## Algorithms

Merge Sort<br>Solving Recurrences<br>The Master Theorem

## Administrative Question

- Who here cannot make Monday-Wednesday office hours at 10 AM?
- If nobody, should we change class time?


## Homework 1

- Homework 1 will be posted later today
- (Problem with the exercise numbering, sorry)
- Due Monday Jan 28 at 9 AM
- Should be a fairly simple warm-up problem set


## Review: Asymptotic Notation

- Upper Bound Notation:
- $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist positive constants $c$ and $n_{0}$ such that $\mathrm{f}(\mathrm{n}) \leq c \cdot \mathrm{~g}(\mathrm{n})$ for all $\mathrm{n} \geq n_{0}$
- Formally, $\mathrm{O}(\mathrm{g}(\mathrm{n}))=\{\mathrm{f}(\mathrm{n}): \exists$ positive constants $c$ and $n_{0}$ such that $\mathrm{f}(\mathrm{n}) \leq c \cdot \mathrm{~g}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}$
- Big O fact:
- A polynomial of degree $k$ is $\mathrm{O}\left(n^{k}\right)$


## Review: Asymptotic Notation

- Asymptotic lower bound:
- $\mathrm{f}(\mathrm{n})$ is $\Omega(g(n))$ if $\exists$ positive constants $c$ and $n_{0}$ such that $0 \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \quad \forall \mathrm{n} \geq n_{0}$
- Asymptotic tight bound:
- $\mathrm{f}(\mathrm{n})$ is $\Theta(g(n))$ if $\exists$ positive constants $c_{1}, c_{2}$, and $n_{0}$ such that $\quad c_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq c_{2} \mathrm{~g}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}$
- $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ if and only if

$$
\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{~g}(\mathrm{n})) \text { AND } \mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))
$$

## Other Asymptotic Notations

- A function $f(n)$ is $o(g(n))$ if $\exists$ positive constants $c$ and $n_{0}$ such that

$$
\mathrm{f}(\mathrm{n})<c \mathrm{~g}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}
$$

- A function $\mathrm{f}(\mathrm{n})$ is $\omega(\mathrm{g}(\mathrm{n}))$ if $\exists$ positive constants $c$ and $n_{0}$ such that

$$
c \mathrm{~g}(\mathrm{n})<\mathrm{f}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}
$$

- Intuitively,
- o() is like <
- $\omega()$ is like >
- $\Theta()$ is like $=$
- O() is like $\leq$
- $\Omega()$ is like $\geq$


## Merge Sort

```
MergeSort(A, left, right) {
    if (left < right) {
        mid = floor((left + right) / 2);
        MergeSort(A, left, mid);
        MergeSort(A, mid+1, right);
        Merge(A, left, mid, right);
    }
}
```

// Merge() takes two sorted subarrays of $A$ and // merges them into a single sorted subarray of $A$ // (how long should this take?)

## Merge Sort: Example

- Show MergeSort() running on the array

$$
A=\{10,5,7,6,1,4,8,3,2,9\} ;
$$

## Analysis of Merge Sort

## Statement

MergeSort (A, left, right) \{
if (left < right) \{ mid = floor((left + right) / 2); MergeSort(A, left, mid); MergeSort(A, mid+1, right); Merge (A, left, mid, right); \}
\}

- So $T(n)=\Theta(1)$ when $n=1$, and

$$
2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n}) \text { when } \mathrm{n}>1
$$

- So what (more succinctly) is $T(n)$ ?


## Recurrences

- The expression:

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
2 T\left(\frac{n}{2}\right)+c n & n>1
\end{array}\right.
$$

is a recurrence.

- Recurrence: an equation that describes a function in terms of its value on smaller functions


## Recurrence Examples

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array}\right.
$$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
2 T\left(\frac{n}{2}\right)+c & n>1
\end{array}\right.
$$

## Solving Recurrences

- Substitution method
- Iteration method
- Master method


## Solving Recurrences

- The substitution method (CLR 4.1)
- A.k.a. the "making a good guess method"
- Guess the form of the answer, then use induction to find the constants and show that solution works
- Examples:
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n}) \rightarrow \mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \lg \mathrm{n})$
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\lfloor\mathrm{n} / 2\rfloor)+\mathrm{n} \rightarrow ? ?$ ?


## Solving Recurrences

- The substitution method (CLR 4.1)
- A.k.a. the "making a good guess method"
- Guess the form of the answer, then use induction to find the constants and show that solution works
- Examples:
$\rightarrow T(n)=2 T(n / 2)+\Theta(n) \rightarrow T(n)=\Theta(n \lg n)$
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\lfloor\mathrm{n} / 2\rfloor)+\mathrm{n} \rightarrow \mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \lg \mathrm{n})$
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\lfloor\mathrm{n} / 2\rfloor)+17)+\mathrm{n} \rightarrow$ ???


## Solving Recurrences

- The substitution method (CLR 4.1)
- A.k.a. the "making a good guess method"
- Guess the form of the answer, then use induction to find the constants and show that solution works
- Examples:
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n}) \rightarrow \mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \lg \mathrm{n})$
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\lfloor\mathrm{n} / 2\rfloor)+\mathrm{n} \rightarrow \mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \lg \mathrm{n})$
$-\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\lfloor\mathrm{n} / 2\rfloor+17)+\mathrm{n} \rightarrow \Theta(\mathrm{n} \lg \mathrm{n})$


## Solving Recurrences

- Another option is what the book calls the "iteration method"
- Expand the recurrence
- Work some algebra to express as a summation
- Evaluate the summation
- We will show several examples

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array}\right.
$$

- $s(n)=$
$\mathrm{c}+\mathrm{s}(\mathrm{n}-1)$
$\mathrm{c}+\mathrm{c}+\mathrm{s}(\mathrm{n}-2)$
$2 \mathrm{c}+\mathrm{s}(\mathrm{n}-2)$
$2 c+c+s(n-3)$
$3 \mathrm{c}+\mathrm{s}(\mathrm{n}-3)$
$\mathrm{kc}+\mathrm{s}(\mathrm{n}-\mathrm{k})=\mathrm{ck}+\mathrm{s}(\mathrm{n}-\mathrm{k})$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have
- $\mathrm{s}(\mathrm{n})=\mathrm{ck}+\mathrm{s}(\mathrm{n}-\mathrm{k})$
- What if $\mathrm{k}=\mathrm{n}$ ?
- $\mathrm{s}(\mathrm{n})=\mathrm{cn}+\mathrm{s}(0)=\mathrm{cn}$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have
- $\mathrm{s}(\mathrm{n})=\mathrm{ck}+\mathrm{s}(\mathrm{n}-\mathrm{k})$
- What if $\mathrm{k}=\mathrm{n}$ ?
- $\mathrm{s}(\mathrm{n})=\mathrm{cn}+\mathrm{s}(0)=\mathrm{cn}$
- So

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array}\right.
$$

- Thus in general
- $\mathrm{s}(\mathrm{n})=\mathrm{cn}$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- $\mathrm{s}(\mathrm{n})$
$=\mathrm{n}+\mathrm{s}(\mathrm{n}-1)$
$=\mathrm{n}+\mathrm{n}-1+\mathrm{s}(\mathrm{n}-2)$
$=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{s}(\mathrm{n}-3)$
$=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\mathrm{s}(\mathrm{n}-4)$
$=\ldots$
$=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\ldots+\mathrm{n}-(\mathrm{k}-1)+\mathrm{s}(\mathrm{n}-\mathrm{k})$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- $\mathrm{s}(\mathrm{n})$

$$
\begin{aligned}
& =\mathrm{n}+\mathrm{s}(\mathrm{n}-1) \\
& =\mathrm{n}+\mathrm{n}-1+\mathrm{s}(\mathrm{n}-2) \\
& =\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{s}(\mathrm{n}-3) \\
& =\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\mathrm{s}(\mathrm{n}-4)
\end{aligned}
$$

$$
=\ldots
$$

$$
=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\ldots+\mathrm{n}-(\mathrm{k}-1)+\mathrm{s}(\mathrm{n}-\mathrm{k})
$$

$$
=\sum_{i=n-k+1}^{n} i+s(n-k)
$$

$$
s(n)=\left\{\begin{array}{cl}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have

$$
\sum_{i=n-k+1}^{n} i+s(n-k)
$$

$$
s(n)=\left\{\begin{array}{cl}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have

$$
\sum_{i=n-k+1}^{n} i+s(n-k)
$$

- What if $\mathrm{k}=\mathrm{n}$ ?

$$
s(n)=\left\{\begin{array}{cl}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have

$$
\sum_{i=n-k+1}^{n} i+s(n-k)
$$

- What if $\mathrm{k}=\mathrm{n}$ ?

$$
\sum_{i=1}^{n} i+s(0)=\sum_{i=1}^{n} i+0=n \frac{n+1}{2}
$$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have

$$
\sum_{i=n-k+1}^{n} i+s(n-k)
$$

- What if $\mathrm{k}=\mathrm{n}$ ?

$$
\sum_{i=1}^{n} i+s(0)=\sum_{i=1}^{n} i+0=n \frac{n+1}{2}
$$

- Thus in general

$$
s(n)=n \frac{n+1}{2}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
2 T\left(\frac{n}{2}\right)+c & n>1
\end{array}\right.
$$

- $\mathrm{T}(\mathrm{n})=$

$$
\begin{aligned}
& 2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{c} \\
& 2(2 \mathrm{~T}(\mathrm{n} / 2 / 2)+\mathrm{c})+\mathrm{c} \\
& 2^{2} \mathrm{~T}\left(\mathrm{n} / 2^{2}\right)+2 \mathrm{c}+\mathrm{c} \\
& 2^{2}\left(2 \mathrm{~T}\left(\mathrm{n} / 2^{2} / 2\right)+\mathrm{c}\right)+3 \mathrm{c} \\
& 2^{3} \mathrm{~T}\left(\mathrm{n} / 2^{3}\right)+4 \mathrm{c}+3 \mathrm{c} \\
& 2^{3} \mathrm{~T}\left(\mathrm{n} / 2^{3}\right)+7 \mathrm{c} \\
& 2^{3}\left(2 \mathrm{~T}\left(\mathrm{n} / 2^{3} / 2\right)+\mathrm{c}\right)+7 \mathrm{c} \\
& 2^{4} \mathrm{~T}\left(\mathrm{n} / 2^{4}\right)+15 \mathrm{c}
\end{aligned}
$$

$$
2^{\mathrm{k}} \mathrm{~T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\left(2^{\mathrm{k}}-1\right) \mathrm{c}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
2 T\left(\frac{n}{2}\right)+c & n>1
\end{array}\right.
$$

- So far for $\mathrm{n}>2 \mathrm{k}$ we have
- $\mathrm{T}(\mathrm{n})=2^{\mathrm{k}} \mathrm{T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\left(2^{\mathrm{k}}-1\right) \mathrm{c}$
- What if $\mathrm{k}=\lg \mathrm{n}$ ?
- $\mathrm{T}(\mathrm{n})=2^{\lg n} \mathrm{~T}\left(\mathrm{n} / 2^{\lg \mathrm{n}}\right)+\left(2^{\lg \mathrm{n}}-1\right) \mathrm{c}$
$=n T(n / n)+(n-1) c$
$=n T(1)+(n-1) \mathrm{c}$
$=n c+(n-1) c=(2 n-1) c$

