
Algorithms

Introduction to heapsort

Review: The Master Theorem

 Given: a divide and conquer algorithm

 An algorithm that divides the problem of size n

into a subproblems, each of size n/b

 Let the cost of each stage (i.e., the work to divide

the problem + combine solved subproblems) be

described by the function f(n)

 Then, the Master Theorem gives us a

cookbook for the algorithm’s running time:

Review: The Master Theorem

 if T(n) = aT(n/b) + f(n) then

1

0

largefor)()/(

 AND)(

)(

)(

)(

log)(

log

log

log

log

log

c

nncfbnaf

nnf

nnf

nOnf

nf

nn

n

nT

a

a

a

a

a

b

b

b

b

b

Sorting Revisited

 So far we’ve talked about two algorithms to

sort an array of numbers

 What is the advantage of merge sort?

Answer: O(n lg n) worst-case running time

 What is the advantage of insertion sort?

Answer: sorts in place

Also: When array “nearly sorted”, runs fast in practice

 Next on the agenda: Heapsort

 Combines advantages of both previous algorithms

 A heap can be seen as a complete binary tree:

 What makes a binary tree complete?

 Is the example above complete?

Heaps

16

14 10

8 7 9 3

2 4 1

 A heap can be seen as a complete binary tree:

 The book calls them “nearly complete” binary

trees; can think of unfilled slots as null pointers

Heaps

16

14 10

8 7 9 3

2 4 1 1 1 1 1 1

Heaps

 In practice, heaps are usually implemented as

arrays:

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1 A = =

Heaps

 To represent a complete binary tree as an array:

 The root node is A[1]

 Node i is A[i]

 The parent of node i is A[i/2] (note: integer divide)

 The left child of node i is A[2i]

 The right child of node i is A[2i + 1]
16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1 A = =

Referencing Heap Elements

 So…

Parent(i) { return i/2; }

Left(i) { return 2*i; }

right(i) { return 2*i + 1; }

 An aside: How would you implement this

most efficiently?

 Trick question, I was looking for “i << 1”, etc.

 But, any modern compiler is smart enough to do

this for you (and it makes the code hard to follow)

The Heap Property

 Heaps also satisfy the heap property:

 A[Parent(i)] A[i] for all nodes i > 1

 In other words, the value of a node is at most the

value of its parent

 Where is the largest element in a heap stored?

Heap Height

 Definitions:

 The height of a node in the tree = the number of

edges on the longest downward path to a leaf

 The height of a tree = the height of its root

 What is the height of an n-element heap? Why?

 This is nice: basic heap operations take at most

time proportional to the height of the heap

Heap Operations: Heapify()

 Heapify(): maintain the heap property

 Given: a node i in the heap with children l and r

 Given: two subtrees rooted at l and r, assumed to

be heaps

 Problem: The subtree rooted at i may violate the

heap property (How?)

 Action: let the value of the parent node “float

down” so subtree at i satisfies the heap property

What do you suppose will be the basic operation

between i, l, and r?

Heap Operations: Heapify()

Heapify(A, i)

{

 l = Left(i); r = Right(i);

 if (l <= heap_size(A) && A[l] > A[i])

 largest = l;

 else

 largest = i;

 if (r <= heap_size(A) && A[r] > A[largest])

 largest = r;

 if (largest != i)

 Swap(A, i, largest);

 Heapify(A, largest);

}

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 4 10 14 7 9 3 2 8 1 A =

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 10 14 7 9 3 2 8 1 A = 4

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 10 7 9 3 2 8 1 A = 4 14

Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 4 7 9 3 2 8 1 A =

Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 8 1 A = 4

Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 1 A = 4 8

Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1 A =

Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 1 A = 4

Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1 A =

Analyzing Heapify(): Informal

 Aside from the recursive call, what is the
running time of Heapify()?

 How many times can Heapify() recursively

call itself?

 What is the worst-case running time of
Heapify() on a heap of size n?

Analyzing Heapify(): Formal

 Fixing up relationships between i, l, and r

takes (1) time

 If the heap at i has n elements, how many

elements can the subtrees at l or r have?

 Draw it

 Answer: 2n/3 (worst case: bottom row 1/2 full)

 So time taken by Heapify() is given by

 T(n) T(2n/3) + (1)

Analyzing Heapify(): Formal

 So we have

 T(n) T(2n/3) + (1)

 By case 2 of the Master Theorem,

 T(n) = O(lg n)

 Thus, Heapify() takes logarithmic time

Heap Operations: BuildHeap()

 We can build a heap in a bottom-up manner by
running Heapify() on successive subarrays

 Fact: for array of length n, all elements in range

A[n/2 + 1 .. n] are heaps (Why?)

 So:

Walk backwards through the array from n/2 to 1, calling

Heapify() on each node.

Order of processing guarantees that the children of node

i are heaps when i is processed

BuildHeap()

// given an unsorted array A, make A a heap

BuildHeap(A)

{

 heap_size(A) = length(A);

 for (i = length[A]/2 downto 1)

 Heapify(A, i);

}

BuildHeap() Example

 Work through example

A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}

4

1 3

2 16 9 10

14 8 7

Analyzing BuildHeap()

 Each call to Heapify() takes O(lg n) time

 There are O(n) such calls (specifically, n/2)

 Thus the running time is O(n lg n)

 Is this a correct asymptotic upper bound?

 Is this an asymptotically tight bound?

 A tighter bound is O(n)

 How can this be? Is there a flaw in the above

reasoning?

Analyzing BuildHeap(): Tight

 To Heapify() a subtree takes O(h) time

where h is the height of the subtree

 h = O(lg m), m = # nodes in subtree

 The height of most subtrees is small

 Fact: an n-element heap has at most n/2h+1

nodes of height h

 CLR 7.3 uses this fact to prove that
BuildHeap() takes O(n) time

Heapsort

 Given BuildHeap(), an in-place sorting

algorithm is easily constructed:

 Maximum element is at A[1]

 Discard by swapping with element at A[n]

Decrement heap_size[A]

A[n] now contains correct value

 Restore heap property at A[1] by calling

Heapify()

 Repeat, always swapping A[1] for A[heap_size(A)]

Heapsort

Heapsort(A)

{

 BuildHeap(A);

 for (i = length(A) downto 2)

 {

 Swap(A[1], A[i]);

 heap_size(A) -= 1;

 Heapify(A, 1);

 }

}

Analyzing Heapsort

 The call to BuildHeap() takes O(n) time

 Each of the n - 1 calls to Heapify() takes

O(lg n) time

 Thus the total time taken by HeapSort()

= O(n) + (n - 1) O(lg n)

= O(n) + O(n lg n)

= O(n lg n)

Priority Queues

 Heapsort is a nice algorithm, but in practice

Quicksort (coming up) usually wins

 But the heap data structure is incredibly useful

for implementing priority queues

 A data structure for maintaining a set S of

elements, each with an associated value or key

 Supports the operations Insert(),

Maximum(), and ExtractMax()

 What might a priority queue be useful for?

Priority Queue Operations

 Insert(S, x) inserts the element x into set S

 Maximum(S) returns the element of S with

the maximum key

 ExtractMax(S) removes and returns the

element of S with the maximum key

 How could we implement these operations

using a heap?

