
Algorithms 

Solving Recurrences Continued 

The Master Theorem 

Introduction to heapsort 



Review: Merge Sort 

MergeSort(A, left, right) { 

 if (left < right) { 

  mid = floor((left + right) / 2); 

  MergeSort(A, left, mid); 

  MergeSort(A, mid+1, right); 

  Merge(A, left, mid, right); 

 } 

} 

// Merge() takes two sorted subarrays of A and 

// merges them into a single sorted subarray of A. 

// Code for this is in the book.  It requires O(n)  

// time, and *does* require allocating O(n) space  



Review: Analysis of Merge Sort 

Statement   Effort 

 

 

 

 

● So T(n) =  (1) when n = 1, and               

 2T(n/2) + (n) when n > 1 

● This expression is a recurrence 

MergeSort(A, left, right) { T(n) 

   if (left < right) { (1) 

      mid = floor((left + right) / 2);    (1) 

      MergeSort(A, left, mid);    T(n/2) 

      MergeSort(A, mid+1, right);    T(n/2) 

      Merge(A, left, mid, right);    (n) 

   } 

} 



Review: Solving Recurrences 

● Substitution method 

● Iteration method 

● Master method 



Review: Solving Recurrences 

● The substitution method  

■ A.k.a. the “making a good guess method” 

■ Guess the form of the answer, then use induction to 

find the constants and show that solution works 

■ Run an example: merge sort 

○ T(n) = 2T(n/2) + cn 

○ We guess that the answer is O(n lg n)  

○ Prove it by induction 

■ Can similarly show T(n) = Ω(n lg n), thus Θ(n lg n) 



Review: Solving Recurrences 

● The “iteration method” 

■ Expand the recurrence  

■ Work some algebra to express as a summation 

■ Evaluate the summation 

● We showed several examples, were in the middle of: 
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● T(n) =  

 aT(n/b) + cn 

 a(aT(n/b/b) + cn/b) + cn 

 a2T(n/b2) + cna/b + cn 

 a2T(n/b2) + cn(a/b + 1) 

 a2(aT(n/b2/b) + cn/b2) + cn(a/b + 1) 

 a3T(n/b3) + cn(a2/b2) + cn(a/b + 1) 

 a3T(n/b3) + cn(a2/b2 + a/b + 1) 

 … 

 akT(n/bk) + cn(ak-1/bk-1 + ak-2/bk-2 + … + a2/b2 + a/b + 1) 
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● So we have 

■ T(n) = akT(n/bk) + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1) 

● For k = logb n 

■ n = bk 

■ T(n) = akT(1) + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1) 

  = akc + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1) 

  = cak + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1) 

  = cnak /bk + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1) 

  = cn(ak/bk + ... + a2/b2 + a/b + 1) 
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● So with k = logb n 

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1) 

● What if a = b? 

■ T(n) = cn(k + 1) 

  = cn(logb n + 1) 

  = (n log n) 
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● So with k = logb n 

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1) 

● What if a < b? 
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● So with k = logb n 

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1) 

● What if a < b? 

■ Recall that (xk + xk-1 + … + x + 1) = (xk+1 -1)/(x-1) 
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● So with k = logb n 

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1) 

● What if a < b? 

■ Recall that (xk + xk-1 + … + x + 1) = (xk+1 -1)/(x-1) 

■ So: 
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● So with k = logb n 

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1) 

● What if a < b? 

■ Recall that (xk + xk-1 + … + x + 1) = (xk+1 -1)/(x-1) 

■ So: 

 

 

■ T(n) = cn ·(1) = (n) 
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● So with k = logb n 

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1) 

● What if a > b? 
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● So with k = logb n 

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1) 

● What if a > b? 
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● So with k = logb n 

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1) 

● What if a > b? 

 

■ T(n) = cn · (ak / bk) 
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● So with k = logb n 

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1) 

● What if a > b? 

 

■ T(n) = cn · (ak / bk) 

  = cn · (alog n / blog n) = cn · (alog n / n) 
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● So with k = logb n 

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1) 

● What if a > b? 

 

■ T(n) = cn · (ak / bk) 

  = cn · (alog n / blog n) = cn · (alog n / n) 

    recall logarithm fact: alog n = nlog a  
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● So with k = logb n 

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1) 

● What if a > b? 

 

■ T(n) = cn · (ak / bk) 

  = cn · (alog n / blog n) = cn · (alog n / n) 

    recall logarithm fact: alog n = nlog a  

  = cn · (nlog a / n) = (cn · nlog a / n)  
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● So with k = logb n 

■ T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1) 

● What if a > b? 

 

■ T(n) = cn · (ak / bk) 

  = cn · (alog n / blog n) = cn · (alog n / n) 

    recall logarithm fact: alog n = nlog a  

  = cn · (nlog a / n) = (cn · nlog a / n)  

  = (nlog a ) 
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● So…   
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The Master Theorem 

● Given: a divide and conquer algorithm 

■ An algorithm that divides the problem of size n 

into a subproblems, each of size n/b 

■ Let the cost of each stage (i.e., the work to divide 

the problem + combine solved subproblems) be 

described by the function f(n) 

● Then, the Master Theorem gives us a 

cookbook for the algorithm’s running time: 



The Master Theorem 

● if  T(n) = aT(n/b) + f(n) then 
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Using The Master Method 

● T(n) = 9T(n/3) + n 

■ a=9, b=3, f(n) = n 

■ nlogb a = nlog3 9 = (n2) 

■ Since f(n) = O(nlog3 9 - ), where =1, case 1 applies: 

 

 

■ Thus the solution is T(n) = (n2) 
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Sorting Revisited 

● So far we’ve talked about two algorithms to 

sort an array of numbers 

■ What is the advantage of merge sort? 

■ What is the advantage of insertion sort? 

● Next on the agenda: Heapsort 

■ Combines advantages of both previous algorithms 



● A heap can be seen as a complete binary tree: 

 

 

 

 

 

 

■ What makes a binary tree complete?   

■ Is the example above complete? 

Heaps 

16 

14 10 

8 7 9 3 

2 4 1 



● A heap can be seen as a complete binary tree: 

 

 

 

 

 

 

■ The book calls them “nearly complete” binary 

trees; can think of unfilled slots as null pointers 

Heaps 

16 

14 10 

8 7 9 3 

2 4 1 1 1 1 1 1 



Heaps 

● In practice, heaps are usually implemented as 

arrays: 

 

 

 

 

 

16 

14 10 

8 7 9 3 

2 4 1 

16 14 10 8 7 9 3 2 4 1 A = = 



Heaps 

● To represent a complete binary tree as an array:  

■ The root node is A[1] 

■ Node i is A[i] 

■ The parent of node i is A[i/2] (note: integer divide) 

■ The left child of node i is A[2i] 

■ The right child of node i is A[2i + 1] 
16 

14 10 

8 7 9 3 

2 4 1 

16 14 10 8 7 9 3 2 4 1 A = = 



Referencing Heap Elements 

● So… 

Parent(i) { return i/2; } 

Left(i) { return 2*i; } 

right(i) { return 2*i + 1; } 

● An aside: How would you implement this  

most efficiently? 

● Another aside: Really? 



The Heap Property 

● Heaps also satisfy the heap property: 

 A[Parent(i)]  A[i]  for all nodes i > 1 

■ In other words, the value of a node is at most the 

value of its parent 

■ Where is the largest element in a heap stored? 

● Definitions: 

■ The height of a node in the tree = the number of 

edges on the longest downward path to a leaf  

■ The height of a tree = the height of its root 



Heap Height 

● What is the height of an n-element heap? Why? 

● This is nice: basic heap operations take at most 

time proportional to the height of the heap 

 



Heap Operations: Heapify() 

● Heapify(): maintain the heap property 

■ Given: a node i in the heap with children l and r 

■ Given: two subtrees rooted at l and r, assumed to 

be heaps 

■ Problem: The subtree rooted at i may violate the 

heap property (How?) 

■ Action: let the value of the parent node “float 

down” so subtree at i satisfies the heap property  

○ What do you suppose will be the basic operation 

between i, l, and r? 



Heap Operations: Heapify() 

Heapify(A, i) 

{  

 l = Left(i); r = Right(i); 

 if (l <= heap_size(A) && A[l] > A[i])  

  largest = l; 

 else 

  largest = i; 

 if (r <= heap_size(A) && A[r] > A[largest]) 

  largest = r; 

 if (largest != i)  

  Swap(A, i, largest); 

  Heapify(A, largest); 

}  



Heapify() Example 

16 

4 10 

14 7 9 3 

2 8 1 

16 4 10 14 7 9 3 2 8 1 A = 



Heapify() Example 

16 

4 10 

14 7 9 3 

2 8 1 

16 10 14 7 9 3 2 8 1 A = 4 



Heapify() Example 

16 

4 10 

14 7 9 3 

2 8 1 

16 10 7 9 3 2 8 1 A = 4 14 



Heapify() Example 

16 

14 10 

4 7 9 3 

2 8 1 

16 14 10 4 7 9 3 2 8 1 A = 



Heapify() Example 

16 

14 10 

4 7 9 3 

2 8 1 

16 14 10 7 9 3 2 8 1 A = 4 



Heapify() Example 

16 

14 10 

4 7 9 3 

2 8 1 

16 14 10 7 9 3 2 1 A = 4 8 



Heapify() Example 

16 

14 10 

8 7 9 3 

2 4 1 

16 14 10 8 7 9 3 2 4 1 A = 



Heapify() Example 

16 

14 10 

8 7 9 3 

2 4 1 

16 14 10 8 7 9 3 2 1 A = 4 



Heapify() Example 

16 

14 10 

8 7 9 3 

2 4 1 

16 14 10 8 7 9 3 2 4 1 A = 



Analyzing Heapify(): Informal 

● Aside from the recursive call, what is the 
running time of Heapify()? 

● How many times can Heapify() recursively 

call itself? 

● What is the worst-case running time of 
Heapify() on a heap of size n? 



Analyzing Heapify(): Formal 

● Fixing up relationships between i, l, and r 

takes (1) time 

● If the heap at i has n elements, how many 

elements can the subtrees at l or r have?  

■ Draw it 

● Answer: 2n/3 (worst case: bottom row 1/2 full) 

● So time taken by Heapify() is given by 

 T(n)  T(2n/3) + (1)  



Analyzing Heapify(): Formal 

● So we have  

  T(n)  T(2n/3) + (1)  

● By case 2 of the Master Theorem, 

  T(n) = O(lg n) 

● Thus, Heapify() takes linear time 

 



Heap Operations: BuildHeap() 

● We can build a heap in a bottom-up manner by 
running Heapify() on successive subarrays 

■ Fact: for array of length n, all elements in range  

A[n/2 + 1 .. n] are heaps (Why?) 

■ So:  

○ Walk backwards through the array from n/2 to 1, calling 

Heapify() on each node. 

○ Order of processing guarantees that the children of node 

i are heaps when i is processed 



BuildHeap() 

// given an unsorted array A, make A a heap 

BuildHeap(A) 

{ 

 heap_size(A) = length(A); 

 for (i = length[A]/2  downto 1) 

  Heapify(A, i); 

} 



BuildHeap() Example 

● Work through example 

A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7} 

4 

1 3 

2 16 9 10 

14 8 7 



Analyzing BuildHeap() 

● Each call to Heapify() takes O(lg n) time 

● There are O(n) such calls (specifically, n/2) 

● Thus the running time is O(n lg n) 

■ Is this a correct asymptotic upper bound? 

■ Is this an asymptotically tight bound? 

● A tighter bound is O(n)  

■ How can this be?  Is there a flaw in the above 

reasoning? 



Analyzing BuildHeap(): Tight 

● To Heapify() a subtree takes O(h) time 

where h is the height of the subtree 

■ h = O(lg m), m = # nodes in subtree 

■ The height of most subtrees is small 

● Fact: an n-element heap has at most n/2h+1 

nodes of height h 

● CLR 7.3 uses this fact to prove that 
BuildHeap() takes O(n) time  

 



Heapsort 

● Given BuildHeap(),  an in-place sorting 

algorithm is easily constructed: 

■ Maximum element is at A[1] 

■ Discard by swapping with element at A[n] 

○ Decrement heap_size[A] 

○ A[n] now contains correct value 

■ Restore heap property at A[1] by calling 

Heapify() 

■ Repeat, always swapping A[1] for A[heap_size(A)] 



Heapsort 

Heapsort(A) 

{ 

  BuildHeap(A); 

  for (i = length(A) downto 2) 

  { 

   Swap(A[1], A[i]); 

   heap_size(A) -= 1; 

   Heapify(A, 1); 

  } 

} 



Analyzing Heapsort 

● The call to BuildHeap() takes O(n) time  

● Each of the n - 1 calls to Heapify() takes 

O(lg n) time 

● Thus the total time taken by HeapSort()  

= O(n) + (n - 1) O(lg n) 

= O(n) + O(n lg n) 

= O(n lg n) 



Priority Queues 

● Heapsort is a nice algorithm, but in practice 

Quicksort (coming up) usually wins 

● But the heap data structure is incredibly useful 

for implementing priority queues 

■ A data structure for maintaining a set S of 

elements, each with an associated value or key 

■ Supports the operations Insert(), 

Maximum(), and ExtractMax() 

■ What might a priority queue be useful for? 

 



Priority Queue Operations 

● Insert(S, x) inserts the element x into set S 

● Maximum(S) returns the element of S with 

the maximum key 

● ExtractMax(S) removes and returns the 

element of S with the maximum key 

● How could we implement these operations 

using a heap? 


