Algorithms

Heapsort
Priority Queues
Quicksort

Review: Heaps

e A Zeap 1s a “complete” binary tree, usually
represented as an array:

(4] (10
(14, (D O ©

A=|16[14|10| 8| 7|9 |3]2|4]| 1]

Review: Heaps

e To represent a heap as an array:
Parent (1) { return.Li/ZJ; }
Left (i) { return 2*i; }
right(i) { return 2*i + 1; }

Review: The Heap Property

e Heaps also satisty the heap property:
AlParent(i)] = Ali] for all nodes i > 1

= In other words, the value of a node 1s at most the
value of 1ts parent

m The largest value 1s thus stored at the root (A[1])

e Because the heap 1s a binary tree, the height of
any node 1s at most O(lg n)

Review: Heapify()

e Heapify (): maintain the heap property
m Given: a node 7 in the heap with children / and r

= G1ven: two subtrees rooted at / and », assumed to
be heaps

m Action: let the value of the parent node “float
down” so subtree at i satisfies the heap property
o If A[1] < A[l] or A[1] < A[r], swap A[i] with the largest
of A[l] and A[r]
Recurse on that subtree

= Running time: O(%), h = height of heap = O(lg n)

Review: BuildHeap()

e We can build a heap in a bottom-up manner by
running Heapify () on successive subarrays

m Fact: for array of length #n, all elements in range
Alln/2]+1 .. n] are heaps (Why?)
= So:

+ Walk backwards through the array from n/2 to 1, calling
Heapify () on each node.

Order of processing guarantees that the children of node
i are heaps when i 1s processed

BuildHeap()

// given an unsorted array A, make A a heap
BuildHeap (A)
{
heap size(A) = length(A);
for (1 = |_length[A] /2] downto 1)
Heapify (A, 1i);

Analyzing BuildHeap()

e Each call to Heapify () takes O(lg n) time

e There are O(n) such calls (specifically, | n/2.])
e Thus the running time 1s O(n 1g n)

m [s this a correct asymptotic upper bound?

m [s this an asymptotically tight bound?
e A tighter bound 1s O(n)

m How can this be? Is there a flaw in the above
reasoning?

Analyzing BuildHeap(): Tight

e To Heapify () a subtree takes O(/4) time
where /£ 1s the height of the subtree
m 1 =0(lg m), m = # nodes 1n subtree

m The height of most subtrees 1s small

e Fact: an n-element heap has at most | /21|
nodes of height 4

e CLR 7.3 uses this fact to prove that
BuildHeap () takes O(n) time

Heapsort

e Given BuildHeap (), an in-place sorting
algorithm 1s easily constructed:
s Maximum element 1s at A[1]

m Discard by swapping with element at A[n]
¢ Decrement heap size[A]

¢ A[n] now contains correct value

m Restore heap property at A[1] by calling
Heapify ()

m Repeat, always swapping A[1] for A[heap size(A)]

Heapsort

Heapsort (A)
{
BuildHeap (A) ;

for (1 = length(A) downto 2)
{
Swap (A[1], A[i]);
heap size(A) -= 1;
Heapify (A, 1);

Analyzing Heapsort

e The call to BuildHeap () takes O(n) time

e Each of the n - 1 calls to Heapify () takes
O(lg n) time

e Thus the total time taken by HeapSort ()
=O(n) + (n-1) O(lg n)
=0(n)+0O(nlgn)
= O(n lg n)

Priority Queues

e Heapsort is a nice algorithm, but 1n practice
Quicksort (coming up) usually wins

e But the heap data structure 1s incredibly useful
for implementing priority queues

m A data structure for maintaining a set S of
elements, each with an associated value or key

m Supports the operations Insert (),
Maximum (), and ExtractMax ()

m What might a priority queue be useful for?

Priority Queue Operations

e Insert(S, x) inserts the element x 1nto set S

e Maximum(S) returns the element of S with
the maximum key

e ExtractMax(S) removes and returns the
element of S with the maximum key

e How could we implement these operations
using a heap?

Tying It Into The Real World

e And now, a real-world example...

Tying It Into The "Real World”

e And now, a real-world example...combat billiards

m Sort of like pool...
m Except you’re trying to
kill the other players...

= And the table 1s the size
of a polo field...

m And the balls are the
size of Suburbans...

m And instead of a cue
you drive a vehicle

with a ram on it Figure 1: boring traditional pool
e Problem: how do you simulate the physics?

Combat Billiards:
Simulating The Physics

e Simplifying assumptions:
m G-rated version: No players
Just n balls bouncing around
= No spin, no friction

Easy to calculate the positions of the balls at time 7,
from time 7, , if there are no collisions in between

m Simple elastic collisions

Simulating The Physics

e Assume we know how to compute when two
moving spheres will intersect

m Given the state of the system, we can calculate
when the next collision will occur for each ball

m At each collision C::
¢ Advance the system to the time T, of the collision

Recompute the next collision for the ball(s) involved

¢ Find the next overall collision C,,; and repeat

m How should we keep track of all these collisions
and when they occur?

Implementing Priority Queues

HeapInsert (A, key) // what’s running time?
{
heap sizel[A] ++;
i = heap size[A];
while (i > 1 AND A[Parent(i)] < key)
{
A[i] = A[Parent(1i)];
i = Parent(i);
}
Ali] = key;

Implementing Priority Queues

HeapMaximum (A)

{
// This one is really tricky:

return A[1];

Implementing Priority Queues

HeapExtractMax (A)
{
if (heap size[A] < 1) { error; }
max = A[l];
A[l] = A[heap size[A]]
heap size[A] --;
Heapify (A, 1);
return max;

Back To Combat Billiards

e Extract the next collision C, from the queue
e Advance the system to the time T, of the collision

e Recompute the next collision(s) for the ball(s)
involved

e Insert collision(s) into the queue, using the time of
occurrence as the key

e Find the next overall collision C,,, and repeat

Using A Priority Queue
For Event Simulation

e More natural to use Minimum() and
ExtractMin()

e What if a player hits a ball?
= Need to code up a Delete() operation
m How? What will the running time be?

Quicksort

e Sorts 1n place
e Sorts O(n Ig n) 1n the average case
e Sorts O(n?) in the worst case

e So why would people use it instead of merge
sort?

Quicksort

e Another divide-and-conquer algorithm

m The array A[p..r] 1s partitioned 1nto two non-
empty subarrays A[p..q] and A[g+1..1]
¢ Invariant: All elements in A[p..q] are less than all
elements in A[q+1..r]
m The subarrays are recursively sorted by calls to
quicksort

m Unlike merge sort, no combining step: two
subarrays form an already-sorted array

Quicksort Code

Quicksort (A, p, r)
{
if (p < r)
{
q = Partition(A, p, r);
Quicksort (A, p, 9);
Quicksort (A, g+l, r);

Partition

e (Clearly, all the action takes place in the
partition () function

m Rearranges the subarray in place

= End result:
¢ Two subarrays

& All values 1in first subarray < all values in second
= Returns the index of the “pivot” element
separating the two subarrays
e How do you suppose we implement this
function?

Partition In Words

e Partition(A, p, r):
m Select an element to act as the “pivot” (which?)

m Grow two regions, A[p..1] and A[j..r]
¢ All elements 1n A[p..1] <= pivot
¢ All elements 1n A[j..r] >= p1vot

> m Increment 1 until A[1] >= p1vot
s Decrement j until A[j] <= pivot
m Swap A[1] and A[j]

— = Repeat until 1>=

= Return j

Partition Code

Partition(A, p, r)

x = Alp];

] Illustrate on
i=p-1;

A = {5, 3, 2, 6, 4, 1/ 3/ 7};
j=r + 1;

while (TRUE)
repeat
J--=;
until A[j] <= x;
repeat What is the_ruijming time of
i+ partition()’?
until A[i] >= x;
if (i < j)
Swap (A, 1, 3j);
else

return j;

