Algorithms

Solving Recurrences Continued
 The Master Theorem
 Introduction to heapsort

Review: Merge Sort

MergeSort(A, left, right) \{
if (left < right) \{
mid $=$ floor ((left + right) / 2) ;
MergeSort(A, left, mid);
MergeSort(A, mid+1, right) ;
Merge (A, left, mid, right) ;
\}
\}
// Merge() takes two sorted subarrays of A and
// merges them into a single sorted subarray of A.
// Code for this is in the book. It requires $O(n)$
// time, and *does* require allocating $O(n)$ space

Review: Analysis of Merge Sort

Statement

MergeSort(A, left, right) \{
if (left < right) \{ mid = floor ((left + right) / 2); MergeSort(A, left, mid); MergeSort(A, mid+1, right); Merge (A, left, mid, right);
\}
\}

- So $T(n)=\Theta(1)$ when $n=1$, and

$$
2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n}) \text { when } \mathrm{n}>1
$$

- This expression is a recurrence

Review: Solving Recurrences

- Substitution method
- Iteration method
- Master method

Review: Solving Recurrences

- The substitution method
- A.k.a. the "making a good guess method"
- Guess the form of the answer, then use induction to find the constants and show that solution works
- Run an example: merge sort
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}$
- We guess that the answer is $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- Prove it by induction

■ Can similarly show $T(n)=\Omega(n \lg n)$, thus $\Theta(n \lg n)$

Review: Solving Recurrences

- The "iteration method"
- Expand the recurrence
- Work some algebra to express as a summation
- Evaluate the summation
- We showed several examples, were in the middle of:

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- $\mathrm{T}(\mathrm{n})=$

$$
\mathrm{aT}(\mathrm{n} / \mathrm{b})+\mathrm{cn}
$$

$$
\mathrm{a}(\mathrm{aT}(\mathrm{n} / \mathrm{b} / \mathrm{b})+\mathrm{cn} / \mathrm{b})+\mathrm{cn}
$$

$$
\mathrm{a}^{2} \mathrm{~T}\left(\mathrm{n} / \mathrm{b}^{2}\right)+\mathrm{cna} / \mathrm{b}+\mathrm{cn}
$$

$$
\mathrm{a}^{2} \mathrm{~T}\left(\mathrm{n} / \mathrm{b}^{2}\right)+\mathrm{cn}(\mathrm{a} / \mathrm{b}+1)
$$

$$
\mathrm{a}^{2}\left(\mathrm{aT}\left(\mathrm{n} / \mathrm{b}^{2} / \mathrm{b}\right)+\mathrm{cn} / \mathrm{b}^{2}\right)+\mathrm{cn}(\mathrm{a} / \mathrm{b}+1)
$$

$$
\mathrm{a}^{3} \mathrm{~T}\left(\mathrm{n} / \mathrm{b}^{3}\right)+\mathrm{cn}\left(\mathrm{a}^{2} / \mathrm{b}^{2}\right)+\mathrm{cn}(\mathrm{a} / \mathrm{b}+1)
$$

$$
\mathrm{a}^{3} \mathrm{~T}\left(\mathrm{n} / \mathrm{b}^{3}\right)+\mathrm{cn}\left(\mathrm{a}^{2} / \mathrm{b}^{2}+\mathrm{a} / \mathrm{b}+1\right)
$$

$$
\mathrm{a}^{\mathrm{k}} \mathrm{~T}\left(\mathrm{n} / \mathrm{b}^{\mathrm{k}}\right)+\mathrm{cn}\left(\mathrm{a}^{\mathrm{k}-1} / \mathrm{b}^{\mathrm{k}-1}+\mathrm{a}^{\left.\left.\mathrm{k}-2 / b^{\mathrm{k}-2}+\ldots+\mathrm{a}^{2} / \mathrm{b}^{2}+\mathrm{a} / \mathrm{b}+1\right) .1{ }^{2}\right)}\right.
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So we have
- $T(n)=a^{k} T\left(n / b^{k}\right)+c n\left(a^{k-1} / b^{k-1}+\ldots+a^{2} / b^{2}+a / b+1\right)$
- For $k=\log _{b} n$
- $\mathrm{n}=\mathrm{b}^{\mathrm{k}}$
- $T(n)=a^{k} T(1)+\operatorname{cn}\left(a^{k-1} / b^{k-1}+\ldots+a^{2} / b^{2}+a / b+1\right)$

$$
\begin{aligned}
& =a^{k} c+c n\left(a^{k-1} / b^{k-1}+\ldots+a^{2} / b^{2}+a / b+1\right) \\
& =c a^{k}+\operatorname{cn}\left(a^{k-1} / b^{k-1}+\ldots+a^{2} / b^{2}+a / b+1\right) \\
& =c n a^{k} / b^{k}+c n\left(a^{k-1} / b^{k-1}+\ldots+a^{2} / b^{2}+a / b+1\right) \\
& =\operatorname{cn}\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)
\end{aligned}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $\mathrm{k}=\log _{\mathrm{b}} \mathrm{n}$
- $T(n)=\operatorname{cn}\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
-What if $\mathrm{a}=\mathrm{b}$?
- $\mathrm{T}(\mathrm{n})=\operatorname{cn}(\mathrm{k}+1)$

$$
\begin{aligned}
& =c n\left(\log _{b} n+1\right) \\
& =\Theta(n \log n)
\end{aligned}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $k=\log _{b} n$
- $\mathrm{T}(\mathrm{n})=\mathrm{cn}\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}+\ldots+\mathrm{a}^{2} / \mathrm{b}^{2}+\mathrm{a} / \mathrm{b}+1\right)$
-What if $\mathrm{a}<\mathrm{b}$?

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $k=\log _{b} n$
- $T(n)=\operatorname{cn}\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
-What if $\mathrm{a}<\mathrm{b}$?
- Recall that $\Sigma\left(\mathrm{x}^{k}+\mathrm{x}^{k-1}+\ldots+\mathrm{x}+1\right)=\left(\mathrm{x}^{\mathrm{k}+1}-1\right) /(\mathrm{x}-1)$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $\mathrm{k}=\log _{\mathrm{b}} \mathrm{n}$
- $T(n)=\operatorname{cn}\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
- What if $\mathrm{a}<\mathrm{b}$?
- Recall that $\left(\mathrm{x}^{\mathrm{k}}+\mathrm{x}^{\mathrm{k}-1}+\ldots+\mathrm{x}+1\right)=\left(\mathrm{x}^{\mathrm{k}+1}-1\right) /(\mathrm{x}-1)$
- So:

$$
\frac{a^{k}}{b^{k}} \frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\frac{1-(a / b)^{k+1}}{1-(a / b)}<\frac{1}{1-a / b}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $\mathrm{k}=\log _{\mathrm{b}} \mathrm{n}$
- $T(n)=\operatorname{cn}\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
- What if $\mathrm{a}<\mathrm{b}$?
- Recall that $\Sigma\left(\mathrm{x}^{k}+\mathrm{x}^{k-1}+\ldots+\mathrm{x}+1\right)=\left(\mathrm{x}^{\mathrm{k}+1}-1\right) /(\mathrm{x}-1)$
- So:

$$
\begin{aligned}
& \frac{a^{k}}{b^{k}}+\frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\frac{1-(a / b)^{k+1}}{1-(a / b)}<\frac{1}{1-a / b} \\
& \quad-\mathrm{T}(\mathrm{n})=\mathrm{cn} \cdot \Theta(1)=\Theta(\mathrm{n})
\end{aligned}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $k=\log _{b} n$
- $\mathrm{T}(\mathrm{n})=\mathrm{cn}\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}+\ldots+\mathrm{a}^{2} / \mathrm{b}^{2}+\mathrm{a} / \mathrm{b}+1\right)$
-What if $\mathrm{a}>\mathrm{b}$?

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $\mathrm{k}=\log _{\mathrm{b}} \mathrm{n}$
- $T(n)=\operatorname{cn}\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
-What if $\mathrm{a}>\mathrm{b}$?

$$
\frac{a^{k}}{b^{k}}+\frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\Theta\left((a / b)^{k}\right)
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $\mathrm{k}=\log _{\mathrm{b}} \mathrm{n}$
- $\mathrm{T}(\mathrm{n})=\operatorname{cn}\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}+\ldots+\mathrm{a}^{2} / \mathrm{b}^{2}+\mathrm{a} / \mathrm{b}+1\right)$
-What if $\mathrm{a}>\mathrm{b}$?

$$
\begin{aligned}
& \left.\frac{a^{k}}{b^{k}} \frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\Theta\left((a / b)^{k}\right)\right) \\
& =\mathrm{T}(\mathrm{n})=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{k} / \mathrm{b}^{k}\right)
\end{aligned}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $\mathrm{k}=\log _{\mathrm{b}} \mathrm{n}$
- $T(n)=\operatorname{cn}\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
- What if $\mathrm{a}>\mathrm{b}$?

$$
\begin{aligned}
& \frac{a^{k}}{b^{k}}+\frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\Theta\left((a / b)^{k}\right) \\
& \mathrm{T}(\mathrm{n})=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}\right) \\
& \quad=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\log \mathrm{n}} / \mathrm{b}^{\log \mathrm{n}}\right)=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\log \mathrm{n}} / \mathrm{n}\right)
\end{aligned}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $k=\log _{b} n$
- $\mathrm{T}(\mathrm{n})=\operatorname{cn}\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}+\ldots+\mathrm{a}^{2} / \mathrm{b}^{2}+\mathrm{a} / \mathrm{b}+1\right)$
- What if $\mathrm{a}>\mathrm{b}$?

$$
\begin{aligned}
& \frac{a^{k}}{b^{k}}+\frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\Theta\left((a / b)^{k}\right) \\
& \mathrm{T}(\mathrm{n})=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}\right) \\
& =\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\log \mathrm{n}} / \mathrm{b}^{\log \mathrm{n}}\right)=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\log \mathrm{n}} / \mathrm{n}\right) \\
& \quad \text { recall logarithm fact: } a^{\log n}=n^{\log a}
\end{aligned}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $k=\log _{b} n$
- $T(n)=\operatorname{cn}\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
- What if $\mathrm{a}>\mathrm{b}$?

$$
\begin{aligned}
& \frac{a^{k}}{b^{k}}+\frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\Theta\left((a / b)^{k}\right) \\
& \quad \mathrm{T}(\mathrm{n})=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}\right) \\
& =\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\log \mathrm{n}} / \mathrm{b}^{\log \mathrm{n}}\right)=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\log \mathrm{n}} / \mathrm{n}\right) \\
& \quad \text { recall logarithm fact: } a^{\log n}=n^{\log a} \\
& =\mathrm{cn} \cdot \Theta\left(\mathrm{n}^{\log \mathrm{a}} / \mathrm{n}\right)=\Theta\left(\mathrm{cn} \cdot \mathrm{n}^{\log \mathrm{a}} / \mathrm{n}\right)
\end{aligned}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $\mathrm{k}=\log _{\mathrm{b}} \mathrm{n}$
- $T(n)=\operatorname{cn}\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$
- What if $\mathrm{a}>\mathrm{b}$?

$$
\begin{aligned}
& \frac{a^{k}}{b^{k}}+\frac{a^{k-1}}{b^{k-1}}+\cdots+\frac{a}{b}+1=\frac{(a / b)^{k+1}-1}{(a / b)-1}=\Theta\left((a / b)^{k}\right) \\
& \mathrm{T}(\mathrm{n})=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\mathrm{k}} / \mathrm{b}^{\mathrm{k}}\right) \\
& =\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\log \mathrm{n}} / \mathrm{b}^{\log \mathrm{n}}\right)=\mathrm{cn} \cdot \Theta\left(\mathrm{a}^{\log \mathrm{n}} / \mathrm{n}\right) \\
& \quad \text { recall logarithm fact: } a^{\log n}=n^{\log a} \\
& =\mathrm{cn} \cdot \Theta\left(\mathrm{n}^{\log \mathrm{a}} / \mathrm{n}\right)=\Theta\left(\mathrm{cn} \cdot \mathrm{n}^{\log \mathrm{a}} / \mathrm{n}\right) \\
& =
\end{aligned}
$$

$$
T(n)=\left\{\begin{array}{cl}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So...

$$
T(n)=\left\{\begin{array}{cl}
\Theta(n) & a<b \\
\Theta\left(n \log _{b} n\right) & a=b \\
\Theta\left(n^{\log _{b} a}\right) & a>b
\end{array}\right.
$$

The Master Theorem

- Given: a divide and conquer algorithm
- An algorithm that divides the problem of size n into a subproblems, each of size n / b
- Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function $f(\mathrm{n})$
- Then, the Master Theorem gives us a cookbook for the algorithm's running time:

The Master Theorem

- if $T(n)=a T(n / b)+f(n)$ then

$$
\boldsymbol{T}(\boldsymbol{n})=\left\{\begin{array}{ll}
\Theta\left(\boldsymbol{n}^{\log _{b} a}\right) & \boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\log _{b} a-\varepsilon}\right) \\
\Theta\left(\boldsymbol{n}^{\log _{b} a} \log \boldsymbol{n}\right) & \boldsymbol{f}(\boldsymbol{n})=\Theta\left(\boldsymbol{n}^{\log _{b} a}\right) \\
\Theta(\boldsymbol{f}(\boldsymbol{n})) & \boldsymbol{f}(\boldsymbol{n})=\Omega\left(n^{\log _{b} a+\varepsilon}\right) \text { AND } \\
& \boldsymbol{a f}(\boldsymbol{n} / \boldsymbol{b})<\boldsymbol{c f}(\boldsymbol{n}) \text { for large } \boldsymbol{n}
\end{array}\right\}
$$

Using The Master Method

- $T(n)=9 T(n / 3)+n$
- $\mathrm{a}=9, \mathrm{~b}=3, \mathrm{f}(\mathrm{n})=\mathrm{n}$
- $\mathrm{n}^{\log _{b} \mathrm{a}}=\mathrm{n}^{\log _{3} 9}=\Theta\left(\mathrm{n}^{2}\right)$
$■$ Since $\mathrm{f}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\log _{3} 9-\varepsilon}\right)$, where $\varepsilon=1$, case 1 applies:

$$
\boldsymbol{T}(\boldsymbol{n})=\Theta\left(\boldsymbol{n}^{\log _{b} a}\right) \text { when } \boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\log _{b} a-\varepsilon}\right)
$$

- Thus the solution is $T(n)=\Theta\left(n^{2}\right)$

Sorting Revisited

- So far we've talked about two algorithms to sort an array of numbers
- What is the advantage of merge sort?
- What is the advantage of insertion sort?
- Next on the agenda: Heapsort

■ Combines advantages of both previous algorithms

Heaps

- A heap can be seen as a complete binary tree:

- What makes a binary tree complete?

■ Is the example above complete?

Heaps

- A heap can be seen as a complete binary tree:

- The book calls them "nearly complete" binary trees; can think of unfilled slots as null pointers

Heaps

- In practice, heaps are usually implemented as arrays:

$A=$| 16 | 14 | 10 | 8 | 7 | 9 | 3 | 2 | 4 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$=$

Heaps

- To represent a complete binary tree as an array:
- The root node is $\mathrm{A}[1]$
- Node i is $\mathrm{A}[i]$
- The parent of node i is $\mathrm{A}[i / 2]$ (note: integer divide)
- The left child of node i is $\mathrm{A}[2 i]$
- The right child of node i is $\mathrm{A}[2 i+1]$

$A=$| 16 | 14 | 10 | 8 | 7 | 9 | 3 | 2 | 4 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Referencing Heap Elements

- So...

Parent(i) \{ return Li/2」; \}
Left(i) \{ return 2*i; \}
right(i) \{ return 2*i +1 ; \}

- An aside: How would you implement this most efficiently?
- Another aside: Really?

The Heap Property

- Heaps also satisfy the heap property:
$\mathrm{A}[\operatorname{Parent}(i)] \geq \mathrm{A}[i] \quad$ for all nodes $i>1$
- In other words, the value of a node is at most the value of its parent
- Where is the largest element in a heap stored?
- Definitions:
- The height of a node in the tree $=$ the number of edges on the longest downward path to a leaf
- The height of a tree = the height of its root

Heap Height

- What is the height of an n-element heap? Why?
- This is nice: basic heap operations take at most time proportional to the height of the heap

Heap Operations: Heapify()

- Heapify (): maintain the heap property
- Given: a node i in the heap with children l and r
- Given: two subtrees rooted at l and r, assumed to be heaps
- Problem: The subtree rooted at i may violate the heap property (How?)
- Action: let the value of the parent node "float down" so subtree at i satisfies the heap property
- What do you suppose will be the basic operation between i, l, and r?

Heap Operations: Heapify()

```
Heapify (A, i)
i
    \(1=\) Left(i) ; \(r=\) Right(i);
    if (l <= heap_size(A) \&\& A[l] > A[i])
        largest \(=1\);
    else
        largest \(=\) i;
    if (r <= heap_size (A) \&\& A[r] > A[largest])
        largest \(=r\);
    if (largest != i)
        Swap (A, i, largest) ;
        Heapify (A, largest);
\}
```


Heapify() Example

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 16 & 4 & 10 & 14 & 7 & 9 & 3 & 2 & 8 & 1 \\
\hline
\end{array}
$$

Heapify() Example

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 16 & 4 & 10 & 14 & 7 & 9 & 3 & 2 & 8 & 1 \\
\hline
\end{array}
$$

Heapify() Example

Heapify() Example

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 16 & 14 & 10 & 4 & 7 & 9 & 3 & 2 & 8 & 1 \\
\hline
\end{array}
$$

Heapify() Example

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 16 & 14 & 10 & 4 & 7 & 9 & 3 & 2 & 8 & 1 \\
\hline
\end{array}
$$

Heapify() Example

Heapify() Example

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 16 & 14 & 10 & 8 & 7 & 9 & 3 & 2 & 4 & 1 \\
\hline
\end{array}
$$

Heapify() Example

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 16 & 14 & 10 & 8 & 7 & 9 & 3 & 2 & 4 & 1 \\
\hline
\end{array}
$$

Heapify() Example

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 16 & 14 & 10 & 8 & 7 & 9 & 3 & 2 & 4 & 1 \\
\hline
\end{array}
$$

Analyzing Heapify(): Informal

- Aside from the recursive call, what is the running time of Heapify ()?
- How many times can Heapify () recursively call itself?
- What is the worst-case running time of Heapify () on a heap of size n ?

Analyzing Heapify(): Formal

- Fixing up relationships between i, l, and r takes $\Theta(1)$ time
- If the heap at i has n elements, how many elements can the subtrees at lor r have?
- Draw it
- Answer: $2 n / 3$ (worst case: bottom row $1 / 2$ full)
- So time taken by Heapify () is given by $T(n) \leq T(2 n / 3)+\Theta(1)$

Analyzing Heapify(): Formal

- So we have

$$
T(n) \leq T(2 n / 3)+\Theta(1)
$$

- By case 2 of the Master Theorem,

$$
T(n)=\mathrm{O}(\lg n)
$$

- Thus, Heapify () takes linear time

Heap Operations: BuildHeap()

- We can build a heap in a bottom-up manner by running Heapify () on successive subarrays
- Fact: for array of length n, all elements in range

$$
\mathrm{A}[\lfloor\mathrm{n} / 2\rfloor+1 . . \mathrm{n}] \text { are heaps (Why?) }
$$

- So:
- Walk backwards through the array from $\mathrm{n} / 2$ to 1 , calling Heapify () on each node.
- Order of processing guarantees that the children of node i are heaps when i is processed

BuildHeap()

// given an unsorted array A, make A a heap BuildHeap (A)
\{
heap_size(A) $=$ length (A);
for (i $=\lfloor$ length $[\mathrm{A}] / 2\rfloor$ downto 1) Heapify (A, i);
\}

BuildHeap() Example

- Work through example

$$
\mathrm{A}=\{4,1,3,2,16,9,10,14,8,7\}
$$

Analyzing BuildHeap()

- Each call to Heapify () takes $\mathrm{O}(\lg n)$ time
- There are $\mathrm{O}(n)$ such calls (specifically, $\lfloor\mathrm{n} / 2\rfloor$)
- Thus the running time is $\mathrm{O}(n \lg n)$
- Is this a correct asymptotic upper bound?

■ Is this an asymptotically tight bound?

- A tighter bound is $\mathrm{O}(n)$
- How can this be? Is there a flaw in the above reasoning?

Analyzing BuildHeap(): Tight

- To Heapify () a subtree takes $O(h)$ time where h is the height of the subtree
- $h=\mathrm{O}(\lg m), \mathrm{m}=\#$ nodes in subtree
- The height of most subtrees is small
- Fact: an n-element heap has at most $\left\lceil n / 2^{h+1}\right\rceil$ nodes of height h
- CLR 7.3 uses this fact to prove that BuildHeap () takes O(n) time

Heapsort

- Given BuildHeap (), an in-place sorting algorithm is easily constructed:
- Maximum element is at A[1]
- Discard by swapping with element at A[n]
- Decrement heap_size[A]
- $\mathrm{A}[\mathrm{n}]$ now contains correct value
- Restore heap property at $\mathrm{A}[1]$ by calling Heapify()
- Repeat, always swapping A[1] for A[heap_size(A)]

Heapsort

Heapsort(A)
\{

$$
\begin{aligned}
& \text { BuildHeap (A); } \\
& \text { for (i = length(A) downto 2) } \\
& \left\{\begin{array}{l}
\text { Swap(A[1], A[i]); } \\
\quad \text { heap_size(A) -= 1; } \\
\quad \text { Heapify }(A, 1) ;
\end{array}\right.
\end{aligned}
$$

Analyzing Heapsort

- The call to BuildHeap () takes $\mathrm{O}(n)$ time
- Each of the $n-1$ calls to Heapify () takes $\mathrm{O}(\lg n)$ time
- Thus the total time taken by HeapSort ()

$$
\begin{aligned}
& =\mathrm{O}(n)+(n-1) \mathrm{O}(\lg n) \\
& =\mathrm{O}(n)+\mathrm{O}(n \lg n) \\
& =\mathrm{O}(n \lg n)
\end{aligned}
$$

Priority Queues

- Heapsort is a nice algorithm, but in practice Quicksort (coming up) usually wins
- But the heap data structure is incredibly useful for implementing priority queues
- A data structure for maintaining a set S of elements, each with an associated value or key
- Supports the operations Insert (), Maximum (), and ExtractMax()
- What might a priority queue be useful for?

Priority Queue Operations

- Insert(S, x) inserts the element x into set S
- Maximum(S) returns the element of S with the maximum key
- ExtractMax(S) removes and returns the element of S with the maximum key
- How could we implement these operations using a heap?

