
 Algorithms

Linear-Time Sorting Continued

Medians and Order Statistics

Review: Comparison Sorts

● Comparison sorts: O(n lg n) at best

■ Model sort with decision tree

■ Path down tree = execution trace of algorithm

■ Leaves of tree = possible permutations of input

■ Tree must have n! leaves, so O(n lg n) height

Review: Counting Sort

● Counting sort:

■ Assumption: input is in the range 1..k

■ Basic idea:

○ Count number of elements k each element i

○ Use that number to place i in position k of sorted array

■ No comparisons! Runs in time O(n + k)

■ Stable sort

■ Does not sort in place:

○ O(n) array to hold sorted output

○ O(k) array for scratch storage

Review: Counting Sort

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

Review: Radix Sort

● How did IBM get rich originally?

● Answer: punched card readers for census

tabulation in early 1900’s.

■ In particular, a card sorter that could sort cards

into different bins

○ Each column can be punched in 12 places

○ Decimal digits use 10 places

■ Problem: only one column can be sorted on at a

time

Review: Radix Sort

● Intuitively, you might sort on the most

significant digit, then the second msd, etc.

● Problem: lots of intermediate piles of cards

(read: scratch arrays) to keep track of

● Key idea: sort the least significant digit first

 RadixSort(A, d)

 for i=1 to d

 StableSort(A) on digit i

■ Example: Fig 9.3

Radix Sort

● Can we prove it will work?

● Sketch of an inductive argument (induction on

the number of passes):

■ Assume lower-order digits {j: j<i}are sorted

■ Show that sorting next digit i leaves array correctly

sorted

○ If two digits at position i are different, ordering numbers

by that digit is correct (lower-order digits irrelevant)

○ If they are the same, numbers are already sorted on the

lower-order digits. Since we use a stable sort, the

numbers stay in the right order

Radix Sort

● What sort will we use to sort on digits?

● Counting sort is obvious choice:

■ Sort n numbers on digits that range from 1..k

■ Time: O(n + k)

● Each pass over n numbers with d digits takes

time O(n+k), so total time O(dn+dk)

■ When d is constant and k=O(n), takes O(n) time

● How many bits in a computer word?

Radix Sort

● Problem: sort 1 million 64-bit numbers

■ Treat as four-digit radix 216 numbers

■ Can sort in just four passes with radix sort!

● Compares well with typical O(n lg n)

comparison sort

■ Requires approx lg n = 20 operations per number

being sorted

● So why would we ever use anything but radix

sort?

Radix Sort

● In general, radix sort based on counting sort is

■ Fast

■ Asymptotically fast (i.e., O(n))

■ Simple to code

■ A good choice

● To think about: Can radix sort be used on

floating-point numbers?

Summary: Radix Sort

● Radix sort:

■ Assumption: input has d digits ranging from 0 to k

■ Basic idea:

○ Sort elements by digit starting with least significant

○ Use a stable sort (like counting sort) for each stage

■ Each pass over n numbers with d digits takes time

O(n+k), so total time O(dn+dk)

○ When d is constant and k=O(n), takes O(n) time

■ Fast! Stable! Simple!

■ Doesn’t sort in place

Bucket Sort

● Bucket sort

■ Assumption: input is n reals from [0, 1)

■ Basic idea:

○ Create n linked lists (buckets) to divide interval [0,1)

into subintervals of size 1/n

○ Add each input element to appropriate bucket and sort

buckets with insertion sort

■ Uniform input distribution O(1) bucket size

○ Therefore the expected total time is O(n)

■ These ideas will return when we study hash tables

Order Statistics

● The ith order statistic in a set of n elements is

the ith smallest element

● The minimum is thus the 1st order statistic

● The maximum is (duh) the nth order statistic

● The median is the n/2 order statistic

■ If n is even, there are 2 medians

● How can we calculate order statistics?

● What is the running time?

Order Statistics

● How many comparisons are needed to find the

minimum element in a set? The maximum?

● Can we find the minimum and maximum with

less than twice the cost?

● Yes:

■ Walk through elements by pairs

○ Compare each element in pair to the other

○ Compare the largest to maximum, smallest to minimum

■ Total cost: 3 comparisons per 2 elements =

O(3n/2)

Finding Order Statistics:

The Selection Problem

● A more interesting problem is selection:

finding the ith smallest element of a set

● We will show:

■ A practical randomized algorithm with O(n)

expected running time

■ A cool algorithm of theoretical interest only with

O(n) worst-case running time

Randomized Selection

● Key idea: use partition() from quicksort

■ But, only need to examine one subarray

■ This savings shows up in running time: O(n)

● We will again use a slightly different partition

than the book:

q = RandomizedPartition(A, p, r)

 A[q] A[q]

q p r

Randomized Selection

RandomizedSelect(A, p, r, i)

 if (p == r) then return A[p];

 q = RandomizedPartition(A, p, r)

 k = q - p + 1;

 if (i == k) then return A[q]; // not in book

 if (i < k) then

 return RandomizedSelect(A, p, q-1, i);

 else

 return RandomizedSelect(A, q+1, r, i-k);

 A[q] A[q]

k

q p r

Randomized Selection

● Analyzing RandomizedSelect()

■ Worst case: partition always 0:n-1

T(n) = T(n-1) + O(n) = ???

 = O(n2) (arithmetic series)

○ No better than sorting!

■ “Best” case: suppose a 9:1 partition

T(n) = T(9n/10) + O(n) = ???

 = O(n) (Master Theorem, case 3)

○ Better than sorting!

○ What if this had been a 99:1 split?

Randomized Selection

● Average case

■ For upper bound, assume ith element always falls

in larger side of partition:

■ Let’s show that T(n) = O(n) by substitution

1

2/

1

0

2

1,max
1

n

nk

n

k

nkT
n

nknkT
n

nT

What happened here?

What happened here? “Split” the recurrence

What happened here?

What happened here?

What happened here?

Randomized Selection

● Assume T(n) cn for sufficiently large c:

 n
nc

nc

n
nn

nn
n

c

nkk
n

c

nck
n

nkT
n

nT

n

k

n

k

n

nk

n

nk

1
22

1

2
1

22

1
1

2

12

2

2

)(
2

)(

12

1

1

1

1

2/

1

2/

The recurrence we started with

Substitute T(n) cn for T(k)

Expand arithmetic series

Multiply it out

What happened here? Subtract c/2

What happened here?

What happened here?

What happened here?

Randomized Selection

● Assume T(n) cn for sufficiently large c:

The recurrence so far

Multiply it out

Rearrange the arithmetic

What we set out to prove

enough) big is c if(

24

24

24

1
22

1)(

cn

n
ccn

cn

n
ccn

cn

n
ccn

ccn

n
nc

ncnT

Worst-Case Linear-Time Selection

● Randomized algorithm works well in practice

● What follows is a worst-case linear time

algorithm, really of theoretical interest only

● Basic idea:

■ Generate a good partitioning element

■ Call this element x

Worst-Case Linear-Time Selection

● The algorithm in words:
1. Divide n elements into groups of 5

2. Find median of each group (How? How long?)

3. Use Select() recursively to find median x of the n/5

 medians

4. Partition the n elements around x. Let k = rank(x)

5. if (i == k) then return x

 if (i < k) then use Select() recursively to find ith smallest

 element in first partition

 else (i > k) use Select() recursively to find (i-k)th smallest

 element in last partition

Worst-Case Linear-Time Selection

● (Sketch situation on the board)

● How many of the 5-element medians are x?

■ At least 1/2 of the medians = n/5 / 2 = n/10

● How many elements are x?

■ At least 3 n/10 elements

● For large n, 3 n/10 n/4 (How large?)

● So at least n/4 elements x

● Similarly: at least n/4 elements x

Worst-Case Linear-Time Selection

● Thus after partitioning around x, step 5 will

call Select() on at most 3n/4 elements

● The recurrence is therefore:

enough big is if

20

)(2019

)(435

435

435)(

ccn

ncncn

ncn

ncncn

nnTnT

nnTnTnT

???

???

???

???

???

 n/5 n/5

Substitute T(n) = cn

Combine fractions

Express in desired form

What we set out to prove

Worst-Case Linear-Time Selection

● Intuitively:

■ Work at each level is a constant fraction (19/20)

smaller

○ Geometric progression!

■ Thus the O(n) work at the root dominates

Linear-Time Median Selection

● Given a “black box” O(n) median algorithm,

what can we do?

■ ith order statistic:

○ Find median x

○ Partition input around x

○ if (i (n+1)/2) recursively find ith element of first half

○ else find (i - (n+1)/2)th element in second half

○ T(n) = T(n/2) + O(n) = O(n)

■ Can you think of an application to sorting?

Linear-Time Median Selection

● Worst-case O(n lg n) quicksort

■ Find median x and partition around it

■ Recursively quicksort two halves

■ T(n) = 2T(n/2) + O(n) = O(n lg n)

