Parallel validation uses all 3 validation Conditions, thus

allowing greater concurrency (For allowing interleaved writes).

– Maintain a set of transactions ids active for transactions

that have completed their read phase but have not yet

completed their write phase.

– During validation, in addition to the rules for serial

validation, active set’s write set is checked for intersections

with the read & write sets of the current transaction.

– If validation succeed write phase is committed, otherwise

transaction is backed up.

Conclusion

•Optimistic Concurrency Control is superior to locking methods

for systems where transaction conflict is highly unlikely, e.g

query dominant systems.

– Avoids locking overhead

– Using parallel validation OCC can take full advantage of

multiprocessor environment.

