Algorithms

Linear-Time Sorting Continued Medians and Order Statistics

Review: Comparison Sorts

- Comparison sorts: O(n lg n) at best
 - Model sort with decision tree
 - Path down tree = execution trace of algorithm
 - Leaves of tree = possible permutations of input
 - Tree must have n! leaves, so O(n lg n) height

Review: Counting Sort

- Counting sort:
 - Assumption: input is in the range 1..k
 - Basic idea:
 - Count number of elements $k \leq$ each element i
 - Use that number to place *i* in position *k* of sorted array
 - No comparisons! Runs in time O(n + k)
 - Stable sort
 - Does not sort in place:
 - O(n) array to hold sorted output
 - O(k) array for scratch storage

Review: Counting Sort

1	CountingSort(A, B, k)
2	for i=1 to k
3	C[i] = 0;
4	for j=1 to n
5	C[A[j]] += 1;
6	for i=2 to k
7	C[i] = C[i] + C[i-1];
8	for j=n downto 1
9	B[C[A[j]]] = A[j];
10	C[A[j]] -= 1;

Review: Radix Sort

- *How did IBM get rich originally?*
- Answer: punched card readers for census tabulation in early 1900's.
 - In particular, a *card sorter* that could sort cards into different bins
 - Each column can be punched in 12 places
 - Decimal digits use 10 places
 - Problem: only one column can be sorted on at a time

Review: Radix Sort

- Intuitively, you might sort on the most significant digit, then the second msd, etc.
- Problem: lots of intermediate piles of cards (read: scratch arrays) to keep track of
- Key idea: sort the *least* significant digit first
 RadixSort(A, d)
 for i=1 to d
 StableSort(A) on digit i
 Example: Fig 9.3

- Can we prove it will work?
- Sketch of an inductive argument (induction on the number of passes):
 - Assume lower-order digits {j: j<i}are sorted
 - Show that sorting next digit i leaves array correctly sorted
 - If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
 - If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order

- What sort will we use to sort on digits?
- Counting sort is obvious choice:
 - Sort *n* numbers on digits that range from 1..*k*Time: O(n + k)
- Each pass over *n* numbers with *d* digits takes time O(*n*+*k*), so total time O(*dn*+*dk*)

• When *d* is constant and k=O(n), takes O(n) time

• *How many bits in a computer word?*

- Problem: sort 1 million 64-bit numbers
 - Treat as four-digit radix 2¹⁶ numbers
 - Can sort in just four passes with radix sort!
- Compares well with typical O(*n* lg *n*) comparison sort
 - Requires approx lg n = 20 operations per number being sorted
- So why would we ever use anything but radix sort?

- In general, radix sort based on counting sort is
 - Fast
 - Asymptotically fast (i.e., O(*n*))
 - Simple to code
 - A good choice
- To think about: *Can radix sort be used on floating-point numbers?*

Summary: Radix Sort

- Radix sort:
 - Assumption: input has *d* digits ranging from 0 to *k*Basic idea:
 - Sort elements by digit starting with *least* significant
 - Use a stable sort (like counting sort) for each stage
 - Each pass over *n* numbers with *d* digits takes time O(n+k), so total time O(dn+dk)
 - When *d* is constant and k=O(n), takes O(n) time
 - Fast! Stable! Simple!
 - Doesn't sort in place

Bucket Sort

- Bucket sort
 - Assumption: input is *n* reals from [0, 1)
 - Basic idea:
 - Create *n* linked lists (*buckets*) to divide interval [0,1) into subintervals of size 1/*n*
 - Add each input element to appropriate bucket and sort buckets with insertion sort
 - Uniform input distribution \rightarrow O(1) bucket size

 \circ Therefore the expected total time is O(n)

These ideas will return when we study *hash tables*

- The *i*th *order statistic* in a set of *n* elements is the *i*th smallest element
- The *minimum* is thus the 1st order statistic
- The *maximum* is (duh) the *n*th order statistic
- The *median* is the n/2 order statistic
 If n is even, there are 2 medians
- *How can we calculate order statistics?*
- What is the running time?

Order Statistics

- How many comparisons are needed to find the minimum element in a set? The maximum?
- Can we find the minimum and maximum with less than twice the cost?
- Yes:
 - Walk through elements by pairs
 - Compare each element in pair to the other
 - Compare the largest to maximum, smallest to minimum

Total cost: 3 comparisons per 2 elements = O(3n/2)

Finding Order Statistics: The Selection Problem

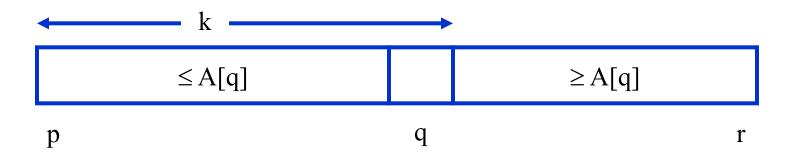
- A more interesting problem is *selection*: finding the *i*th smallest element of a set
- We will show:
 - A practical randomized algorithm with O(n) expected running time
 - A cool algorithm of theoretical interest only with O(n) worst-case running time

- Key idea: use partition() from quicksort
 - But, only need to examine one subarray
 - This savings shows up in running time: O(n)
- We will again use a slightly different partition than the book:
 - q = RandomizedPartition(A, p, r)

$\leq A[q]$		$\geq A[q]$	
р	q		r

RandomizedSelect(A, p, r, i)

return RandomizedSelect(A, q+1, r, i-k);



- Analyzing RandomizedSelect()
 - Worst case: partition always 0:n-1
 - T(n) = T(n-1) + O(n) = ???
 - $= O(n^2)$ (arithmetic series)
 - No better than sorting!
 - "Best" case: suppose a 9:1 partition
 - T(n) = T(9n/10) + O(n) = ???
 - = O(n) (Master Theorem, case 3)
 - Better than sorting!
 - What if this had been a 99:1 split?

- Average case
 - For upper bound, assume *i*th element always falls in larger side of partition:

$$T(n) \leq \frac{1}{n} \sum_{k=0}^{n-1} T(\max(k, n-k-1)) + \Theta(n)$$

$$\leq \frac{2}{n} \sum_{k=n/2}^{n-1} T(k) + \Theta(n)$$
 What happened here?

• Let's show that T(n) = O(n) by substitution

• Assume $T(n) \le cn$ for sufficiently large *c*:

$$T(n) \leq \frac{2}{n} \sum_{k=n/2}^{n-1} T(k) + \Theta(n)$$

$$The recurrence we started with$$

$$\leq \frac{2}{n} \sum_{k=n/2}^{n-1} ck + \Theta(n)$$

$$Substitute T(n) \leq cn \text{ for } T(k)$$

$$= \frac{2c}{n} \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{n/2-1} k \right) + \Theta(n)$$
"Split" the recurrence
$$= \frac{2c}{n} \left(\frac{1}{2} (n-1)n - \frac{1}{2} \left(\frac{n}{2} - 1 \right) \frac{n}{2} \right) + \Theta(n)$$
Expand arithmetic series
$$= c(n-1) - \frac{c}{2} \left(\frac{n}{2} - 1 \right) + \Theta(n)$$
Multiply it out

• Assume $T(n) \le cn$ for sufficiently large *c*:

$$T(n) \leq c(n-1) - \frac{c}{2}\left(\frac{n}{2} - 1\right) + \Theta(n)$$

_

The recurrence so far

$$cn - c - \frac{cn}{4} + \frac{c}{2} + \Theta(n)$$

Multiply it out

$$= cn - \frac{cn}{4} - \frac{c}{2} + \Theta(n)$$
$$= cn - \left(\frac{cn}{4} + \frac{c}{2} - \Theta(n)\right)$$

 \leq cn (if c is big enough)

Subtract c/2

Rearrange the arithmetic

What we set out to prove

- Randomized algorithm works well in practice
- What follows is a worst-case linear time algorithm, really of theoretical interest only
- Basic idea:
 - Generate a good partitioning element
 - Call this element *x*

- The algorithm in words:
 - 1. Divide *n* elements into groups of 5
 - 2. Find median of each group (*How? How long?*)
 - 3. Use Select() recursively to find median x of the $\lfloor n/5 \rfloor$ medians
 - 4. Partition the *n* elements around *x*. Let $k = \operatorname{rank}(x)$
 - 5. **if** (i == k) **then** return x
 - if (i < k) then use Select() recursively to find ith smallest
 element in first partition</pre>
 - else (i > k) use Select() recursively to find (i-k)th smallest
 element in last partition

- (Sketch situation on the board)
- How many of the 5-element medians are ≤x?
 At least 1/2 of the medians = [[n/5]/2] = [n/10]
- How many elements are $\leq x$?
 - At least $3 \lfloor n/10 \rfloor$ elements
- For large n, $3 \lfloor n/10 \rfloor \ge n/4$ (*How large?*)
- So at least n/4 elements $\leq x$
- Similarly: at least n/4 elements $\ge x$

- Thus after partitioning around *x*, step 5 will call Select() on at most 3*n*/4 elements
- The recurrence is therefore: $T(n) \le T(|n/5|) + T(3n/4) + \Theta(n)$ $\leq T(n/5) + T(3n/4) + \Theta(n)$ $|n/5| \leq n/5$ $\leq cn/5 + 3cn/4 + \Theta(n)$ Substitute T(n) = cn $= 19cn/20 + \Theta(n)$ **Combine fractions** $= cn - (cn/20 - \Theta(n))$ Express in desired form $\leq cn$ if c is big enough What we set out to prove

- Intuitively:
 - Work at each level is a constant fraction (19/20) smaller
 - Geometric progression!
 - Thus the O(n) work at the root dominates

Linear-Time Median Selection

- Given a "black box" O(n) median algorithm, what can we do?
 - *i*th order statistic:
 - \circ Find median x
 - \circ Partition input around *x*
 - if $(i \le (n+1)/2)$ recursively find *i*th element of first half
 - \circ else find (*i* (n+1)/2)th element in second half
 - $\circ T(n) = T(n/2) + O(n) = O(n)$

• Can you think of an application to sorting?

Linear-Time Median Selection

- Worst-case O(n lg n) quicksort
 - Find median *x* and partition around it
 - Recursively quicksort two halves
 - $T(n) = 2T(n/2) + O(n) = O(n \lg n)$