
 Algorithms

Merge Sort

Solving Recurrences

The Master Theorem

Administrative Question

 Who here cannot make Monday-Wednesday

office hours at 10 AM?

 If nobody, should we change class time?

Homework 1

 Homework 1 will be posted later today

 (Problem with the exercise numbering, sorry)

 Due Monday Jan 28 at 9 AM

 Should be a fairly simple warm-up problem set

Review: Asymptotic Notation

 Upper Bound Notation:

 f(n) is O(g(n)) if there exist positive constants c

and n0 such that f(n) c g(n) for all n n0

 Formally, O(g(n)) = { f(n): positive constants c

and n0 such that f(n) c g(n) n n0

 Big O fact:

 A polynomial of degree k is O(nk)

Review: Asymptotic Notation

 Asymptotic lower bound:

 f(n) is (g(n)) if positive constants c and n0 such

that 0 cg(n) f(n) n n0

 Asymptotic tight bound:

 f(n) is (g(n)) if positive constants c1, c2, and n0

such that c1 g(n) f(n) c2 g(n) n n0

 f(n) = (g(n)) if and only if

f(n) = O(g(n)) AND f(n) = (g(n))

Other Asymptotic Notations

 A function f(n) is o(g(n)) if positive

constants c and n0 such that

 f(n) < c g(n) n n0

 A function f(n) is (g(n)) if positive

constants c and n0 such that

 c g(n) < f(n) n n0

 Intuitively,

 o() is like <

 O() is like

 () is like >

 () is like

 () is like =

Merge Sort

MergeSort(A, left, right) {

 if (left < right) {

 mid = floor((left + right) / 2);

 MergeSort(A, left, mid);

 MergeSort(A, mid+1, right);

 Merge(A, left, mid, right);

 }

}

// Merge() takes two sorted subarrays of A and

// merges them into a single sorted subarray of A

// (how long should this take?)

Merge Sort: Example

 Show MergeSort() running on the array

A = {10, 5, 7, 6, 1, 4, 8, 3, 2, 9};

Analysis of Merge Sort

Statement Effort

 So T(n) = (1) when n = 1, and

 2T(n/2) + (n) when n > 1

 So what (more succinctly) is T(n)?

MergeSort(A, left, right) { T(n)

 if (left < right) { (1)

 mid = floor((left + right) / 2); (1)

 MergeSort(A, left, mid); T(n/2)

 MergeSort(A, mid+1, right); T(n/2)

 Merge(A, left, mid, right); (n)

 }

}

Recurrences

 The expression:

is a recurrence.

 Recurrence: an equation that describes a function

in terms of its value on smaller functions

1
2

2

1

)(

ncn
n

T

nc

nT

Recurrence Examples

0

0

)1(

0
)(

n

n

nsc
ns

0)1(

00
)(

nnsn

n
ns

1
2

2

1

)(

nc
n

T

nc

nT

1

1

)(

ncn
b

n
aT

nc

nT

Solving Recurrences

 Substitution method

 Iteration method

 Master method

Solving Recurrences

 The substitution method (CLR 4.1)

 A.k.a. the “making a good guess method”

 Guess the form of the answer, then use induction

to find the constants and show that solution works

 Examples:

T(n) = 2T(n/2) + (n) T(n) = (n lg n)

T(n) = 2T(n/2) + n ???

Solving Recurrences

 The substitution method (CLR 4.1)

 A.k.a. the “making a good guess method”

 Guess the form of the answer, then use induction

to find the constants and show that solution works

 Examples:

T(n) = 2T(n/2) + (n) T(n) = (n lg n)

T(n) = 2T(n/2) + n T(n) = (n lg n)

T(n) = 2T(n/2)+ 17) + n ???

Solving Recurrences

 The substitution method (CLR 4.1)

 A.k.a. the “making a good guess method”

 Guess the form of the answer, then use induction

to find the constants and show that solution works

 Examples:

T(n) = 2T(n/2) + (n) T(n) = (n lg n)

T(n) = 2T(n/2) + n T(n) = (n lg n)

T(n) = 2T(n/2+ 17) + n (n lg n)

Solving Recurrences

 Another option is what the book calls the

“iteration method”

 Expand the recurrence

 Work some algebra to express as a summation

 Evaluate the summation

 We will show several examples

 s(n) =

 c + s(n-1)

 c + c + s(n-2)

 2c + s(n-2)

 2c + c + s(n-3)

 3c + s(n-3)

 …

 kc + s(n-k) = ck + s(n-k)

0)1(

00
)(

nnsc

n
ns

 So far for n >= k we have

 s(n) = ck + s(n-k)

 What if k = n?

 s(n) = cn + s(0) = cn

0)1(

00
)(

nnsc

n
ns

 So far for n >= k we have

 s(n) = ck + s(n-k)

 What if k = n?

 s(n) = cn + s(0) = cn

 So

 Thus in general

 s(n) = cn

0)1(

00
)(

nnsc

n
ns

0)1(

00
)(

nnsc

n
ns

 s(n)

= n + s(n-1)

= n + n-1 + s(n-2)

= n + n-1 + n-2 + s(n-3)

= n + n-1 + n-2 + n-3 + s(n-4)

= …

= n + n-1 + n-2 + n-3 + … + n-(k-1) + s(n-k)

0)1(

00
)(

nnsn

n
ns

 s(n)

= n + s(n-1)

= n + n-1 + s(n-2)

= n + n-1 + n-2 + s(n-3)

= n + n-1 + n-2 + n-3 + s(n-4)

= …

= n + n-1 + n-2 + n-3 + … + n-(k-1) + s(n-k)

=

0)1(

00
)(

nnsn

n
ns

)(
1

knsi
n

kni

 So far for n >= k we have

0)1(

00
)(

nnsn

n
ns

)(
1

knsi
n

kni

 So far for n >= k we have

 What if k = n?

0)1(

00
)(

nnsn

n
ns

)(
1

knsi
n

kni

 So far for n >= k we have

 What if k = n?

0)1(

00
)(

nnsn

n
ns

)(
1

knsi
n

kni

2

1
0)0(

11

n
nisi

n

i

n

i

 So far for n >= k we have

 What if k = n?

 Thus in general

0)1(

00
)(

nnsn

n
ns

)(
1

knsi
n

kni

2

1
0)0(

11

n
nisi

n

i

n

i

2

1
)(

n
nns

 T(n) =

 2T(n/2) + c

 2(2T(n/2/2) + c) + c

 22T(n/22) + 2c + c

 22(2T(n/22/2) + c) + 3c

 23T(n/23) + 4c + 3c

 23T(n/23) + 7c

 23(2T(n/23/2) + c) + 7c

 24T(n/24) + 15c

 …

 2kT(n/2k) + (2k - 1)c

1

2
2

1

)(
nc

n
T

nc

nT

 So far for n > 2k we have

 T(n) = 2kT(n/2k) + (2k - 1)c

 What if k = lg n?

 T(n) = 2lg n T(n/2lg n) + (2lg n - 1)c

 = n T(n/n) + (n - 1)c

 = n T(1) + (n-1)c

 = nc + (n-1)c = (2n - 1)c

1

2
2

1

)(
nc

n
T

nc

nT

