ALGORITHMS

INTRODUCTION
 PROOF BY

ASYMPTOTIC NOTATION

The Course

- Purpose: a rigorous introduction to the design and analysis of algorithms
- Not a lab or programming course
- Not a math course, either
- Textbook: Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein
- The "Big White Book"
" Second edition: now "Smaller Green Book"
- An excellent reference you should own

The Course

- Instructor: David Luebke
- luebke@cs.virginia.edu
- Office: Olsson 219
- Office hours: 2-3 Monday, 10-11 Thursday
- TA: Pavel Sorokin
- Office hours and location TBA

The Course

- Grading policy:
- Homework: 30\%
- Exam 1: 15\%
- Exam 2: 15\%
- Final: 35\%
- Participation: 5\%

The Course

- Prerequisites:
- CS 202 w/ grade of C- or better
- CS 216 w/ grade of C- or better
- CS 302 recommended but not required

The Course

- Format
- Three lectures/week
- Homework most weeks
o Problem sets
o Maybe occasional programming assignments
- Two tests + final exam

Review: Induction

- Suppose
- $\mathrm{S}(\mathrm{k})$ is true for fixed constant k o Often $\mathrm{k}=0$
- $\mathrm{S}(\mathrm{n}) \rightarrow \mathrm{S}(\mathrm{n}+1)$ for all $\mathrm{n}>=\mathrm{k}$
- Then $S(n)$ is true for all $n>=k$

Proof By Induction

- Claim: $\mathrm{S}(\mathrm{n})$ is true for all $\mathrm{n}>=\mathrm{k}$
- Basis:
- Show formula is true when $\mathrm{n}=\mathrm{k}$
- Inductive hypothesis:
- Assume formula is true for an arbitrary n
- Step:
- Show that formula is then true for $\mathrm{n}+1$

Induction Example: Gaussian Closed Form

- Prove $1+2+3+\ldots+\mathrm{n}=\mathrm{n}(\mathrm{n}+1) / 2$
- Basis:

$$
\text { o If } \mathrm{n}=0 \text {, then } 0=0(0+1) / 2
$$

- Inductive hypothesis:
o Assume $1+2+3+\ldots+n=n(n+1) / 2$
- Step (show true for $\mathrm{n}+1$):

$$
\begin{aligned}
& 1+2+\ldots+\mathrm{n}+\mathrm{n}+1=(1+2+\ldots+\mathrm{n})+(\mathrm{n}+1) \\
& =\mathrm{n}(\mathrm{n}+1) / 2+\mathrm{n}+1=[\mathrm{n}(\mathrm{n}+1)+2(\mathrm{n}+1)] / 2 \\
& =(\mathrm{n}+1)(\mathrm{n}+2) / 2=(\mathrm{n}+1)(\mathrm{n}+1+1) / 2
\end{aligned}
$$

Induction Example: Geometric Closed Form

- Prove $a^{0}+a^{1}+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1)$ for all $\mathrm{a} \neq 1$
- Basis: show that $a^{0}=\left(a^{0+1}-1\right) /(a-1)$

$$
\mathrm{a}^{0}=1=\left(\mathrm{a}^{1}-1\right) /(\mathrm{a}-1)
$$

- Inductive hypothesis:
o Assume $a^{0}+a^{1}+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1)$
- Step (show true for $\mathrm{n}+1$):

$$
\begin{aligned}
& a^{0}+a^{1}+\ldots+a^{n+1}=a^{0}+a^{1}+\ldots+a^{n}+a^{n+1} \\
& =\left(a^{n+1}-1\right) /(a-1)+a^{n+1}=\left(a^{n+1+1}-1\right) /(a-1)
\end{aligned}
$$

Induction

- We've been using weak induction
- Strong induction also holds
- Basis: show S(0)
- Hypothesis: assume $\mathrm{S}(\mathrm{k})$ holds for arbitrary $\mathrm{k}<=\mathrm{n}$
- Step: Show S(n+1) follows
- Another variation:
- Basis: show $S(0), S(1)$
- Hypothesis: assume $S(n)$ and $S(n+1)$ are true
- Step: show $\mathrm{S}(\mathrm{n}+2)$ follows

Asymptotic Performance

- In this course, we care most about asymptotic performance
- How does the algorithm behave as the problem size gets very large?
o Running time
o Memory/storage requirements
o Bandwidth/power requirements/logic gates/etc.

Asymptotic Notation

- By now you should have an intuitive feel for asymptotic (big-O) notation:
- What does $O(n)$ running time mean? $O\left(n^{2}\right)$? $O(n \lg n)$?
- How does asymptotic running time relate to asymptotic memory usage?
- Our first task is to define this notation more formally and completely

Analysis of Algorithms

- Analysis is performed with respect to a computational model
- We will usually use a generic uniprocessor random-access machine (RAM)
- All memory equally expensive to access
- No concurrent operations
- All reasonable instructions take unit time o Except, of course, function calls
- Constant word size
o Unless we are explicitly manipulating bits

Input Size

- Time and space complexity
- This is generally a function of the input size
o E.g., sorting, multiplication
- How we characterize input size depends:
o Sorting: number of input items
o Multiplication: total number of bits
o Graph algorithms: number of nodes \& edges
o Etc

Running Time

- Number of primitive steps that are executed
- Except for time of executing a function call most statements roughly require the same amount of time

$$
\begin{aligned}
& o \mathrm{y}=\mathrm{m} * \mathrm{x}+\mathrm{b} \\
& \mathrm{o} \mathrm{c}=5 / 9 *(\mathrm{t}-32) \\
& \mathrm{o} \mathrm{z}=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{y})
\end{aligned}
$$

- We can be more exact if need be

Analysis

- Worst case
- Provides an upper bound on running time
- An absolute guarantee
- Average case
- Provides the expected running time
- Very useful, but treat with care: what is "average"?
o Random (equally likely) inputs
o Real-life inputs

