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Review: Heaps 

 A heap is a “complete” binary tree, usually 

represented as an array: 
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Review: Heaps 

 To represent a heap as an array:  

Parent(i) { return i/2; } 

Left(i) { return 2*i; } 

right(i) { return 2*i + 1; } 



Review: The Heap Property 

 Heaps also satisfy the heap property: 

 A[Parent(i)]  A[i]  for all nodes i > 1 

 In other words, the value of a node is at most the 

value of its parent 

 The largest value is thus stored at the root (A[1]) 

 Because the heap is a binary tree, the height of 

any node is at most (lg n) 



Review: Heapify() 

 Heapify(): maintain the heap property 

 Given: a node i in the heap with children l and r 

 Given: two subtrees rooted at l and r, assumed to 

be heaps 

 Action: let the value of the parent node “float 

down” so subtree at i satisfies the heap property  

 If A[i] < A[l] or A[i] < A[r], swap A[i] with the largest 

of A[l] and A[r] 

Recurse on that subtree 

 Running time: O(h), h = height of heap = O(lg n) 



Review: BuildHeap() 

 We can build a heap in a bottom-up manner by 
running Heapify() on successive subarrays 

 Fact: for array of length n, all elements in range  

A[n/2 + 1 .. n] are heaps (Why?) 

 So:  

Walk backwards through the array from n/2 to 1, calling 

Heapify() on each node. 

Order of processing guarantees that the children of node 

i are heaps when i is processed 



BuildHeap() 

// given an unsorted array A, make A a heap 

BuildHeap(A) 

{ 

 heap_size(A) = length(A); 

 for (i = length[A]/2  downto 1) 

  Heapify(A, i); 

} 



Analyzing BuildHeap() 

 Each call to Heapify() takes O(lg n) time 

 There are O(n) such calls (specifically, n/2) 

 Thus the running time is O(n lg n) 

 Is this a correct asymptotic upper bound? 

 Is this an asymptotically tight bound? 

 A tighter bound is O(n)  

 How can this be?  Is there a flaw in the above 

reasoning? 



Analyzing BuildHeap(): Tight 

 To Heapify() a subtree takes O(h) time 

where h is the height of the subtree 

 h = O(lg m), m = # nodes in subtree 

 The height of most subtrees is small 

 Fact: an n-element heap has at most n/2h+1 

nodes of height h 

 CLR 7.3 uses this fact to prove that 
BuildHeap() takes O(n) time  

 



Heapsort 

 Given BuildHeap(),  an in-place sorting 

algorithm is easily constructed: 

 Maximum element is at A[1] 

 Discard by swapping with element at A[n] 

Decrement heap_size[A] 

A[n] now contains correct value 

 Restore heap property at A[1] by calling 

Heapify() 

 Repeat, always swapping A[1] for A[heap_size(A)] 



Heapsort 

Heapsort(A) 

{ 

  BuildHeap(A); 

  for (i = length(A) downto 2) 

  { 

   Swap(A[1], A[i]); 

   heap_size(A) -= 1; 

   Heapify(A, 1); 

  } 

} 



Analyzing Heapsort 

 The call to BuildHeap() takes O(n) time  

 Each of the n - 1 calls to Heapify() takes 

O(lg n) time 

 Thus the total time taken by HeapSort()  

= O(n) + (n - 1) O(lg n) 

= O(n) + O(n lg n) 

= O(n lg n) 



Priority Queues 

 Heapsort is a nice algorithm, but in practice 

Quicksort (coming up) usually wins 

 But the heap data structure is incredibly useful 

for implementing priority queues 

 A data structure for maintaining a set S of 

elements, each with an associated value or key 

 Supports the operations Insert(), 

Maximum(), and ExtractMax() 

 What might a priority queue be useful for? 

 



Priority Queue Operations 

 Insert(S, x) inserts the element x into set S 

 Maximum(S) returns the element of S with 

the maximum key 

 ExtractMax(S) removes and returns the 

element of S with the maximum key 

 How could we implement these operations 

using a heap? 



Tying It Into The Real World 

 And now, a real-world example… 



Tying It Into The “Real World” 

 And now, a real-world example…combat billiards 
 Sort of like pool... 

 Except you’re trying to  

kill the other players… 

 And the table is the size  

of a polo field… 

 And the balls are the  

size of Suburbans... 

 And instead of a cue 

you drive a vehicle  

with a ram on it 

 Problem: how do you simulate the physics? 

Figure 1: boring traditional pool 



Combat Billiards: 

Simulating The Physics 

 Simplifying assumptions: 

 G-rated version: No players 

Just n balls bouncing around 

 No spin, no friction 

Easy to calculate the positions of the balls at time Tn 

from time Tn-1 if there are no collisions in between 

 Simple elastic collisions 



Simulating The Physics 

 Assume we know how to compute when two 

moving spheres will intersect 

 Given the state of the system, we can calculate 

when the next collision will occur for each ball 

 At each collision Ci: 

Advance the system to the time Ti of the collision 

Recompute the next collision for the ball(s) involved 

Find the next overall collision Ci+1 and repeat 

 How should we keep track of all these collisions 

and when they occur? 



Implementing Priority Queues 

HeapInsert(A, key)    // what’s running time? 

{ 

    heap_size[A] ++; 

    i = heap_size[A]; 

    while (i > 1  AND  A[Parent(i)] < key) 

    { 

        A[i] = A[Parent(i)]; 

        i = Parent(i); 

    } 

    A[i] = key; 

} 



Implementing Priority Queues 

HeapMaximum(A) 

{ 

    // This one is really tricky: 

 

    return A[i]; 

} 



Implementing Priority Queues 

HeapExtractMax(A) 

{ 

    if (heap_size[A] < 1) { error; } 

    max = A[1]; 

    A[1] = A[heap_size[A]] 

    heap_size[A] --; 

    Heapify(A, 1); 

    return max; 

} 



Back To Combat Billiards 

 Extract the next collision Ci from the queue 

 Advance the system to the time Ti of the collision 

 Recompute the next collision(s) for the ball(s) 

involved 

 Insert collision(s) into the queue, using the time of 

occurrence as the key 

 Find the next overall collision Ci+1 and repeat 



Using A Priority Queue  

For Event Simulation 

 More natural to use Minimum() and 

ExtractMin()  

 What if a player hits a ball? 

 Need to code up a Delete() operation 

 How?  What will the running time be? 



Quicksort 

 Sorts in place 

 Sorts O(n lg n) in the average case 

 Sorts O(n2) in the worst case 

 So why would people use it instead of merge 

sort? 



Quicksort 

 Another divide-and-conquer algorithm 

 The array A[p..r] is partitioned into two non-

empty subarrays A[p..q] and A[q+1..r]  

 Invariant: All elements in A[p..q] are less than all 

elements in A[q+1..r] 

 The subarrays are recursively sorted by calls to 

quicksort 

 Unlike merge sort, no combining step: two 

subarrays form an already-sorted array 



Quicksort Code 

Quicksort(A, p, r) 

{ 

    if (p < r) 

    { 

        q = Partition(A, p, r); 

        Quicksort(A, p, q); 

        Quicksort(A, q+1, r); 

    } 

} 



Partition 

 Clearly, all the action takes place in the 
partition() function 

 Rearranges the subarray in place 

 End result:  

Two subarrays 

All values in first subarray  all values in second 

 Returns the index of the “pivot” element 

separating the two subarrays 

 How do you suppose we implement this 

function? 



Partition In Words 

 Partition(A, p, r): 

 Select an element to act as the “pivot” (which?) 

 Grow two regions, A[p..i] and A[j..r] 

All elements in A[p..i] <= pivot 

All elements in A[j..r] >= pivot 

 Increment i until A[i] >= pivot  

 Decrement j until A[j] <= pivot 

 Swap A[i] and A[j] 

 Repeat until i >= j  

 Return j 



Partition Code 

Partition(A, p, r) 

    x = A[p]; 

    i = p - 1; 

    j = r + 1; 

    while (TRUE) 

        repeat  

            j--; 

        until A[j] <= x; 

        repeat  

            i++; 

        until A[i] >= x; 

        if (i < j) 

            Swap(A, i, j); 

        else 

            return j; 

Illustrate on  

A = {5, 3, 2, 6, 4, 1, 3, 7}; 

What is the running time of 
partition()? 


