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The Course 

• Purpose: a rigorous introduction to the design 

and analysis of algorithms 

 Not a lab or programming course 

 Not a math course, either 

• Textbook: Introduction to Algorithms, 

Cormen, Leiserson, Rivest, Stein 

 The “Big White Book” 

 Second edition: now “Smaller Green Book” 

 An excellent reference you should own  



The Course 

• Instructor: David Luebke 

 luebke@cs.virginia.edu 

 Office: Olsson 219 

 Office hours: 2-3 Monday, 10-11 Thursday 

• TA: Pavel Sorokin 

 Office hours and location TBA 



The Course 

• Grading policy: 

 Homework: 30% 

 Exam 1: 15% 

 Exam 2: 15% 

 Final: 35% 

 Participation: 5% 

 



The Course 

• Prerequisites: 

 CS 202 w/ grade of C- or better 

 CS 216 w/ grade of C- or better 

 CS 302 recommended but not required 

 



The Course 

• Format 

 Three lectures/week 

 Homework most weeks 

o Problem sets 

o Maybe occasional programming assignments 

 Two tests + final exam 



Review: Induction 

• Suppose  

 S(k) is true for fixed constant k  

o Often k = 0 

 S(n)  S(n+1) for all n >= k 

• Then S(n) is true for all n >= k 



Proof By Induction 

• Claim:S(n) is true for all n >= k 

• Basis: 

 Show formula is true when n = k 

• Inductive hypothesis: 

 Assume formula is true for an arbitrary n 

• Step: 

 Show that formula is then true for n+1 



Induction Example:  

Gaussian Closed Form 

• Prove 1 + 2 + 3 + … + n = n(n+1) / 2 

 Basis: 

o If n = 0, then 0 = 0(0+1) / 2 

 Inductive hypothesis: 

o Assume 1 + 2 + 3 + … + n = n(n+1) / 2 

 Step (show true for n+1): 

1 + 2 + … + n + n+1 = (1 + 2 + …+ n) + (n+1) 

= n(n+1)/2 + n+1 = [n(n+1) + 2(n+1)]/2  

= (n+1)(n+2)/2 = (n+1)(n+1 + 1) / 2 



Induction Example: 

Geometric Closed Form 

• Prove a0 + a1 + … + an = (an+1 - 1)/(a - 1) for 

all a  1 

 Basis: show that a0 = (a0+1 - 1)/(a - 1)  

a0 = 1 = (a1 - 1)/(a - 1) 

 Inductive hypothesis:  

o Assume a0 + a1 + … + an = (an+1 - 1)/(a - 1)  

 Step (show true for n+1): 

a0 + a1 + … + an+1 = a0 + a1 + … + an + an+1 

= (an+1 - 1)/(a - 1) + an+1 = (an+1+1 - 1)/(a - 1) 



Induction 

• We’ve been using weak induction 

• Strong induction also holds 

 Basis: show S(0) 

 Hypothesis: assume S(k) holds for arbitrary k <= n 

 Step: Show S(n+1) follows 

• Another variation: 

 Basis: show S(0), S(1) 

 Hypothesis: assume S(n) and S(n+1) are true 

 Step: show S(n+2) follows 



Asymptotic Performance 

• In this course, we care most about asymptotic 

performance 

 How does the algorithm behave as the problem 

size gets very large? 

o Running time 

o Memory/storage requirements 

o Bandwidth/power requirements/logic gates/etc. 



Asymptotic Notation 

• By now you should have an intuitive feel for 

asymptotic (big-O) notation: 

 What does O(n) running time mean?  O(n2)? 

O(n lg n)?  

 How does asymptotic running time relate to 

asymptotic memory usage? 

• Our first task is to define this notation more 

formally and completely  



Analysis of Algorithms 

• Analysis is performed with respect to a 

computational model 

• We will usually use a generic uniprocessor 

random-access machine (RAM) 

 All memory equally expensive to access 

 No concurrent operations 

 All reasonable instructions take unit time 

o Except, of course, function calls 

 Constant word size 

o Unless we are explicitly manipulating bits 



Input Size 

• Time and space complexity 

 This is generally a function of the input size 

o E.g., sorting, multiplication 

 How we characterize input size depends: 

o Sorting: number of input items 

o Multiplication: total number of bits 

o Graph algorithms: number of nodes & edges 

o Etc 



Running Time 

• Number of primitive steps that are executed 

 Except for time of executing a function call most 

statements roughly require the same amount of 

time 

o y = m * x + b 

o c = 5 / 9 * (t - 32 ) 

o z = f(x) + g(y) 

• We can be more exact if need be 



Analysis 

• Worst case 

 Provides an upper bound on running time 

 An absolute guarantee 

• Average case 

 Provides the expected running time 

 Very useful, but treat with care: what is “average”? 

o Random (equally likely) inputs 

o Real-life inputs 


