# Algorithms

Solving Recurrences Continued The Master Theorem Introduction to heapsort

### **Review: Merge Sort**

```
MergeSort(A, left, right) {
  if (left < right) {</pre>
      mid = floor((left + right) / 2);
      MergeSort(A, left, mid);
      MergeSort(A, mid+1, right);
      Merge(A, left, mid, right);
  }
}
// Merge() takes two sorted subarrays of A and
// merges them into a single sorted subarray of A.
// Code for this is in the book. It requires O(n)
// time, and *does* require allocating O(n) space
```

### **Review: Analysis of Merge Sort**

| Statement                                   | Effort |
|---------------------------------------------|--------|
| MergeSort(A, left, right) {                 | T(n)   |
| if (left < right) {                         | Θ(1)   |
| <pre>mid = floor((left + right) / 2);</pre> | Θ(1)   |
| <pre>MergeSort(A, left, mid);</pre>         | T(n/2) |
| <pre>MergeSort(A, mid+1, right);</pre>      | T(n/2) |
| <pre>Merge(A, left, mid, right);</pre>      | Θ(n)   |
| }                                           |        |
| }                                           |        |
| • So $T(n) = \Theta(1)$ when $n = 1$ , and  |        |

 $2T(n/2) + \Theta(n)$  when n > 1

• This expression is a *recurrence* 

### **Review: Solving Recurrences**

- Substitution method
- Iteration method
- Master method

### **Review: Solving Recurrences**

- The substitution method
  - A.k.a. the "making a good guess method"
  - Guess the form of the answer, then use induction to find the constants and show that solution works
  - *Run an example*: merge sort
    - $\circ T(n) = 2T(n/2) + cn$
    - $\circ$  We guess that the answer is O(n lg n)
    - Prove it by induction

• Can similarly show  $T(n) = \Omega(n \lg n)$ , thus  $\Theta(n \lg n)$ 

### **Review: Solving Recurrences**

- The "iteration method"
  - Expand the recurrence
  - Work some algebra to express as a summation
  - Evaluate the summation
- We showed several examples, were in the middle of:

$$T(n) = \begin{cases} c & n = 1\\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

• T(n) =

aT(n/b) + cn a(aT(n/b/b) + cn/b) + cn  $a^{2}T(n/b^{2}) + cna/b + cn$   $a^{2}T(n/b^{2}) + cn(a/b + 1)$   $a^{2}(aT(n/b^{2}/b) + cn/b^{2}) + cn(a/b + 1)$   $a^{3}T(n/b^{3}) + cn(a^{2}/b^{2}) + cn(a/b + 1)$  $a^{3}T(n/b^{3}) + cn(a^{2}/b^{2} + a/b + 1)$ 

 $a^{k}T(n/b^{k}) + cn(a^{k-1}/b^{k-1} + a^{k-2}/b^{k-2} + ... + a^{2}/b^{2} + a/b + 1)$ 

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

• So we have

- $T(n) = a^k T(n/b^k) + cn(a^{k-1}/b^{k-1} + ... + a^2/b^2 + a/b + 1)$
- For  $k = \log_b n$ •  $n = b^k$ •  $T(n) = a^k T(1) + cn(a^{k-1}/b^{k-1} + ... + a^2/b^2 + a/b + 1)$   $= a^k c + cn(a^{k-1}/b^{k-1} + ... + a^2/b^2 + a/b + 1)$   $= ca^k + cn(a^{k-1}/b^{k-1} + ... + a^2/b^2 + a/b + 1)$   $= cna^k/b^k + cn(a^{k-1}/b^{k-1} + ... + a^2/b^2 + a/b + 1)$  $= cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

So with k = log<sub>b</sub> n
T(n) = cn(a<sup>k</sup>/b<sup>k</sup> + ... + a<sup>2</sup>/b<sup>2</sup> + a/b + 1)
What if a = b?
T(n) = cn(k + 1) = cn(log<sub>b</sub> n + 1) = Θ(n log n)

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

So with k = log<sub>b</sub> n
T(n) = cn(a<sup>k</sup>/b<sup>k</sup> + ... + a<sup>2</sup>/b<sup>2</sup> + a/b + 1)
What if a < b?</li>

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with  $k = \log_b n$ •  $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a < b?
  - Recall that  $\Sigma(x^k + x^{k-1} + ... + x + 1) = (x^{k+1} 1)/(x-1)$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

So with k = log<sub>b</sub> n
T(n) = cn(a<sup>k</sup>/b<sup>k</sup> + ... + a<sup>2</sup>/b<sup>2</sup> + a/b + 1)
What if a < b?</li>
Recall that (x<sup>k</sup> + x<sup>k-1</sup> + ... + x + 1) = (x<sup>k+1</sup> - 1)/(x-1)
So:

$$\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \frac{1 - (a/b)^{k+1}}{1 - (a/b)} < \frac{1}{1 - a/b}$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

• So with  $k = \log_b n$ •  $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$ • What if a < b? • Recall that  $\Sigma(x^k + x^{k-1} + ... + x + 1) = (x^{k+1} - 1)/(x-1)$ • So:  $\frac{a^k}{b^k} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \frac{1 - (a/b)^{k+1}}{1 - (a/b)} < \frac{1}{1 - a/b}$ 

 $\bullet T(n) = cn \cdot \Theta(1) = \Theta(n)$ 

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

- So with  $k = \log_b n$ •  $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$
- What if a > b?

$$T(n) = \begin{cases} c & n = 1\\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

• So with 
$$k = \log_b n$$
  
•  $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$   
• What if  $a > b$ ?  
 $\frac{a^k}{b^k} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^k)$ 

$$\left| T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases} \right|$$

• So with  $k = \log_b n$ •  $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$ • What if a > b?  $\frac{a^k}{b^k} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^k)$ •  $T(n) = cn \cdot \Theta(a^k / b^k)$ 

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

• So with  $k = \log_b n$ •  $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$ • What if a > b?  $\frac{a^k}{b^k} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{k+1} - 1}{(a/b) - 1} = \Theta((a/b)^k)$ •  $T(n) = cn \cdot \Theta(a^k / b^k)$ 

 $= cn \cdot \Theta(a^{\log n} / b^{\log n}) = cn \cdot \Theta(a^{\log n} / n)$ 

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

• So with  $k = \log_{h} n$ •  $T(n) = cn(a^k/b^k + ... + a^2/b^2 + a/b + 1)$ • What if a > b?  $\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{\kappa+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$  $\Box T(n) = cn \cdot \Theta(a^k / b^k)$ = cn  $\cdot \Theta(a^{\log n} / b^{\log n}) =$  cn  $\cdot \Theta(a^{\log n} / n)$ recall logarithm fact:  $a^{\log n} = n^{\log a}$ 

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

• So with  $k = \log_{h} n$  $T(n) = cn(a^{k}/b^{k} + ... + a^{2}/b^{2} + a/b + 1)$ • What if a > b?  $\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{\kappa+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$  $\Box T(n) = cn \cdot \Theta(a^k / b^k)$ = cn  $\cdot \Theta(a^{\log n} / b^{\log n}) =$  cn  $\cdot \Theta(a^{\log n} / n)$ recall logarithm fact:  $a^{\log n} = n^{\log a}$ = cn ·  $\Theta(n^{\log a} / n) = \Theta($ cn ·  $n^{\log a} / n)$ 

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

• So with  $k = \log_{h} n$  $T(n) = cn(a^{k}/b^{k} + ... + a^{2}/b^{2} + a/b + 1)$ • What if a > b?  $\frac{a^{k}}{b^{k}} + \frac{a^{k-1}}{b^{k-1}} + \dots + \frac{a}{b} + 1 = \frac{(a/b)^{n+1} - 1}{(a/b) - 1} = \Theta((a/b)^{k})$  $\Box T(n) = cn \cdot \Theta(a^k / b^k)$ = cn  $\cdot \Theta(a^{\log n} / b^{\log n}) =$  cn  $\cdot \Theta(a^{\log n} / n)$ recall logarithm fact:  $a^{\log n} = n^{\log a}$ = cn  $\cdot \Theta(n^{\log a} / n) = \Theta($ cn  $\cdot n^{\log a} / n)$  $= \Theta(n^{\log a})$ 

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

• So...

$$T(n) = \begin{cases} \Theta(n) & a < b \\ \Theta(n \log_b n) & a = b \\ \Theta(n^{\log_b a}) & a > b \end{cases}$$

### The Master Theorem

- Given: a *divide and conquer* algorithm
  - An algorithm that divides the problem of size n into a subproblems, each of size n/b
  - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function f(n)
- Then, the Master Theorem gives us a cookbook for the algorithm's running time:

#### The Master Theorem

1

• if 
$$T(n) = aT(n/b) + f(n)$$
 then

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & f(n) = O(n^{\log_b a - \varepsilon}) \\ \Theta(n^{\log_b a} \log n) & f(n) = \Theta(n^{\log_b a}) \\ \Theta(f(n)) & f(n) = \Omega(n^{\log_b a + \varepsilon}) \text{AND} \\ af(n/b) < cf(n) & \text{for large } n \end{cases} \begin{cases} \varepsilon > 0 \\ c < 1 \end{cases}$$

### **Using The Master Method**

• 
$$T(n) = 9T(n/3) + n$$
  
•  $a=9, b=3, f(n) = n$   
•  $n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$   
• Since  $f(n) = O(n^{\log_3 9 - \varepsilon})$ , where  $\varepsilon=1$ , case 1 applies:  
 $T(n) = \Theta(n^{\log_b a})$  when  $f(n) = O(n^{\log_b a - \varepsilon})$ 

• Thus the solution is  $T(n) = \Theta(n^2)$ 

# Sorting Revisited

- So far we've talked about two algorithms to sort an array of numbers
  - What is the advantage of merge sort?
  - What is the advantage of insertion sort?
- Next on the agenda: *Heapsort*

Combines advantages of both previous algorithms

• A *heap* can be seen as a complete binary tree:



What makes a binary tree complete?
Is the example above complete?

• A *heap* can be seen as a complete binary tree:



The book calls them "nearly complete" binary trees; can think of unfilled slots as null pointers

• In practice, heaps are usually implemented as arrays:



- To represent a complete binary tree as an array:
  - The root node is A[1]
  - Node i is A[i]
  - The parent of node *i* is A[i/2] (note: integer divide)

 $\cap$ 

- The left child of node i is A[2i]
- The right child of node *i* is A[2i + 1]

### **Referencing Heap Elements**

- So...
  - Parent(i) { return [i/2]; }
    Left(i) { return 2\*i; }
    right(i) { return 2\*i + 1; }
- An aside: *How would you implement this most efficiently?*
- Another aside: *Really?*

### The Heap Property

- Heaps also satisfy the *heap property*:
  - $A[Parent(i)] \ge A[i]$  for all nodes  $i \ge 1$ 
    - In other words, the value of a node is at most the value of its parent
    - Where is the largest element in a heap stored?
- Definitions:
  - The *height* of a node in the tree = the number of edges on the longest downward path to a leaf
  - The height of a tree = the height of its root

### Heap Height

- What is the height of an n-element heap? Why?
- This is nice: basic heap operations take at most time proportional to the height of the heap

# Heap Operations: Heapify()

- **Heapify()**: maintain the heap property
  - Given: a node i in the heap with children l and r
  - Given: two subtrees rooted at *l* and *r*, assumed to be heaps
  - Problem: The subtree rooted at *i* may violate the heap property (*How*?)
  - Action: let the value of the parent node "float down" so subtree at *i* satisfies the heap property

• What do you suppose will be the basic operation between i, l, and r?

### Heap Operations: Heapify()

```
Heapify(A, i)
{
  l = Left(i); r = Right(i);
  if (1 \le \text{heap size}(A) \& A[1] > A[i])
      largest = 1;
  else
      largest = i;
  if (r <= heap size(A) && A[r] > A[largest])
      largest = r;
  if (largest != i)
      Swap(A, i, largest);
      Heapify(A, largest);
```

}

## Heapify() Example



## Heapify() Example

















# Analyzing Heapify(): Informal

- Aside from the recursive call, what is the running time of **Heapify()**?
- How many times can **Heapify()** recursively call itself?
- What is the worst-case running time of Heapify() on a heap of size n?

# Analyzing Heapify(): Formal

- Fixing up relationships between *i*, *l*, and *r* takes Θ(1) time
- If the heap at i has n elements, how many elements can the subtrees at l or r have?

Draw it

- Answer: 2n/3 (worst case: bottom row 1/2 full)
- So time taken by **Heapify()** is given by  $T(n) \le T(2n/3) + \Theta(1)$

# Analyzing Heapify(): Formal

• So we have

 $T(n) \le T(2n/3) + \Theta(1)$ 

• By case 2 of the Master Theorem,

 $T(n) = \mathcal{O}(\lg n)$ 

• Thus, **Heapify()** takes linear time

# Heap Operations: BuildHeap()

- We can build a heap in a bottom-up manner by running **Heapify()** on successive subarrays
  - Fact: for array of length *n*, all elements in range  $A[\lfloor n/2 \rfloor + 1 ... n]$  are heaps (*Why?*)
  - So:
    - Walk backwards through the array from n/2 to 1, calling Heapify() on each node.
    - Order of processing guarantees that the children of node *i* are heaps when *i* is processed

#### BuildHeap()

```
// given an unsorted array A, make A a heap
BuildHeap(A)
{
    heap_size(A) = length(A);
    for (i = length[A]/2downto 1)
        Heapify(A, i);
```

}

#### BuildHeap() Example

• Work through example A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}



# Analyzing BuildHeap()

- Each call to **Heapify()** takes O(lg n) time
- There are O(n) such calls (specifically,  $\lfloor n/2 \rfloor$ )
- Thus the running time is O(n lg n)
  - *Is this a correct asymptotic upper bound?*
  - Is this an asymptotically tight bound?
- A tighter bound is O(n)
  - How can this be? Is there a flaw in the above reasoning?

# Analyzing BuildHeap(): Tight

- To **Heapify()** a subtree takes O(h) time where h is the height of the subtree
  - $h = O(\lg m), m = \#$  nodes in subtree

The height of most subtrees is small

- Fact: an *n*-element heap has at most [n/2<sup>h+1</sup>] nodes of height h
- CLR 7.3 uses this fact to prove that **BuildHeap()** takes O(n) time

#### Heapsort

- Given **BuildHeap()**, an in-place sorting algorithm is easily constructed:
  - Maximum element is at A[1]
  - Discard by swapping with element at A[n]
    - Decrement heap\_size[A]
    - A[n] now contains correct value
  - Restore heap property at A[1] by calling
     Heapify()
  - Repeat, always swapping A[1] for A[heap\_size(A)]

#### Heapsort

```
Heapsort(A)
{
     BuildHeap(A);
     for (i = length(A) downto 2)
     {
          Swap(A[1], A[i]);
          heap size(A) -= 1;
          Heapify(A, 1);
     }
```

# **Analyzing Heapsort**

- The call to BuildHeap() takes O(n) time
- Each of the *n* 1 calls to **Heapify()** takes O(lg *n*) time
- Thus the total time taken by HeapSort() =  $O(n) + (n - 1) O(\lg n)$ =  $O(n) + O(n \lg n)$ =  $O(n \lg n)$

# **Priority Queues**

- Heapsort is a nice algorithm, but in practice Quicksort (coming up) usually wins
- But the heap data structure is incredibly useful for implementing *priority queues* 
  - A data structure for maintaining a set *S* of elements, each with an associated value or *key*
  - Supports the operations Insert(),
     Maximum(), and ExtractMax()
  - What might a priority queue be useful for?

#### **Priority Queue Operations**

- Insert(S, x) inserts the element x into set S
- Maximum(S) returns the element of S with the maximum key
- ExtractMax(S) removes and returns the element of S with the maximum key
- How could we implement these operations using a heap?