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Review: Heaps 

 A heap is a “complete” binary tree, usually 

represented as an array: 
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Review: Heaps 

 To represent a heap as an array:  

Parent(i) { return i/2; } 

Left(i) { return 2*i; } 

right(i) { return 2*i + 1; } 



Review: The Heap Property 

 Heaps also satisfy the heap property: 

 A[Parent(i)]  A[i]  for all nodes i > 1 

 In other words, the value of a node is at most the 

value of its parent 

 The largest value is thus stored at the root (A[1]) 

 Because the heap is a binary tree, the height of 

any node is at most (lg n) 



Review: Heapify() 

 Heapify(): maintain the heap property 

 Given: a node i in the heap with children l and r 

 Given: two subtrees rooted at l and r, assumed to 

be heaps 

 Action: let the value of the parent node “float 

down” so subtree at i satisfies the heap property  

 If A[i] < A[l] or A[i] < A[r], swap A[i] with the largest 

of A[l] and A[r] 

Recurse on that subtree 

 Running time: O(h), h = height of heap = O(lg n) 



Review: BuildHeap() 

 We can build a heap in a bottom-up manner by 
running Heapify() on successive subarrays 

 Fact: for array of length n, all elements in range  

A[n/2 + 1 .. n] are heaps (Why?) 

 So:  

Walk backwards through the array from n/2 to 1, calling 

Heapify() on each node. 

Order of processing guarantees that the children of node 

i are heaps when i is processed 



BuildHeap() 

// given an unsorted array A, make A a heap 

BuildHeap(A) 

{ 

 heap_size(A) = length(A); 

 for (i = length[A]/2  downto 1) 

  Heapify(A, i); 

} 



Analyzing BuildHeap() 

 Each call to Heapify() takes O(lg n) time 

 There are O(n) such calls (specifically, n/2) 

 Thus the running time is O(n lg n) 

 Is this a correct asymptotic upper bound? 

 Is this an asymptotically tight bound? 

 A tighter bound is O(n)  

 How can this be?  Is there a flaw in the above 

reasoning? 



Analyzing BuildHeap(): Tight 

 To Heapify() a subtree takes O(h) time 

where h is the height of the subtree 

 h = O(lg m), m = # nodes in subtree 

 The height of most subtrees is small 

 Fact: an n-element heap has at most n/2h+1 

nodes of height h 

 CLR 7.3 uses this fact to prove that 
BuildHeap() takes O(n) time  

 



Heapsort 

 Given BuildHeap(),  an in-place sorting 

algorithm is easily constructed: 

 Maximum element is at A[1] 

 Discard by swapping with element at A[n] 

Decrement heap_size[A] 

A[n] now contains correct value 

 Restore heap property at A[1] by calling 

Heapify() 

 Repeat, always swapping A[1] for A[heap_size(A)] 



Heapsort 

Heapsort(A) 

{ 

  BuildHeap(A); 

  for (i = length(A) downto 2) 

  { 

   Swap(A[1], A[i]); 

   heap_size(A) -= 1; 

   Heapify(A, 1); 

  } 

} 



Analyzing Heapsort 

 The call to BuildHeap() takes O(n) time  

 Each of the n - 1 calls to Heapify() takes 

O(lg n) time 

 Thus the total time taken by HeapSort()  

= O(n) + (n - 1) O(lg n) 

= O(n) + O(n lg n) 

= O(n lg n) 



Priority Queues 

 Heapsort is a nice algorithm, but in practice 

Quicksort (coming up) usually wins 

 But the heap data structure is incredibly useful 

for implementing priority queues 

 A data structure for maintaining a set S of 

elements, each with an associated value or key 

 Supports the operations Insert(), 

Maximum(), and ExtractMax() 

 What might a priority queue be useful for? 

 



Priority Queue Operations 

 Insert(S, x) inserts the element x into set S 

 Maximum(S) returns the element of S with 

the maximum key 

 ExtractMax(S) removes and returns the 

element of S with the maximum key 

 How could we implement these operations 

using a heap? 



Tying It Into The Real World 

 And now, a real-world example… 



Tying It Into The “Real World” 

 And now, a real-world example…combat billiards 
 Sort of like pool... 

 Except you’re trying to  

kill the other players… 

 And the table is the size  

of a polo field… 

 And the balls are the  

size of Suburbans... 

 And instead of a cue 

you drive a vehicle  

with a ram on it 

 Problem: how do you simulate the physics? 

Figure 1: boring traditional pool 



Combat Billiards: 

Simulating The Physics 

 Simplifying assumptions: 

 G-rated version: No players 

Just n balls bouncing around 

 No spin, no friction 

Easy to calculate the positions of the balls at time Tn 

from time Tn-1 if there are no collisions in between 

 Simple elastic collisions 



Simulating The Physics 

 Assume we know how to compute when two 

moving spheres will intersect 

 Given the state of the system, we can calculate 

when the next collision will occur for each ball 

 At each collision Ci: 

Advance the system to the time Ti of the collision 

Recompute the next collision for the ball(s) involved 

Find the next overall collision Ci+1 and repeat 

 How should we keep track of all these collisions 

and when they occur? 



Implementing Priority Queues 

HeapInsert(A, key)    // what’s running time? 

{ 

    heap_size[A] ++; 

    i = heap_size[A]; 

    while (i > 1  AND  A[Parent(i)] < key) 

    { 

        A[i] = A[Parent(i)]; 

        i = Parent(i); 

    } 

    A[i] = key; 

} 



Implementing Priority Queues 

HeapMaximum(A) 

{ 

    // This one is really tricky: 

 

    return A[i]; 

} 



Implementing Priority Queues 

HeapExtractMax(A) 

{ 

    if (heap_size[A] < 1) { error; } 

    max = A[1]; 

    A[1] = A[heap_size[A]] 

    heap_size[A] --; 

    Heapify(A, 1); 

    return max; 

} 



Back To Combat Billiards 

 Extract the next collision Ci from the queue 

 Advance the system to the time Ti of the collision 

 Recompute the next collision(s) for the ball(s) 

involved 

 Insert collision(s) into the queue, using the time of 

occurrence as the key 

 Find the next overall collision Ci+1 and repeat 



Using A Priority Queue  

For Event Simulation 

 More natural to use Minimum() and 

ExtractMin()  

 What if a player hits a ball? 

 Need to code up a Delete() operation 

 How?  What will the running time be? 



Quicksort 

 Sorts in place 

 Sorts O(n lg n) in the average case 

 Sorts O(n2) in the worst case 

 So why would people use it instead of merge 

sort? 



Quicksort 

 Another divide-and-conquer algorithm 

 The array A[p..r] is partitioned into two non-

empty subarrays A[p..q] and A[q+1..r]  

 Invariant: All elements in A[p..q] are less than all 

elements in A[q+1..r] 

 The subarrays are recursively sorted by calls to 

quicksort 

 Unlike merge sort, no combining step: two 

subarrays form an already-sorted array 



Quicksort Code 

Quicksort(A, p, r) 

{ 

    if (p < r) 

    { 

        q = Partition(A, p, r); 

        Quicksort(A, p, q); 

        Quicksort(A, q+1, r); 

    } 

} 



Partition 

 Clearly, all the action takes place in the 
partition() function 

 Rearranges the subarray in place 

 End result:  

Two subarrays 

All values in first subarray  all values in second 

 Returns the index of the “pivot” element 

separating the two subarrays 

 How do you suppose we implement this 

function? 



Partition In Words 

 Partition(A, p, r): 

 Select an element to act as the “pivot” (which?) 

 Grow two regions, A[p..i] and A[j..r] 

All elements in A[p..i] <= pivot 

All elements in A[j..r] >= pivot 

 Increment i until A[i] >= pivot  

 Decrement j until A[j] <= pivot 

 Swap A[i] and A[j] 

 Repeat until i >= j  

 Return j 



Partition Code 

Partition(A, p, r) 

    x = A[p]; 

    i = p - 1; 

    j = r + 1; 

    while (TRUE) 

        repeat  

            j--; 

        until A[j] <= x; 

        repeat  

            i++; 

        until A[i] >= x; 

        if (i < j) 

            Swap(A, i, j); 

        else 

            return j; 

Illustrate on  

A = {5, 3, 2, 6, 4, 1, 3, 7}; 

What is the running time of 
partition()? 


