ALGORITHMS

INTRODUCTION PROOF BY ASYMPTOTIC NOTATION

- Purpose: a rigorous introduction to the design and analysis of algorithms
 - Not a lab or programming course
 - Not a math course, either
- Textbook: *Introduction to Algorithms*, Cormen, Leiserson, Rivest, Stein
 - The "Big White Book"
 - Second edition: now "Smaller Green Book"
 - An excellent reference you should own

- Instructor: David Luebke
 - luebke@cs.virginia.edu
 - Office: Olsson 219
 - Office hours: 2-3 Monday, 10-11 Thursday
- TA: Pavel Sorokin
 - Office hours and location TBA

- Grading policy:
 - Homework: 30%
 - Exam 1: 15%
 - Exam 2: 15%
 - Final: 35%
 - Participation: 5%

- Prerequisites:
 - CS 202 w/ grade of C- or better
 - CS 216 w/ grade of C- or better
 - CS 302 recommended but not required

- Format
 - Three lectures/week
 - Homework most weeks
 - Problem sets
 - o Maybe occasional programming assignments
 - Two tests + final exam

Review: Induction

- Suppose
 - S(k) is true for fixed constant k
 Often k = 0
 - $S(n) \rightarrow S(n+1)$ for all $n \ge k$
- Then S(n) is true for all $n \ge k$

Proof By Induction

- Claim:S(n) is true for all n >= k
- Basis:
 - Show formula is true when n = k
- Inductive hypothesis:
 - Assume formula is true for an arbitrary n
- Step:
 - Show that formula is then true for n+1

Induction Example: Gaussian Closed Form

- Prove $1 + 2 + 3 + \ldots + n = n(n+1) / 2$
 - Basis:
 - o If n = 0, then 0 = 0(0+1) / 2
 - Inductive hypothesis:

o Assume $1 + 2 + 3 + \ldots + n = n(n+1) / 2$

• Step (show true for n+1): $1+2+\ldots+n+n+1 = (1+2+\ldots+n) + (n+1)$ = n(n+1)/2 + n+1 = [n(n+1) + 2(n+1)]/2= (n+1)(n+2)/2 = (n+1)(n+1+1)/2

Induction Example: Geometric Closed Form

- Prove $a^0 + a^1 + \dots + a^n = (a^{n+1} 1)/(a 1)$ for all $a \neq 1$
 - Basis: show that $a^0 = (a^{0+1} 1)/(a 1)$ $a^0 = 1 = (a^1 - 1)/(a - 1)$
 - Inductive hypothesis: • Assume $a^0 + a^1 + ... + a^n = (a^{n+1} - 1)/(a - 1)$
 - Step (show true for n+1): $a^0 + a^1 + \dots + a^{n+1} = a^0 + a^1 + \dots + a^n + a^{n+1}$ $= (a^{n+1} - 1)/(a - 1) + a^{n+1} = (a^{n+1+1} - 1)/(a - 1)$

Induction

- We've been using *weak induction*
- *Strong induction* also holds
 - Basis: show S(0)
 - Hypothesis: assume S(k) holds for arbitrary k <= n
 - Step: Show S(n+1) follows
- Another variation:
 - Basis: show S(0), S(1)
 - Hypothesis: assume S(n) and S(n+1) are true
 - Step: show S(n+2) follows

Asymptotic Performance

- In this course, we care most about *asymptotic performance*
 - How does the algorithm behave as the problem size gets very large?
 - o Running time
 - o Memory/storage requirements
 - o Bandwidth/power requirements/logic gates/etc.

Asymptotic Notation

- By now you should have an intuitive feel for asymptotic (big-O) notation:
 - What does O(n) running time mean? O(n²)?
 O(n lg n)?
 - How does asymptotic running time relate to asymptotic memory usage?
- Our first task is to define this notation more formally and completely

Analysis of Algorithms

- Analysis is performed with respect to a computational model
- We will usually use a generic uniprocessor random-access machine (RAM)
 - All memory equally expensive to access
 - No concurrent operations
 - All reasonable instructions take unit time o Except, of course, function calls
 - Constant word size
 - o Unless we are explicitly manipulating bits

Input Size

- Time and space complexity
 - This is generally a function of the input size o E.g., sorting, multiplication
 - How we characterize input size depends:
 - o Sorting: number of input items
 - o Multiplication: total number of bits
 - o Graph algorithms: number of nodes & edgeso Etc

Running Time

- Number of primitive steps that are executed
 - Except for time of executing a function call most statements roughly require the same amount of time

$$\mathbf{o} \mathbf{y} = \mathbf{m} \mathbf{*} \mathbf{x} + \mathbf{b}$$

$$o c = 5 / 9 * (t - 32)$$

o
$$z = f(x) + g(y)$$

• We can be more exact if need be

Analysis

- Worst case
 - Provides an upper bound on running time
 - An absolute guarantee
- Average case
 - Provides the expected running time
 - Very useful, but treat with care: what is "average"?
 o Random (equally likely) inputs
 o Real-life inputs