
Algorithms

Heapsort

Priority Queues

Quicksort

Review: Heaps

 A heap is a “complete” binary tree, usually

represented as an array:

16

4 10

14 7 9 3

2 8 1

16 14 10 8 7 9 3 2 4 1 A =

Review: Heaps

 To represent a heap as an array:

Parent(i) { return i/2; }

Left(i) { return 2*i; }

right(i) { return 2*i + 1; }

Review: The Heap Property

 Heaps also satisfy the heap property:

 A[Parent(i)] A[i] for all nodes i > 1

 In other words, the value of a node is at most the

value of its parent

 The largest value is thus stored at the root (A[1])

 Because the heap is a binary tree, the height of

any node is at most (lg n)

Review: Heapify()

 Heapify(): maintain the heap property

 Given: a node i in the heap with children l and r

 Given: two subtrees rooted at l and r, assumed to

be heaps

 Action: let the value of the parent node “float

down” so subtree at i satisfies the heap property

 If A[i] < A[l] or A[i] < A[r], swap A[i] with the largest

of A[l] and A[r]

Recurse on that subtree

 Running time: O(h), h = height of heap = O(lg n)

Review: BuildHeap()

 We can build a heap in a bottom-up manner by
running Heapify() on successive subarrays

 Fact: for array of length n, all elements in range

A[n/2 + 1 .. n] are heaps (Why?)

 So:

Walk backwards through the array from n/2 to 1, calling

Heapify() on each node.

Order of processing guarantees that the children of node

i are heaps when i is processed

BuildHeap()

// given an unsorted array A, make A a heap

BuildHeap(A)

{

 heap_size(A) = length(A);

 for (i = length[A]/2 downto 1)

 Heapify(A, i);

}

Analyzing BuildHeap()

 Each call to Heapify() takes O(lg n) time

 There are O(n) such calls (specifically, n/2)

 Thus the running time is O(n lg n)

 Is this a correct asymptotic upper bound?

 Is this an asymptotically tight bound?

 A tighter bound is O(n)

 How can this be? Is there a flaw in the above

reasoning?

Analyzing BuildHeap(): Tight

 To Heapify() a subtree takes O(h) time

where h is the height of the subtree

 h = O(lg m), m = # nodes in subtree

 The height of most subtrees is small

 Fact: an n-element heap has at most n/2h+1

nodes of height h

 CLR 7.3 uses this fact to prove that
BuildHeap() takes O(n) time

Heapsort

 Given BuildHeap(), an in-place sorting

algorithm is easily constructed:

 Maximum element is at A[1]

 Discard by swapping with element at A[n]

Decrement heap_size[A]

A[n] now contains correct value

 Restore heap property at A[1] by calling

Heapify()

 Repeat, always swapping A[1] for A[heap_size(A)]

Heapsort

Heapsort(A)

{

 BuildHeap(A);

 for (i = length(A) downto 2)

 {

 Swap(A[1], A[i]);

 heap_size(A) -= 1;

 Heapify(A, 1);

 }

}

Analyzing Heapsort

 The call to BuildHeap() takes O(n) time

 Each of the n - 1 calls to Heapify() takes

O(lg n) time

 Thus the total time taken by HeapSort()

= O(n) + (n - 1) O(lg n)

= O(n) + O(n lg n)

= O(n lg n)

Priority Queues

 Heapsort is a nice algorithm, but in practice

Quicksort (coming up) usually wins

 But the heap data structure is incredibly useful

for implementing priority queues

 A data structure for maintaining a set S of

elements, each with an associated value or key

 Supports the operations Insert(),

Maximum(), and ExtractMax()

 What might a priority queue be useful for?

Priority Queue Operations

 Insert(S, x) inserts the element x into set S

 Maximum(S) returns the element of S with

the maximum key

 ExtractMax(S) removes and returns the

element of S with the maximum key

 How could we implement these operations

using a heap?

Tying It Into The Real World

 And now, a real-world example…

Tying It Into The “Real World”

 And now, a real-world example…combat billiards
 Sort of like pool...

 Except you’re trying to

kill the other players…

 And the table is the size

of a polo field…

 And the balls are the

size of Suburbans...

 And instead of a cue

you drive a vehicle

with a ram on it

 Problem: how do you simulate the physics?

Figure 1: boring traditional pool

Combat Billiards:

Simulating The Physics

 Simplifying assumptions:

 G-rated version: No players

Just n balls bouncing around

 No spin, no friction

Easy to calculate the positions of the balls at time Tn

from time Tn-1 if there are no collisions in between

 Simple elastic collisions

Simulating The Physics

 Assume we know how to compute when two

moving spheres will intersect

 Given the state of the system, we can calculate

when the next collision will occur for each ball

 At each collision Ci:

Advance the system to the time Ti of the collision

Recompute the next collision for the ball(s) involved

Find the next overall collision Ci+1 and repeat

 How should we keep track of all these collisions

and when they occur?

Implementing Priority Queues

HeapInsert(A, key) // what’s running time?

{

 heap_size[A] ++;

 i = heap_size[A];

 while (i > 1 AND A[Parent(i)] < key)

 {

 A[i] = A[Parent(i)];

 i = Parent(i);

 }

 A[i] = key;

}

Implementing Priority Queues

HeapMaximum(A)

{

 // This one is really tricky:

 return A[i];

}

Implementing Priority Queues

HeapExtractMax(A)

{

 if (heap_size[A] < 1) { error; }

 max = A[1];

 A[1] = A[heap_size[A]]

 heap_size[A] --;

 Heapify(A, 1);

 return max;

}

Back To Combat Billiards

 Extract the next collision Ci from the queue

 Advance the system to the time Ti of the collision

 Recompute the next collision(s) for the ball(s)

involved

 Insert collision(s) into the queue, using the time of

occurrence as the key

 Find the next overall collision Ci+1 and repeat

Using A Priority Queue

For Event Simulation

 More natural to use Minimum() and

ExtractMin()

 What if a player hits a ball?

 Need to code up a Delete() operation

 How? What will the running time be?

Quicksort

 Sorts in place

 Sorts O(n lg n) in the average case

 Sorts O(n2) in the worst case

 So why would people use it instead of merge

sort?

Quicksort

 Another divide-and-conquer algorithm

 The array A[p..r] is partitioned into two non-

empty subarrays A[p..q] and A[q+1..r]

 Invariant: All elements in A[p..q] are less than all

elements in A[q+1..r]

 The subarrays are recursively sorted by calls to

quicksort

 Unlike merge sort, no combining step: two

subarrays form an already-sorted array

Quicksort Code

Quicksort(A, p, r)

{

 if (p < r)

 {

 q = Partition(A, p, r);

 Quicksort(A, p, q);

 Quicksort(A, q+1, r);

 }

}

Partition

 Clearly, all the action takes place in the
partition() function

 Rearranges the subarray in place

 End result:

Two subarrays

All values in first subarray all values in second

 Returns the index of the “pivot” element

separating the two subarrays

 How do you suppose we implement this

function?

Partition In Words

 Partition(A, p, r):

 Select an element to act as the “pivot” (which?)

 Grow two regions, A[p..i] and A[j..r]

All elements in A[p..i] <= pivot

All elements in A[j..r] >= pivot

 Increment i until A[i] >= pivot

 Decrement j until A[j] <= pivot

 Swap A[i] and A[j]

 Repeat until i >= j

 Return j

Partition Code

Partition(A, p, r)

 x = A[p];

 i = p - 1;

 j = r + 1;

 while (TRUE)

 repeat

 j--;

 until A[j] <= x;

 repeat

 i++;

 until A[i] >= x;

 if (i < j)

 Swap(A, i, j);

 else

 return j;

Illustrate on

A = {5, 3, 2, 6, 4, 1, 3, 7};

What is the running time of
partition()?

