
Algorithms

Solving Recurrences Continued

The Master Theorem

Introduction to heapsort

Review: Merge Sort

MergeSort(A, left, right) {

 if (left < right) {

 mid = floor((left + right) / 2);

 MergeSort(A, left, mid);

 MergeSort(A, mid+1, right);

 Merge(A, left, mid, right);

 }

}

// Merge() takes two sorted subarrays of A and

// merges them into a single sorted subarray of A.

// Code for this is in the book. It requires O(n)

// time, and *does* require allocating O(n) space

Review: Analysis of Merge Sort

Statement Effort

● So T(n) = (1) when n = 1, and

 2T(n/2) + (n) when n > 1

● This expression is a recurrence

MergeSort(A, left, right) { T(n)

 if (left < right) { (1)

 mid = floor((left + right) / 2); (1)

 MergeSort(A, left, mid); T(n/2)

 MergeSort(A, mid+1, right); T(n/2)

 Merge(A, left, mid, right); (n)

 }

}

Review: Solving Recurrences

● Substitution method

● Iteration method

● Master method

Review: Solving Recurrences

● The substitution method

■ A.k.a. the “making a good guess method”

■ Guess the form of the answer, then use induction to

find the constants and show that solution works

■ Run an example: merge sort

○ T(n) = 2T(n/2) + cn

○ We guess that the answer is O(n lg n)

○ Prove it by induction

■ Can similarly show T(n) = Ω(n lg n), thus Θ(n lg n)

Review: Solving Recurrences

● The “iteration method”

■ Expand the recurrence

■ Work some algebra to express as a summation

■ Evaluate the summation

● We showed several examples, were in the middle of:

1

1

)(
ncn

b

n
aT

nc

nT

● T(n) =

 aT(n/b) + cn

 a(aT(n/b/b) + cn/b) + cn

 a2T(n/b2) + cna/b + cn

 a2T(n/b2) + cn(a/b + 1)

 a2(aT(n/b2/b) + cn/b2) + cn(a/b + 1)

 a3T(n/b3) + cn(a2/b2) + cn(a/b + 1)

 a3T(n/b3) + cn(a2/b2 + a/b + 1)

 …

 akT(n/bk) + cn(ak-1/bk-1 + ak-2/bk-2 + … + a2/b2 + a/b + 1)

1

1

)(
ncn

b

n
aT

nc

nT

● So we have

■ T(n) = akT(n/bk) + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1)

● For k = logb n

■ n = bk

■ T(n) = akT(1) + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1)

 = akc + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1)

 = cak + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1)

 = cnak /bk + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1)

 = cn(ak/bk + ... + a2/b2 + a/b + 1)

1

1

)(
ncn

b

n
aT

nc

nT

● So with k = logb n

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1)

● What if a = b?

■ T(n) = cn(k + 1)

 = cn(logb n + 1)

 = (n log n)

1

1

)(
ncn

b

n
aT

nc

nT

● So with k = logb n

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1)

● What if a < b?

1

1

)(
ncn

b

n
aT

nc

nT

● So with k = logb n

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1)

● What if a < b?

■ Recall that (xk + xk-1 + … + x + 1) = (xk+1 -1)/(x-1)

1

1

)(
ncn

b

n
aT

nc

nT

● So with k = logb n

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1)

● What if a < b?

■ Recall that (xk + xk-1 + … + x + 1) = (xk+1 -1)/(x-1)

■ So:

1

1

)(
ncn

b

n
aT

nc

nT

 baba

ba

ba

ba

b

a

b

a

b

a
kk

k

k

k

k

1

1

1

1

1

1
1

11

1

1

● So with k = logb n

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1)

● What if a < b?

■ Recall that (xk + xk-1 + … + x + 1) = (xk+1 -1)/(x-1)

■ So:

■ T(n) = cn ·(1) = (n)

1

1

)(
ncn

b

n
aT

nc

nT

 baba

ba

ba

ba

b

a

b

a

b

a
kk

k

k

k

k

1

1

1

1

1

1
1

11

1

1

● So with k = logb n

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1)

● What if a > b?

1

1

)(
ncn

b

n
aT

nc

nT

● So with k = logb n

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1)

● What if a > b?

1

1

)(
ncn

b

n
aT

nc

nT

 k
k

k

k

k

k

ba
ba

ba

b

a

b

a

b

a

1

1
1

1

1

1

● So with k = logb n

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1)

● What if a > b?

■ T(n) = cn · (ak / bk)

1

1

)(
ncn

b

n
aT

nc

nT

 k
k

k

k

k

k

ba
ba

ba

b

a

b

a

b

a

1

1
1

1

1

1

● So with k = logb n

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1)

● What if a > b?

■ T(n) = cn · (ak / bk)

 = cn · (alog n / blog n) = cn · (alog n / n)

1

1

)(
ncn

b

n
aT

nc

nT

 k
k

k

k

k

k

ba
ba

ba

b

a

b

a

b

a

1

1
1

1

1

1

● So with k = logb n

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1)

● What if a > b?

■ T(n) = cn · (ak / bk)

 = cn · (alog n / blog n) = cn · (alog n / n)

 recall logarithm fact: alog n = nlog a

1

1

)(
ncn

b

n
aT

nc

nT

 k
k

k

k

k

k

ba
ba

ba

b

a

b

a

b

a

1

1
1

1

1

1

● So with k = logb n

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1)

● What if a > b?

■ T(n) = cn · (ak / bk)

 = cn · (alog n / blog n) = cn · (alog n / n)

 recall logarithm fact: alog n = nlog a

 = cn · (nlog a / n) = (cn · nlog a / n)

1

1

)(
ncn

b

n
aT

nc

nT

 k
k

k

k

k

k

ba
ba

ba

b

a

b

a

b

a

1

1
1

1

1

1

● So with k = logb n

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1)

● What if a > b?

■ T(n) = cn · (ak / bk)

 = cn · (alog n / blog n) = cn · (alog n / n)

 recall logarithm fact: alog n = nlog a

 = cn · (nlog a / n) = (cn · nlog a / n)

 = (nlog a)

1

1

)(
ncn

b

n
aT

nc

nT

 k
k

k

k

k

k

ba
ba

ba

b

a

b

a

b

a

1

1
1

1

1

1

● So…

1

1

)(
ncn

b

n
aT

nc

nT

ban

bann

ban

nT
a

b

blog

log)(

The Master Theorem

● Given: a divide and conquer algorithm

■ An algorithm that divides the problem of size n

into a subproblems, each of size n/b

■ Let the cost of each stage (i.e., the work to divide

the problem + combine solved subproblems) be

described by the function f(n)

● Then, the Master Theorem gives us a

cookbook for the algorithm’s running time:

The Master Theorem

● if T(n) = aT(n/b) + f(n) then

1

0

largefor)()/(

 AND)(

)(

)(

)(

log)(

log

log

log

log

log

c

nncfbnaf

nnf

nnf

nOnf

nf

nn

n

nT

a

a

a

a

a

b

b

b

b

b

Using The Master Method

● T(n) = 9T(n/3) + n

■ a=9, b=3, f(n) = n

■ nlogb a = nlog3 9 = (n2)

■ Since f(n) = O(nlog3 9 -), where =1, case 1 applies:

■ Thus the solution is T(n) = (n2)

aa bb nOnfnnT

loglog
)(when)(

Sorting Revisited

● So far we’ve talked about two algorithms to

sort an array of numbers

■ What is the advantage of merge sort?

■ What is the advantage of insertion sort?

● Next on the agenda: Heapsort

■ Combines advantages of both previous algorithms

● A heap can be seen as a complete binary tree:

■ What makes a binary tree complete?

■ Is the example above complete?

Heaps

16

14 10

8 7 9 3

2 4 1

● A heap can be seen as a complete binary tree:

■ The book calls them “nearly complete” binary

trees; can think of unfilled slots as null pointers

Heaps

16

14 10

8 7 9 3

2 4 1 1 1 1 1 1

Heaps

● In practice, heaps are usually implemented as

arrays:

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1 A = =

Heaps

● To represent a complete binary tree as an array:

■ The root node is A[1]

■ Node i is A[i]

■ The parent of node i is A[i/2] (note: integer divide)

■ The left child of node i is A[2i]

■ The right child of node i is A[2i + 1]
16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1 A = =

Referencing Heap Elements

● So…

Parent(i) { return i/2; }

Left(i) { return 2*i; }

right(i) { return 2*i + 1; }

● An aside: How would you implement this

most efficiently?

● Another aside: Really?

The Heap Property

● Heaps also satisfy the heap property:

 A[Parent(i)] A[i] for all nodes i > 1

■ In other words, the value of a node is at most the

value of its parent

■ Where is the largest element in a heap stored?

● Definitions:

■ The height of a node in the tree = the number of

edges on the longest downward path to a leaf

■ The height of a tree = the height of its root

Heap Height

● What is the height of an n-element heap? Why?

● This is nice: basic heap operations take at most

time proportional to the height of the heap

Heap Operations: Heapify()

● Heapify(): maintain the heap property

■ Given: a node i in the heap with children l and r

■ Given: two subtrees rooted at l and r, assumed to

be heaps

■ Problem: The subtree rooted at i may violate the

heap property (How?)

■ Action: let the value of the parent node “float

down” so subtree at i satisfies the heap property

○ What do you suppose will be the basic operation

between i, l, and r?

Heap Operations: Heapify()

Heapify(A, i)

{

 l = Left(i); r = Right(i);

 if (l <= heap_size(A) && A[l] > A[i])

 largest = l;

 else

 largest = i;

 if (r <= heap_size(A) && A[r] > A[largest])

 largest = r;

 if (largest != i)

 Swap(A, i, largest);

 Heapify(A, largest);

}

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 4 10 14 7 9 3 2 8 1 A =

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 10 14 7 9 3 2 8 1 A = 4

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 10 7 9 3 2 8 1 A = 4 14

Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 4 7 9 3 2 8 1 A =

Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 8 1 A = 4

Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 1 A = 4 8

Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1 A =

Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 1 A = 4

Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1 A =

Analyzing Heapify(): Informal

● Aside from the recursive call, what is the
running time of Heapify()?

● How many times can Heapify() recursively

call itself?

● What is the worst-case running time of
Heapify() on a heap of size n?

Analyzing Heapify(): Formal

● Fixing up relationships between i, l, and r

takes (1) time

● If the heap at i has n elements, how many

elements can the subtrees at l or r have?

■ Draw it

● Answer: 2n/3 (worst case: bottom row 1/2 full)

● So time taken by Heapify() is given by

 T(n) T(2n/3) + (1)

Analyzing Heapify(): Formal

● So we have

 T(n) T(2n/3) + (1)

● By case 2 of the Master Theorem,

 T(n) = O(lg n)

● Thus, Heapify() takes linear time

Heap Operations: BuildHeap()

● We can build a heap in a bottom-up manner by
running Heapify() on successive subarrays

■ Fact: for array of length n, all elements in range

A[n/2 + 1 .. n] are heaps (Why?)

■ So:

○ Walk backwards through the array from n/2 to 1, calling

Heapify() on each node.

○ Order of processing guarantees that the children of node

i are heaps when i is processed

BuildHeap()

// given an unsorted array A, make A a heap

BuildHeap(A)

{

 heap_size(A) = length(A);

 for (i = length[A]/2 downto 1)

 Heapify(A, i);

}

BuildHeap() Example

● Work through example

A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}

4

1 3

2 16 9 10

14 8 7

Analyzing BuildHeap()

● Each call to Heapify() takes O(lg n) time

● There are O(n) such calls (specifically, n/2)

● Thus the running time is O(n lg n)

■ Is this a correct asymptotic upper bound?

■ Is this an asymptotically tight bound?

● A tighter bound is O(n)

■ How can this be? Is there a flaw in the above

reasoning?

Analyzing BuildHeap(): Tight

● To Heapify() a subtree takes O(h) time

where h is the height of the subtree

■ h = O(lg m), m = # nodes in subtree

■ The height of most subtrees is small

● Fact: an n-element heap has at most n/2h+1

nodes of height h

● CLR 7.3 uses this fact to prove that
BuildHeap() takes O(n) time

Heapsort

● Given BuildHeap(), an in-place sorting

algorithm is easily constructed:

■ Maximum element is at A[1]

■ Discard by swapping with element at A[n]

○ Decrement heap_size[A]

○ A[n] now contains correct value

■ Restore heap property at A[1] by calling

Heapify()

■ Repeat, always swapping A[1] for A[heap_size(A)]

Heapsort

Heapsort(A)

{

 BuildHeap(A);

 for (i = length(A) downto 2)

 {

 Swap(A[1], A[i]);

 heap_size(A) -= 1;

 Heapify(A, 1);

 }

}

Analyzing Heapsort

● The call to BuildHeap() takes O(n) time

● Each of the n - 1 calls to Heapify() takes

O(lg n) time

● Thus the total time taken by HeapSort()

= O(n) + (n - 1) O(lg n)

= O(n) + O(n lg n)

= O(n lg n)

Priority Queues

● Heapsort is a nice algorithm, but in practice

Quicksort (coming up) usually wins

● But the heap data structure is incredibly useful

for implementing priority queues

■ A data structure for maintaining a set S of

elements, each with an associated value or key

■ Supports the operations Insert(),

Maximum(), and ExtractMax()

■ What might a priority queue be useful for?

Priority Queue Operations

● Insert(S, x) inserts the element x into set S

● Maximum(S) returns the element of S with

the maximum key

● ExtractMax(S) removes and returns the

element of S with the maximum key

● How could we implement these operations

using a heap?

