
ALGORITHMS

 INTRODUCTION

PROOF BY

ASYMPTOTIC NOTATION

The Course

• Purpose: a rigorous introduction to the design

and analysis of algorithms

 Not a lab or programming course

 Not a math course, either

• Textbook: Introduction to Algorithms,

Cormen, Leiserson, Rivest, Stein

 The “Big White Book”

 Second edition: now “Smaller Green Book”

 An excellent reference you should own

The Course

• Instructor: David Luebke

 luebke@cs.virginia.edu

 Office: Olsson 219

 Office hours: 2-3 Monday, 10-11 Thursday

• TA: Pavel Sorokin

 Office hours and location TBA

The Course

• Grading policy:

 Homework: 30%

 Exam 1: 15%

 Exam 2: 15%

 Final: 35%

 Participation: 5%

The Course

• Prerequisites:

 CS 202 w/ grade of C- or better

 CS 216 w/ grade of C- or better

 CS 302 recommended but not required

The Course

• Format

 Three lectures/week

 Homework most weeks

o Problem sets

o Maybe occasional programming assignments

 Two tests + final exam

Review: Induction

• Suppose

 S(k) is true for fixed constant k

o Often k = 0

 S(n) S(n+1) for all n >= k

• Then S(n) is true for all n >= k

Proof By Induction

• Claim:S(n) is true for all n >= k

• Basis:

 Show formula is true when n = k

• Inductive hypothesis:

 Assume formula is true for an arbitrary n

• Step:

 Show that formula is then true for n+1

Induction Example:

Gaussian Closed Form

• Prove 1 + 2 + 3 + … + n = n(n+1) / 2

 Basis:

o If n = 0, then 0 = 0(0+1) / 2

 Inductive hypothesis:

o Assume 1 + 2 + 3 + … + n = n(n+1) / 2

 Step (show true for n+1):

1 + 2 + … + n + n+1 = (1 + 2 + …+ n) + (n+1)

= n(n+1)/2 + n+1 = [n(n+1) + 2(n+1)]/2

= (n+1)(n+2)/2 = (n+1)(n+1 + 1) / 2

Induction Example:

Geometric Closed Form

• Prove a0 + a1 + … + an = (an+1 - 1)/(a - 1) for

all a 1

 Basis: show that a0 = (a0+1 - 1)/(a - 1)

a0 = 1 = (a1 - 1)/(a - 1)

 Inductive hypothesis:

o Assume a0 + a1 + … + an = (an+1 - 1)/(a - 1)

 Step (show true for n+1):

a0 + a1 + … + an+1 = a0 + a1 + … + an + an+1

= (an+1 - 1)/(a - 1) + an+1 = (an+1+1 - 1)/(a - 1)

Induction

• We’ve been using weak induction

• Strong induction also holds

 Basis: show S(0)

 Hypothesis: assume S(k) holds for arbitrary k <= n

 Step: Show S(n+1) follows

• Another variation:

 Basis: show S(0), S(1)

 Hypothesis: assume S(n) and S(n+1) are true

 Step: show S(n+2) follows

Asymptotic Performance

• In this course, we care most about asymptotic

performance

 How does the algorithm behave as the problem

size gets very large?

o Running time

o Memory/storage requirements

o Bandwidth/power requirements/logic gates/etc.

Asymptotic Notation

• By now you should have an intuitive feel for

asymptotic (big-O) notation:

 What does O(n) running time mean? O(n2)?

O(n lg n)?

 How does asymptotic running time relate to

asymptotic memory usage?

• Our first task is to define this notation more

formally and completely

Analysis of Algorithms

• Analysis is performed with respect to a

computational model

• We will usually use a generic uniprocessor

random-access machine (RAM)

 All memory equally expensive to access

 No concurrent operations

 All reasonable instructions take unit time

o Except, of course, function calls

 Constant word size

o Unless we are explicitly manipulating bits

Input Size

• Time and space complexity

 This is generally a function of the input size

o E.g., sorting, multiplication

 How we characterize input size depends:

o Sorting: number of input items

o Multiplication: total number of bits

o Graph algorithms: number of nodes & edges

o Etc

Running Time

• Number of primitive steps that are executed

 Except for time of executing a function call most

statements roughly require the same amount of

time

o y = m * x + b

o c = 5 / 9 * (t - 32)

o z = f(x) + g(y)

• We can be more exact if need be

Analysis

• Worst case

 Provides an upper bound on running time

 An absolute guarantee

• Average case

 Provides the expected running time

 Very useful, but treat with care: what is “average”?

o Random (equally likely) inputs

o Real-life inputs

