Algorithms

Linear-Time Sorting Continued Medians and Order Statistics

Review: Comparison Sorts

- Comparison sorts: O(n lg n) at best
- Model sort with decision tree
- Path down tree $=$ execution trace of algorithm
- Leaves of tree = possible permutations of input
- Tree must have n ! leaves, so $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ height

Review: Counting Sort

- Counting sort:
- Assumption: input is in the range $1 . . \mathrm{k}$
- Basic idea:
- Count number of elements $k \leq$ each element i
- Use that number to place i in position k of sorted array
- No comparisons! Runs in time $\mathrm{O}(\mathrm{n}+\mathrm{k})$
- Stable sort
- Does not sort in place:
- O(n) array to hold sorted output
$\circ \mathrm{O}(\mathrm{k})$ array for scratch storage

Review: Counting Sort

1	CountingSort (A, B, k)
2	for $i=1$ to k
3	$C[i]=0 ;$
4	for $j=1$ to n
5	$C[A[j]]+=1 ;$
6	for $i=2$ to k
7	$C[i]=C[i]+C[i-1] ;$
8	for $j=n$ downto 1
9	$B[C[A[j]]]=A[j] ;$
10	$C[A[j]]=1 ;$

Review: Radix Sort

- How did IBM get rich originally?
- Answer: punched card readers for census tabulation in early 1900's.
- In particular, a card sorter that could sort cards into different bins
- Each column can be punched in 12 places
- Decimal digits use 10 places
- Problem: only one column can be sorted on at a time

Review: Radix Sort

- Intuitively, you might sort on the most significant digit, then the second msd, etc.
- Problem: lots of intermediate piles of cards (read: scratch arrays) to keep track of
- Key idea: sort the least significant digit first RadixSort (A, d)

$$
\text { for } i=1 \text { to } d
$$

StableSort(A) on digit i

- Example: Fig 9.3

Radix Sort

- Can we prove it will work?
- Sketch of an inductive argument (induction on the number of passes):
- Assume lower-order digits $\{\mathrm{j}: \mathrm{j}<\mathrm{i}\}$ are sorted
- Show that sorting next digit i leaves array correctly sorted
- If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
- If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order

Radix Sort

- What sort will we use to sort on digits?
- Counting sort is obvious choice:
- Sort n numbers on digits that range from 1.. k
- Time: $\mathrm{O}(n+k)$
- Each pass over n numbers with d digits takes time $\mathrm{O}(n+k)$, so total time $\mathrm{O}(d n+d k)$
- When d is constant and $k=\mathrm{O}(n)$, takes $\mathrm{O}(n)$ time
- How many bits in a computer word?

Radix Sort

- Problem: sort 1 million 64-bit numbers
- Treat as four-digit radix $2{ }^{16}$ numbers
- Can sort in just four passes with radix sort!
- Compares well with typical $\mathrm{O}(n \lg n)$ comparison sort
- Requires approx $\lg n=20$ operations per number being sorted
- So why would we ever use anything but radix sort?

Radix Sort

- In general, radix sort based on counting sort is
- Fast
- Asymptotically fast (i.e., $\mathrm{O}(n)$)
- Simple to code
- A good choice
- To think about: Can radix sort be used on floating-point numbers?

Summary: Radix Sort

- Radix sort:
- Assumption: input has d digits ranging from 0 to k
- Basic idea:
- Sort elements by digit starting with least significant
- Use a stable sort (like counting sort) for each stage
- Each pass over n numbers with d digits takes time $\mathrm{O}(n+k)$, so total time $\mathrm{O}(d n+d k)$
- When d is constant and $k=\mathrm{O}(n)$, takes $\mathrm{O}(n)$ time

■ Fast! Stable! Simple!

- Doesn't sort in place

Bucket Sort

- Bucket sort
- Assumption: input is n reals from $[0,1)$
- Basic idea:
- Create n linked lists (buckets) to divide interval $[0,1$) into subintervals of size $1 / n$
- Add each input element to appropriate bucket and sort buckets with insertion sort

■ Uniform input distribution $\rightarrow \mathrm{O}(1)$ bucket size

- Therefore the expected total time is $\mathrm{O}(\mathrm{n})$
- These ideas will return when we study hash tables

Order Statistics

- The i th order statistic in a set of n elements is the i th smallest element
- The minimum is thus the 1 st order statistic
- The maximum is (duh) the nth order statistic
- The median is the $n / 2$ order statistic
\square If n is even, there are 2 medians
- How can we calculate order statistics?
- What is the running time?

Order Statistics

- How many comparisons are needed to find the minimum element in a set? The maximum?
- Can we find the minimum and maximum with less than twice the cost?
- Yes:
- Walk through elements by pairs
- Compare each element in pair to the other
- Compare the largest to maximum, smallest to minimum
- Total cost: 3 comparisons per 2 elements = $\mathrm{O}(3 \mathrm{n} / 2)$

Finding Order Statistics: The Selection Problem

- A more interesting problem is selection: finding the i th smallest element of a set
- We will show:
- A practical randomized algorithm with $\mathrm{O}(\mathrm{n})$ expected running time
- A cool algorithm of theoretical interest only with $\mathrm{O}(\mathrm{n})$ worst-case running time

Randomized Selection

- Key idea: use partition() from quicksort
- But, only need to examine one subarray
- This savings shows up in running time: $\mathrm{O}(\mathrm{n})$
- We will again use a slightly different partition than the book:
$\mathrm{q}=$ RandomizedPartition(A, $\mathrm{p}, \mathrm{r})$

Randomized Selection

RandomizedSelect(A, $\mathrm{P}, \mathrm{r}, \mathrm{i})$

```
    if (p == r) then return A[p];
    q = RandomizedPartition(A, p, r)
    k = q - p + 1;
    if (i == k) then return A[q]; // not in book
    if (i < k) then
        return RandomizedSelect(A, p, q-1, i);
    else
```

 return RandomizedSelect(A, \(q+1, r, i-k)\);

Randomized Selection

- Analyzing RandomizedSelect()
- Worst case: partition always 0:n-1

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =\mathrm{T}(\mathrm{n}-1)+\mathrm{O}(\mathrm{n}) \quad=? ? ? \\
& =\mathrm{O}\left(\mathrm{n}^{2}\right) \quad \text { (arithmetic series) }
\end{aligned}
$$

- No better than sorting!

■ "Best" case: suppose a 9:1 partition

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =\mathrm{T}(9 \mathrm{n} / 10)+\mathrm{O}(\mathrm{n}) \quad=? ? ? \\
& =\mathrm{O}(\mathrm{n}) \quad \text { (Master Theorem, case } 3)
\end{aligned}
$$

- Better than sorting!
- What if this had been a 99:1 split?

Randomized Selection

- Average case
- For upper bound, assume i th element always falls in larger side of partition:

$$
\begin{aligned}
T(n) & \leq \frac{1}{n} \sum_{k=0}^{n-1} T(\max (k, n-k-1))+\Theta(n) \\
& \leq \frac{2}{n} \sum_{k=n / 2}^{n-1} T(k)+\Theta(n) \quad \text { What happened here? }
\end{aligned}
$$

■ Let's show that $\mathrm{T}(n)=\mathrm{O}(n)$ by substitution

Randomized Selection

- Assume $\mathrm{T}(n) \leq c n$ for sufficiently large c :

$$
\begin{array}{rlrl}
T(n) & \leq \frac{2}{n} \sum_{k=n / 2}^{n-1} T(k)+\Theta(n) & & \text { The recurrence we started with } \\
& \leq \frac{2}{n} \sum_{k=n / 2}^{n-1} c k+\Theta(n) & \text { Substitute } T(n) \leq c n \text { for } T(k) \\
& =\frac{2 c}{n}\left(\sum_{k=1}^{n-1} k-\sum_{k=1}^{n / 2-1} k\right)+\Theta(n) & \text { "Split" the recurrence } \\
& =\frac{2 c}{n}\left(\frac{1}{2}(n-1) n-\frac{1}{2}\left(\frac{n}{2}-1\right) \frac{n}{2}\right)+\Theta(n) \text { Expand arithmetic series } \\
& =c(n-1)-\frac{c}{2}\left(\frac{n}{2}-1\right)+\Theta(n) & \text { Multiply it out }
\end{array}
$$

Randomized Selection

- Assume $\mathrm{T}(n) \leq c n$ for sufficiently large c :
$T(n) \leq c(n-1)-\frac{c}{2}\left(\frac{n}{2}-1\right)+\Theta(n)$
$=c n-c-\frac{c n}{4}+\frac{c}{2}+\Theta(n)$
$=c n-\frac{c n}{4}-\frac{c}{2}+\Theta(n)$
$=c n-\left(\frac{c n}{4}+\frac{c}{2}-\Theta(n)\right)$
$\leq c n \quad$ (if c is big enough)

Multiply it out

Rearrange the arithmetic
The recurrence so far

Subtract c/2

What we set out to prove

Worst-Case Linear-Time Selection

- Randomized algorithm works well in practice
- What follows is a worst-case linear time algorithm, really of theoretical interest only
- Basic idea:
- Generate a good partitioning element
- Call this element x

Worst-Case Linear-Time Selection

- The algorithm in words:

1. Divide n elements into groups of 5
2. Find median of each group (How? How long?)
3. Use Select() recursively to find median x of the $\lfloor n / 5\rfloor$ medians
4. Partition the n elements around x. Let $k=\operatorname{rank}(x)$
5. if $(i==k)$ then return x
if $(\mathrm{i}<\mathrm{k})$ then use $\operatorname{Select}()$ recursively to find i th smallest element in first partition
else $(\mathrm{i}>\mathrm{k})$ use Select $($) recursively to find $(i-k)$ th smallest element in last partition

Worst-Case Linear-Time Selection

- (Sketch situation on the board)
- How many of the 5 -element medians are $\leq x$?
- At least $1 / 2$ of the medians $=\lfloor\lfloor\mathrm{n} / 5\rfloor / 2\rfloor=\lfloor\mathrm{n} / 10\rfloor$
- How many elements are $\leq x$?
- At least $3\lfloor\mathrm{n} / 10\rfloor$ elements
- For large $n, \quad 3\lfloor\mathrm{n} / 10\rfloor \geq \mathrm{n} / 4 \quad$ (How large?)
- So at least $n / 4$ elements $\leq x$
- Similarly: at least $n / 4$ elements $\geq x$

Worst-Case Linear-Time Selection

- Thus after partitioning around x, step 5 will call Select() on at most $3 n / 4$ elements
- The recurrence is therefore:

$$
\begin{array}{rrr}
T(n) & \leq T(\lfloor n / 5\rfloor)+T(3 n / 4)+\Theta(n) & \\
& \leq T(n / 5)+T(3 n / 4)+\Theta(n) & \lfloor n / 5\rfloor \leq n / 5 \\
& \leq c n / 5+3 c n / 4+\Theta(n) & \text { Substitute } T(n)=c n \\
& =19 c n / 20+\Theta(n) & \text { Combine fractions } \\
& =c n-(c n / 20-\Theta(n)) & \text { Express in desired form } \\
& \leq c n \quad \text { if } c \text { is big enough } & \text { What we set out to prove }
\end{array}
$$

Worst-Case Linear-Time Selection

- Intuitively:
- Work at each level is a constant fraction (19/20) smaller
- Geometric progression!
- Thus the $\mathrm{O}(\mathrm{n})$ work at the root dominates

Linear-Time Median Selection

- Given a "black box" $\mathrm{O}(\mathrm{n})$ median algorithm, what can we do?
- i th order statistic:
- Find median x
- Partition input around x
- if $(i \leq(\mathrm{n}+1) / 2)$ recursively find i th element of first half
- else find $(i-(\mathrm{n}+1) / 2)$ th element in second half
$\circ \mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{n})$
- Can you think of an application to sorting?

Linear-Time Median Selection

- Worst-case $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ quicksort
- Find median x and partition around it
- Recursively quicksort two halves
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

