
Algorithms 

Introduction to heapsort 



Review: The Master Theorem 

 Given: a divide and conquer algorithm 

 An algorithm that divides the problem of size n 

into a subproblems, each of size n/b 

 Let the cost of each stage (i.e., the work to divide 

the problem + combine solved subproblems) be 

described by the function f(n) 

 Then, the Master Theorem gives us a 

cookbook for the algorithm’s running time: 



Review: The Master Theorem 

 if  T(n) = aT(n/b) + f(n) then 

 

  

 

 

 

 

 

























































1

0

largefor )()/(

      AND )(

)(

)(

)(

log)(

log

log

log

log

log

c

nncfbnaf

nnf

nnf

nOnf

nf

nn

n

nT

a

a

a

a

a

b

b

b

b

b









Sorting Revisited 

 So far we’ve talked about two algorithms to 

sort an array of numbers 

 What is the advantage of merge sort? 

Answer: O(n lg n) worst-case running time 

 What is the advantage of insertion sort? 

Answer: sorts in place 

Also: When array “nearly sorted”, runs fast in practice 

 Next on the agenda: Heapsort 

 Combines advantages of both previous algorithms 



 A heap can be seen as a complete binary tree: 

 

 

 

 

 

 

 What makes a binary tree complete?   

 Is the example above complete? 

Heaps 
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8 7 9 3 

2 4 1 



 A heap can be seen as a complete binary tree: 

 

 

 

 

 

 

 The book calls them “nearly complete” binary 

trees; can think of unfilled slots as null pointers 

Heaps 

16 

14 10 

8 7 9 3 

2 4 1 1 1 1 1 1 



Heaps 

 In practice, heaps are usually implemented as 

arrays: 
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14 10 

8 7 9 3 

2 4 1 

16 14 10 8 7 9 3 2 4 1 A = = 



Heaps 

 To represent a complete binary tree as an array:  

 The root node is A[1] 

 Node i is A[i] 

 The parent of node i is A[i/2] (note: integer divide) 

 The left child of node i is A[2i] 

 The right child of node i is A[2i + 1] 
16 

14 10 

8 7 9 3 

2 4 1 

16 14 10 8 7 9 3 2 4 1 A = = 



Referencing Heap Elements 

 So… 

Parent(i) { return i/2; } 

Left(i) { return 2*i; } 

right(i) { return 2*i + 1; } 

 An aside: How would you implement this  

most efficiently? 

 Trick question, I was looking for “i << 1”, etc.  

 But, any modern compiler is smart enough to do 

this for you (and it makes the code hard to follow) 



The Heap Property 

 Heaps also satisfy the heap property: 

 A[Parent(i)]  A[i]  for all nodes i > 1 

 In other words, the value of a node is at most the 

value of its parent 

 Where is the largest element in a heap stored? 



Heap Height 

 Definitions: 

 The height of a node in the tree = the number of 

edges on the longest downward path to a leaf  

 The height of a tree = the height of its root 

 What is the height of an n-element heap? Why? 

 This is nice: basic heap operations take at most 

time proportional to the height of the heap 

 



Heap Operations: Heapify() 

 Heapify(): maintain the heap property 

 Given: a node i in the heap with children l and r 

 Given: two subtrees rooted at l and r, assumed to 

be heaps 

 Problem: The subtree rooted at i may violate the 

heap property (How?) 

 Action: let the value of the parent node “float 

down” so subtree at i satisfies the heap property  

What do you suppose will be the basic operation 

between i, l, and r? 



Heap Operations: Heapify() 

Heapify(A, i) 

{  

 l = Left(i); r = Right(i); 

 if (l <= heap_size(A) && A[l] > A[i])  

  largest = l; 

 else 

  largest = i; 

 if (r <= heap_size(A) && A[r] > A[largest]) 

  largest = r; 

 if (largest != i)  

  Swap(A, i, largest); 

  Heapify(A, largest); 

}  



Heapify() Example 
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Heapify() Example 
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Heapify() Example 
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Heapify() Example 
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Heapify() Example 
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Heapify() Example 
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Heapify() Example 
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Heapify() Example 

16 

14 10 

8 7 9 3 

2 4 1 

16 14 10 8 7 9 3 2 1 A = 4 



Heapify() Example 
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Analyzing Heapify(): Informal 

 Aside from the recursive call, what is the 
running time of Heapify()? 

 How many times can Heapify() recursively 

call itself? 

 What is the worst-case running time of 
Heapify() on a heap of size n? 



Analyzing Heapify(): Formal 

 Fixing up relationships between i, l, and r 

takes (1) time 

 If the heap at i has n elements, how many 

elements can the subtrees at l or r have?  

 Draw it 

 Answer: 2n/3 (worst case: bottom row 1/2 full) 

 So time taken by Heapify() is given by 

 T(n)  T(2n/3) + (1)  



Analyzing Heapify(): Formal 

 So we have  

  T(n)  T(2n/3) + (1)  

 By case 2 of the Master Theorem, 

  T(n) = O(lg n) 

 Thus, Heapify() takes logarithmic time 

 



Heap Operations: BuildHeap() 

 We can build a heap in a bottom-up manner by 
running Heapify() on successive subarrays 

 Fact: for array of length n, all elements in range  

A[n/2 + 1 .. n] are heaps (Why?) 

 So:  

Walk backwards through the array from n/2 to 1, calling 

Heapify() on each node. 

Order of processing guarantees that the children of node 

i are heaps when i is processed 



BuildHeap() 

// given an unsorted array A, make A a heap 

BuildHeap(A) 

{ 

 heap_size(A) = length(A); 

 for (i = length[A]/2  downto 1) 

  Heapify(A, i); 

} 



BuildHeap() Example 

 Work through example 

A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7} 

4 

1 3 

2 16 9 10 

14 8 7 



Analyzing BuildHeap() 

 Each call to Heapify() takes O(lg n) time 

 There are O(n) such calls (specifically, n/2) 

 Thus the running time is O(n lg n) 

 Is this a correct asymptotic upper bound? 

 Is this an asymptotically tight bound? 

 A tighter bound is O(n)  

 How can this be?  Is there a flaw in the above 

reasoning? 



Analyzing BuildHeap(): Tight 

 To Heapify() a subtree takes O(h) time 

where h is the height of the subtree 

 h = O(lg m), m = # nodes in subtree 

 The height of most subtrees is small 

 Fact: an n-element heap has at most n/2h+1 

nodes of height h 

 CLR 7.3 uses this fact to prove that 
BuildHeap() takes O(n) time  

 



Heapsort 

 Given BuildHeap(),  an in-place sorting 

algorithm is easily constructed: 

 Maximum element is at A[1] 

 Discard by swapping with element at A[n] 

Decrement heap_size[A] 

A[n] now contains correct value 

 Restore heap property at A[1] by calling 

Heapify() 

 Repeat, always swapping A[1] for A[heap_size(A)] 



Heapsort 

Heapsort(A) 

{ 

  BuildHeap(A); 

  for (i = length(A) downto 2) 

  { 

   Swap(A[1], A[i]); 

   heap_size(A) -= 1; 

   Heapify(A, 1); 

  } 

} 



Analyzing Heapsort 

 The call to BuildHeap() takes O(n) time  

 Each of the n - 1 calls to Heapify() takes 

O(lg n) time 

 Thus the total time taken by HeapSort()  

= O(n) + (n - 1) O(lg n) 

= O(n) + O(n lg n) 

= O(n lg n) 



Priority Queues 

 Heapsort is a nice algorithm, but in practice 

Quicksort (coming up) usually wins 

 But the heap data structure is incredibly useful 

for implementing priority queues 

 A data structure for maintaining a set S of 

elements, each with an associated value or key 

 Supports the operations Insert(), 

Maximum(), and ExtractMax() 

 What might a priority queue be useful for? 

 



Priority Queue Operations 

 Insert(S, x) inserts the element x into set S 

 Maximum(S) returns the element of S with 

the maximum key 

 ExtractMax(S) removes and returns the 

element of S with the maximum key 

 How could we implement these operations 

using a heap? 


