
 Algorithms 

Merge Sort 

Solving Recurrences 

The Master Theorem 



Administrative Question 

 Who here cannot make Monday-Wednesday 

office hours at 10 AM? 

 If nobody, should we change class time? 



Homework 1 

 Homework 1 will be posted later today 

 (Problem with the exercise numbering, sorry) 

 Due Monday Jan 28 at 9 AM 

 Should be a fairly simple warm-up problem set 



Review: Asymptotic Notation 

 Upper Bound Notation:  

 f(n) is O(g(n)) if there exist positive constants c 

and n0 such that f(n)  c  g(n) for all n  n0 

 Formally, O(g(n)) = { f(n):  positive constants c 

and n0 such that f(n)  c  g(n)  n  n0 

 Big O fact: 

 A polynomial of degree k is O(nk) 



Review: Asymptotic Notation 

 Asymptotic lower bound: 

 f(n) is (g(n)) if  positive constants c and n0 such 

that  0  cg(n)  f(n)   n  n0 

 Asymptotic tight bound: 

 f(n) is (g(n)) if  positive constants c1, c2, and n0 

such that  c1 g(n)  f(n)  c2 g(n)  n  n0 

 f(n) = (g(n))  if and only if   

f(n) = O(g(n))  AND  f(n) = (g(n)) 



Other Asymptotic Notations 

 A function f(n) is o(g(n)) if  positive 

constants c and n0 such that  

 f(n) < c g(n)  n  n0 

 A function f(n) is (g(n)) if  positive 

constants c and n0 such that  

 c g(n) < f(n)  n  n0 

 Intuitively, 
 

 

 o() is like <  

 O() is like  

 

 () is like >  

 () is like  

 

 () is like = 



Merge Sort 

MergeSort(A, left, right) { 

 if (left < right) { 

  mid = floor((left + right) / 2); 

  MergeSort(A, left, mid); 

  MergeSort(A, mid+1, right); 

  Merge(A, left, mid, right); 

 } 

} 

 

// Merge() takes two sorted subarrays of A and 

// merges them into a single sorted subarray of A 

//  (how long should this take?) 



Merge Sort: Example 

 Show MergeSort() running on the array 

 
A = {10, 5, 7, 6, 1, 4, 8, 3, 2, 9}; 



Analysis of Merge Sort 

Statement   Effort 

 

 

 

 

 So T(n) =  (1) when n = 1, and               

 2T(n/2) + (n) when n > 1 

 So what (more succinctly) is T(n)?  

MergeSort(A, left, right) { T(n) 

   if (left < right) { (1) 

      mid = floor((left + right) / 2);    (1) 

      MergeSort(A, left, mid);    T(n/2) 

      MergeSort(A, mid+1, right);    T(n/2) 

      Merge(A, left, mid, right);    (n) 

   } 

} 



Recurrences 

 The expression: 

 

 

 

 

 

is a recurrence. 

 Recurrence: an equation that describes a function 

in terms of its value on smaller functions 
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Recurrence Examples 
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Solving Recurrences 

 Substitution method 

 Iteration method 

 Master method 



Solving Recurrences 

 The substitution method (CLR 4.1) 

 A.k.a. the “making a good guess method” 

 Guess the form of the answer, then use induction 

to find the constants and show that solution works 

 Examples: 

T(n) = 2T(n/2) + (n)    T(n) = (n lg n) 

T(n) = 2T(n/2) + n  ??? 



Solving Recurrences 

 The substitution method (CLR 4.1) 

 A.k.a. the “making a good guess method” 

 Guess the form of the answer, then use induction 

to find the constants and show that solution works 

 Examples: 

T(n) = 2T(n/2) + (n)    T(n) = (n lg n) 

T(n) = 2T(n/2) + n  T(n) = (n lg n) 

T(n) = 2T(n/2 )+ 17) + n  ??? 



Solving Recurrences 

 The substitution method (CLR 4.1) 

 A.k.a. the “making a good guess method” 

 Guess the form of the answer, then use induction 

to find the constants and show that solution works 

 Examples: 

T(n) = 2T(n/2) + (n)    T(n) = (n lg n) 

T(n) = 2T(n/2) + n  T(n) = (n lg n) 

T(n) = 2T(n/2+ 17) + n  (n lg n) 



Solving Recurrences 

 Another option is what the book calls the 

“iteration method” 

 Expand the recurrence  

 Work some algebra to express as a summation 

 Evaluate the summation 

 We will show several examples  



 s(n) =  

 c + s(n-1) 

 c + c + s(n-2) 

 2c + s(n-2) 

 2c + c + s(n-3) 

 3c + s(n-3) 

 … 

 kc + s(n-k) = ck + s(n-k) 
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 So far for n >= k we have  

 s(n) = ck + s(n-k) 

 What if k = n? 

 s(n) = cn + s(0) = cn 
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 So far for n >= k we have  

 s(n) = ck + s(n-k) 

 What if k = n? 

 s(n) = cn + s(0) = cn 

 So 

 

 Thus in general  

 s(n) = cn 
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 s(n)  

= n + s(n-1)  

= n + n-1 + s(n-2) 

= n + n-1 + n-2 + s(n-3) 

= n + n-1 + n-2 + n-3 + s(n-4) 

= … 

=  n + n-1 + n-2 + n-3 + … + n-(k-1) + s(n-k) 
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 s(n)  

= n + s(n-1)  

= n + n-1 + s(n-2) 

= n + n-1 + n-2 + s(n-3) 

= n + n-1 + n-2 + n-3 + s(n-4) 

= … 

=  n + n-1 + n-2 + n-3 + … + n-(k-1) + s(n-k) 

 
=  
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 So far for n >= k we have 
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 So far for n >= k we have 

 

 

 What if k = n? 
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 So far for n >= k we have 

 

 

 What if k = n? 
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 So far for n >= k we have 

 

 

 What if k = n? 

 

 

 Thus in general  
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 T(n) =  

 2T(n/2) + c 

 2(2T(n/2/2) + c) + c 

 22T(n/22) + 2c + c 

 22(2T(n/22/2) + c) + 3c 

 23T(n/23) + 4c + 3c 

 23T(n/23) + 7c 

 23(2T(n/23/2) + c) + 7c 

 24T(n/24) + 15c 

 … 

 2kT(n/2k) + (2k - 1)c 
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 So far for n > 2k we have  

 T(n) = 2kT(n/2k) + (2k - 1)c 

 What if k = lg n? 

 T(n) = 2lg n T(n/2lg n) + (2lg n - 1)c 

 = n T(n/n) + (n - 1)c 

 = n T(1) + (n-1)c 

 = nc + (n-1)c = (2n - 1)c 
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