
 Algorithms 

Linear-Time Sorting Continued 

Medians and Order Statistics 



Review: Comparison Sorts 

● Comparison sorts: O(n lg n) at best 

■ Model sort with decision tree 

■ Path down tree = execution trace of algorithm 

■ Leaves of tree = possible permutations of input 

■ Tree must have n! leaves, so O(n lg n) height 



Review: Counting Sort  

● Counting sort:  

■ Assumption: input is in the range 1..k 

■ Basic idea:  

○ Count number of elements k  each element i 

○ Use that number to place i in position k of sorted array  

■ No comparisons! Runs in time O(n + k) 

■ Stable sort 

■ Does not sort in place: 

○ O(n) array to hold sorted output 

○ O(k) array for scratch storage 



Review: Counting Sort 

1  CountingSort(A, B, k) 

2   for i=1 to k 

3    C[i]= 0; 

4   for j=1 to n 

5    C[A[j]] += 1; 

6   for i=2 to k 

7    C[i] = C[i] + C[i-1]; 

8   for j=n downto 1 

9    B[C[A[j]]] = A[j]; 

10    C[A[j]] -= 1; 



Review: Radix Sort 

● How did IBM get rich originally? 

● Answer: punched card readers for census 

tabulation in early 1900’s.   

■ In particular, a card sorter that could sort cards 

into different bins 

○ Each column can be punched in 12 places 

○ Decimal digits use 10 places 

■ Problem: only one column can be sorted on at a 

time 



Review: Radix Sort 

● Intuitively, you might sort on the most 

significant digit, then the second msd, etc. 

● Problem: lots of intermediate piles of cards 

(read: scratch arrays) to keep track of 

● Key idea: sort the least significant digit first 

    RadixSort(A, d) 

       for i=1 to d 

          StableSort(A) on digit i 

■ Example: Fig 9.3 



Radix Sort 

● Can we prove it will work? 

● Sketch of an inductive argument (induction on 

the number of passes): 

■ Assume lower-order digits {j: j<i}are sorted 

■ Show that sorting next digit i leaves array correctly 

sorted  

○ If two digits at position i are different, ordering numbers 

by that digit is correct (lower-order digits irrelevant) 

○ If they are the same, numbers are already sorted on the 

lower-order digits.  Since we use a stable sort, the 

numbers stay in the right order 



Radix Sort 

● What sort will we use to sort on digits? 

● Counting sort is obvious choice:  

■ Sort n numbers on digits that range from 1..k 

■ Time: O(n + k) 

● Each pass over n numbers with d digits takes 

time O(n+k), so total time O(dn+dk) 

■ When d is constant and k=O(n), takes O(n) time 

● How many bits in a computer word? 



Radix Sort 

● Problem: sort 1 million 64-bit numbers 

■ Treat as four-digit radix 216 numbers 

■ Can sort in just four passes with radix sort! 

● Compares well with typical O(n lg n) 

comparison sort  

■ Requires approx lg n = 20 operations per number 

being sorted 

● So why would we ever use anything but radix 

sort? 



Radix Sort 

● In general, radix sort based on counting sort is 

■ Fast 

■ Asymptotically fast (i.e., O(n)) 

■ Simple to code 

■ A good choice 

● To think about: Can radix sort be used on 

floating-point numbers? 



Summary: Radix Sort 

● Radix sort: 

■ Assumption: input has d digits ranging from 0 to k 

■ Basic idea:  

○ Sort elements by digit starting with least significant 

○ Use a stable sort (like counting sort) for each stage 

■ Each pass over n numbers with d digits takes time 

O(n+k), so total time O(dn+dk) 

○ When d is constant and k=O(n), takes O(n) time 

■ Fast!  Stable! Simple! 

■ Doesn’t sort in place 



Bucket Sort 

● Bucket sort 

■ Assumption: input is n reals from [0, 1) 

■ Basic idea:  

○ Create n linked lists (buckets) to divide interval [0,1) 

into subintervals of size 1/n 

○ Add each input element to appropriate bucket and sort 

buckets with insertion sort 

■ Uniform input distribution  O(1) bucket size 

○ Therefore the expected total time is O(n) 

■ These ideas will return when we study hash tables 



Order Statistics 

● The ith order statistic in a set of n elements is 

the ith smallest element 

● The minimum is thus the 1st order statistic  

● The maximum is (duh) the nth order statistic 

● The median is the n/2 order statistic 

■ If n is even, there are 2 medians 

● How can we calculate order statistics? 

● What is the running time? 



Order Statistics 

● How many comparisons are needed to find the 

minimum element in a set?  The maximum? 

● Can we find the minimum and maximum with 

less than twice the cost? 

● Yes: 

■ Walk through elements by pairs 

○ Compare each element in pair to the other 

○ Compare the largest to maximum, smallest to minimum 

■ Total cost: 3 comparisons per 2 elements = 

O(3n/2) 



Finding Order Statistics:  

The Selection Problem 

● A more interesting problem is selection: 

finding the ith smallest element of a set  

● We will show: 

■ A practical randomized algorithm with O(n) 

expected running time 

■ A cool algorithm of theoretical interest only with 

O(n) worst-case running time 



Randomized Selection 

● Key idea: use partition() from quicksort 

■ But, only need to examine one subarray 

■ This savings shows up in running time: O(n) 

● We will again use a slightly different partition 

than the book: 

q = RandomizedPartition(A, p, r) 

 A[q]  A[q] 

q p r 



Randomized Selection 

RandomizedSelect(A, p, r, i) 

    if (p == r) then return A[p]; 

    q = RandomizedPartition(A, p, r) 

    k = q - p + 1; 

    if (i == k) then return A[q];   // not in book 

    if (i < k) then 

        return RandomizedSelect(A, p, q-1, i); 

    else 

        return RandomizedSelect(A, q+1, r, i-k); 

     

 A[q]  A[q] 

k 

q p r 



Randomized Selection 

● Analyzing RandomizedSelect() 

■ Worst case: partition always 0:n-1 

T(n)  = T(n-1) + O(n) = ??? 

   = O(n2)  (arithmetic series) 

○ No better than sorting! 

■ “Best” case: suppose a 9:1 partition 

T(n)  = T(9n/10) + O(n)  = ??? 

   = O(n)  (Master Theorem, case 3) 

○ Better than sorting! 

○ What if this had been a 99:1 split? 



Randomized Selection 

● Average case 

■ For upper bound, assume ith element always falls 

in larger side of partition: 

 

 

 

 

 

■ Let’s show that T(n) = O(n) by substitution 
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What happened here? 



What happened here? “Split” the recurrence 

What happened here? 

What happened here? 

What happened here? 

Randomized Selection 

● Assume T(n)  cn for sufficiently large c: 
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The recurrence we started with 

Substitute T(n)  cn  for T(k)  

Expand arithmetic series 

Multiply it out 



What happened here? Subtract c/2   

What happened here? 

What happened here? 

What happened here? 

Randomized Selection 

● Assume T(n)  cn for sufficiently large c: 

The recurrence so far 

Multiply it out    

Rearrange the arithmetic  

What we set out to prove 
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Worst-Case Linear-Time Selection 

● Randomized algorithm works well in practice 

● What follows is a worst-case linear time 

algorithm, really of theoretical interest only 

● Basic idea:  

■ Generate a good partitioning element 

■ Call this element x 



Worst-Case Linear-Time Selection 

● The algorithm in words: 
1.  Divide n elements into groups of 5 

2.  Find median of each group (How?  How long?) 

3.  Use Select() recursively to find median x of the n/5 

 medians 

4.  Partition the n elements around x.  Let k = rank(x) 

5.  if (i == k) then return x 

  if (i < k) then use Select() recursively to find ith smallest 

  element in first partition 

 else (i > k) use Select() recursively to find (i-k)th smallest 

  element in last partition 



Worst-Case Linear-Time Selection 

● (Sketch situation on the board) 

● How many of the 5-element medians are  x? 

■ At least 1/2 of the medians = n/5 / 2 = n/10 

● How many elements are  x? 

■ At least 3 n/10  elements 

● For large n,    3 n/10   n/4  (How large?) 

● So at least n/4 elements  x 

● Similarly: at least n/4 elements  x 



Worst-Case Linear-Time Selection 

● Thus after partitioning around x, step 5 will 

call Select() on at most 3n/4 elements 

● The recurrence is therefore:  
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 n/5    n/5 

Substitute T(n) = cn 

Combine fractions  

Express in desired form 

What we set out to prove 



Worst-Case Linear-Time Selection 

● Intuitively: 

■ Work at each level is a constant fraction (19/20) 

smaller 

○ Geometric progression! 

■ Thus the O(n) work at the root dominates 



Linear-Time Median Selection 

● Given a “black box” O(n) median algorithm, 

what can we do? 

■ ith order statistic:  

○ Find median x 

○ Partition input around x 

○ if (i  (n+1)/2)  recursively find ith element of first half 

○ else find (i - (n+1)/2)th element in second half 

○ T(n) = T(n/2) + O(n) = O(n) 

■ Can you think of an application to sorting? 



Linear-Time Median Selection 

● Worst-case O(n lg n) quicksort 

■ Find median x and partition around it 

■ Recursively quicksort two halves 

■ T(n) = 2T(n/2) + O(n) = O(n lg n) 


