# Algorithms

Merge Sort Solving Recurrences The Master Theorem

### **Administrative Question**

- Who here cannot make Monday-Wednesday office hours at 10 AM?
- If nobody, should we change class time?

#### Homework 1

- Homework 1 will be posted later today
  - (Problem with the exercise numbering, sorry)
  - Due Monday Jan 28 at 9 AM
  - Should be a fairly simple warm-up problem set

# **Review: Asymptotic Notation**

#### • Upper Bound Notation:

- f(n) is O(g(n)) if there exist positive constants cand  $n_0$  such that  $f(n) \le c \cdot g(n)$  for all  $n \ge n_0$
- Formally,  $O(g(n)) = \{ f(n): \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } f(n) \le c \cdot g(n) \forall n \ge n_0 \}$

#### • Big O fact:

• A polynomial of degree k is  $O(n^k)$ 

## **Review: Asymptotic Notation**

- Asymptotic lower bound:
  - f(n) is  $\Omega(g(n))$  if  $\exists$  positive constants *c* and  $n_0$  such that  $0 \le c \cdot g(n) \le f(n) \forall n \ge n_0$
- Asymptotic tight bound:
  - f(n) is  $\Theta(g(n))$  if  $\exists$  positive constants  $c_1, c_2$ , and  $n_0$ such that  $c_1 g(n) \le f(n) \le c_2 g(n) \forall n \ge n_0$
  - $f(n) = \Theta(g(n))$  if and only if f(n) = O(g(n)) AND  $f(n) = \Omega(g(n))$

# **Other Asymptotic Notations**

- A function f(n) is o(g(n)) if  $\exists$  positive constants c and  $n_0$  such that  $f(n) < c g(n) \forall n \ge n_0$
- A function f(n) is  $\omega(g(n))$  if  $\exists$  positive constants *c* and  $n_0$  such that  $c g(n) < f(n) \forall n \ge n_0$
- Intuitively,
  - o() is like <</p>
  - O() is like ≤
- $\omega$ () is like >
  - $\Omega()$  is like  $\geq$
- $\Theta$ () is like =

## Merge Sort

```
MergeSort(A, left, right) {
    if (left < right) {
        mid = floor((left + right) / 2);
        MergeSort(A, left, mid);
        MergeSort(A, mid+1, right);
        Merge(A, left, mid, right);
    }
}</pre>
```

// Merge() takes two sorted subarrays of A and
// merges them into a single sorted subarray of A
// (how long should this take?)

### Merge Sort: Example

• Show MergeSort() running on the array

$$A = \{10, 5, 7, 6, 1, 4, 8, 3, 2, 9\};$$

# Analysis of Merge Sort

| Statement                                   | Effort       |
|---------------------------------------------|--------------|
| MergeSort(A, left, right) {                 | T(n)         |
| if (left < right) {                         | $\Theta$ (1) |
| <pre>mid = floor((left + right) / 2);</pre> | $\Theta$ (1) |
| MergeSort(A, left, mid);                    | T(n/2)       |
| <pre>MergeSort(A, mid+1, right);</pre>      | T(n/2)       |
| <pre>Merge(A, left, mid, right);</pre>      | $\Theta$ (n) |
| }                                           |              |
| • So $T(n) = \Theta(1)$ when $n = 1$ , and  |              |
|                                             |              |

 $2T(n/2) + \Theta(n)$  when n > 1

• So what (more succinctly) is T(n)?

### Recurrences

• The expression:

$$T(n) = \begin{cases} c & n = 1\\ 2T\left(\frac{n}{2}\right) + cn & n > 1 \end{cases}$$

- is a recurrence.
  - Recurrence: an equation that describes a function in terms of its value on smaller functions

#### **Recurrence** Examples

$$s(n) = \begin{cases} 0 & n = 0 \\ c + s(n-1) & n > 0 \end{cases}$$

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$





- Substitution method
- Iteration method
- Master method

- The substitution method (CLR 4.1)
  - A.k.a. the "making a good guess method"
  - Guess the form of the answer, then use induction to find the constants and show that solution works
  - Examples:
    - T(n) = 2T(n/2) + Θ(n) → T(n) = Θ(n lg n)
      T(n) = 2T(⌊n/2⌋) + n → ???

- The substitution method (CLR 4.1)
  - A.k.a. the "making a good guess method"
  - Guess the form of the answer, then use induction to find the constants and show that solution works
  - Examples:
    - T(n) = 2T(n/2) + Θ(n) → T(n) = Θ(n lg n)
      T(n) = 2T(⌊n/2⌋) + n → T(n) = Θ(n lg n)
    - $T(n) = 2T(\lfloor n/2 \rfloor) + 17) + n \rightarrow ???$

- The substitution method (CLR 4.1)
  - A.k.a. the "making a good guess method"
  - Guess the form of the answer, then use induction to find the constants and show that solution works
  - Examples:
    - T(n) = 2T(n/2) + Θ(n) → T(n) = Θ(n lg n)
      T(n) = 2T(⌊n/2⌋) + n → T(n) = Θ(n lg n)
      T(n) = 2T(⌊n/2⌋+17) + n → Θ(n lg n)

- Another option is what the book calls the "iteration method"
  - Expand the recurrence
  - Work some algebra to express as a summation
  - Evaluate the summation
- We will show several examples

$$s(n) = \begin{cases} 0 & n = 0\\ c + s(n-1) & n > 0 \end{cases}$$

• s(n) =c + s(n-1)c + c + s(n-2)2c + s(n-2)2c + c + s(n-3)3c + s(n-3). . . kc + s(n-k) = ck + s(n-k)

$$s(n) = \begin{cases} 0 & n = 0\\ c + s(n-1) & n > 0 \end{cases}$$

- So far for n >= k we have
  - s(n) = ck + s(n-k)
- What if k = n?

$$\bullet s(n) = cn + s(0) = cn$$

$$s(n) = \begin{cases} 0 & n = 0 \\ c + s(n-1) & n > 0 \end{cases}$$

- So far for n >= k we have
  - s(n) = ck + s(n-k)
- What if k = n?

• 
$$s(n) = cn + s(0) = cn$$

• So  

$$s(n) = \begin{cases} 0 & n = 0 \\ c + s(n-1) & n > 0 \end{cases}$$

• Thus in general

• 
$$s(n) = cn$$

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

- = n + s(n-1)
- = n + n 1 + s(n 2)
- = n + n 1 + n 2 + s(n 3)
- = n + n 1 + n 2 + n 3 + s(n 4)
- = ...
- = n + n 1 + n 2 + n 3 + ... + n (k 1) + s(n k)

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

= ...

- = n + s(n-1)
- = n + n 1 + s(n 2)
- = n + n 1 + n 2 + s(n 3)
- = n + n 1 + n 2 + n 3 + s(n 4)
- = n + n 1 + n 2 + n 3 + ... + n (k 1) + s(n k)=  $\sum_{i=n-k+1}^{n} i + s(n-k)$

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

$$\sum_{i=n-k+1}^{n} i + s(n-k)$$

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

$$\sum_{i=n-k+1}^{n} i + s(n-k)$$

• What if k = n?

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

$$\sum_{i=n-k+1}^{n} i + s(n-k)$$

• What if k = n?  

$$\sum_{i=1}^{n} i + s(0) = \sum_{i=1}^{n} i + 0 = n \frac{n+1}{2}$$

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

$$\sum_{i=n-k+1}^{n} i + s(n-k)$$

• What if k = n?  

$$\sum_{i=1}^{n} i + s(0) = \sum_{i=1}^{n} i + 0 = n \frac{n+1}{2}$$

• Thus in general  $s(n) = n \frac{n+1}{2}$ 

$$T(n) = \begin{cases} c & n = 1\\ 2T\left(\frac{n}{2}\right) + c & n > 1 \end{cases}$$

• T(n) =2T(n/2) + c2(2T(n/2/2) + c) + c $2^{2}T(n/2^{2}) + 2c + c$  $2^{2}(2T(n/2^{2}/2) + c) + 3c$  $2^{3}T(n/2^{3}) + 4c + 3c$  $2^{3}T(n/2^{3}) + 7c$  $2^{3}(2T(n/2^{3}/2) + c) + 7c$  $2^{4}T(n/2^{4}) + 15c$ 

 $2^{k}T(n/2^{k}) + (2^{k} - 1)c$ 

$$T(n) = \begin{cases} c & n = 1\\ 2T\left(\frac{n}{2}\right) + c & n > 1 \end{cases}$$

• 
$$T(n) = 2^k T(n/2^k) + (2^k - 1)c$$

• What if 
$$k = \lg n$$
?

• 
$$T(n) = 2^{\lg n} T(n/2^{\lg n}) + (2^{\lg n} - 1)c$$
  
=  $n T(n/n) + (n - 1)c$   
=  $n T(1) + (n-1)c$   
=  $nc + (n-1)c = (2n - 1)c$