
Algorithms

Heapsort

Priority Queues

Quicksort

Review: Heaps

 A heap is a “complete” binary tree, usually

represented as an array:

16

4 10

14 7 9 3

2 8 1

16 14 10 8 7 9 3 2 4 1 A =

Review: Heaps

 To represent a heap as an array:

Parent(i) { return i/2; }

Left(i) { return 2*i; }

right(i) { return 2*i + 1; }

Review: The Heap Property

 Heaps also satisfy the heap property:

 A[Parent(i)]  A[i] for all nodes i > 1

 In other words, the value of a node is at most the

value of its parent

 The largest value is thus stored at the root (A[1])

 Because the heap is a binary tree, the height of

any node is at most (lg n)

Review: Heapify()

 Heapify(): maintain the heap property

 Given: a node i in the heap with children l and r

 Given: two subtrees rooted at l and r, assumed to

be heaps

 Action: let the value of the parent node “float

down” so subtree at i satisfies the heap property

 If A[i] < A[l] or A[i] < A[r], swap A[i] with the largest

of A[l] and A[r]

Recurse on that subtree

 Running time: O(h), h = height of heap = O(lg n)

Review: BuildHeap()

 We can build a heap in a bottom-up manner by
running Heapify() on successive subarrays

 Fact: for array of length n, all elements in range

A[n/2 + 1 .. n] are heaps (Why?)

 So:

Walk backwards through the array from n/2 to 1, calling

Heapify() on each node.

Order of processing guarantees that the children of node

i are heaps when i is processed

BuildHeap()

// given an unsorted array A, make A a heap

BuildHeap(A)

{

 heap_size(A) = length(A);

 for (i = length[A]/2 downto 1)

 Heapify(A, i);

}

Analyzing BuildHeap()

 Each call to Heapify() takes O(lg n) time

 There are O(n) such calls (specifically, n/2)

 Thus the running time is O(n lg n)

 Is this a correct asymptotic upper bound?

 Is this an asymptotically tight bound?

 A tighter bound is O(n)

 How can this be? Is there a flaw in the above

reasoning?

Analyzing BuildHeap(): Tight

 To Heapify() a subtree takes O(h) time

where h is the height of the subtree

 h = O(lg m), m = # nodes in subtree

 The height of most subtrees is small

 Fact: an n-element heap has at most n/2h+1

nodes of height h

 CLR 7.3 uses this fact to prove that
BuildHeap() takes O(n) time

Heapsort

 Given BuildHeap(), an in-place sorting

algorithm is easily constructed:

 Maximum element is at A[1]

 Discard by swapping with element at A[n]

Decrement heap_size[A]

A[n] now contains correct value

 Restore heap property at A[1] by calling

Heapify()

 Repeat, always swapping A[1] for A[heap_size(A)]

Heapsort

Heapsort(A)

{

 BuildHeap(A);

 for (i = length(A) downto 2)

 {

 Swap(A[1], A[i]);

 heap_size(A) -= 1;

 Heapify(A, 1);

 }

}

Analyzing Heapsort

 The call to BuildHeap() takes O(n) time

 Each of the n - 1 calls to Heapify() takes

O(lg n) time

 Thus the total time taken by HeapSort()

= O(n) + (n - 1) O(lg n)

= O(n) + O(n lg n)

= O(n lg n)

Priority Queues

 Heapsort is a nice algorithm, but in practice

Quicksort (coming up) usually wins

 But the heap data structure is incredibly useful

for implementing priority queues

 A data structure for maintaining a set S of

elements, each with an associated value or key

 Supports the operations Insert(),

Maximum(), and ExtractMax()

 What might a priority queue be useful for?

Priority Queue Operations

 Insert(S, x) inserts the element x into set S

 Maximum(S) returns the element of S with

the maximum key

 ExtractMax(S) removes and returns the

element of S with the maximum key

 How could we implement these operations

using a heap?

Tying It Into The Real World

 And now, a real-world example…

Tying It Into The “Real World”

 And now, a real-world example…combat billiards
 Sort of like pool...

 Except you’re trying to

kill the other players…

 And the table is the size

of a polo field…

 And the balls are the

size of Suburbans...

 And instead of a cue

you drive a vehicle

with a ram on it

 Problem: how do you simulate the physics?

Figure 1: boring traditional pool

Combat Billiards:

Simulating The Physics

 Simplifying assumptions:

 G-rated version: No players

Just n balls bouncing around

 No spin, no friction

Easy to calculate the positions of the balls at time Tn

from time Tn-1 if there are no collisions in between

 Simple elastic collisions

Simulating The Physics

 Assume we know how to compute when two

moving spheres will intersect

 Given the state of the system, we can calculate

when the next collision will occur for each ball

 At each collision Ci:

Advance the system to the time Ti of the collision

Recompute the next collision for the ball(s) involved

Find the next overall collision Ci+1 and repeat

 How should we keep track of all these collisions

and when they occur?

Implementing Priority Queues

HeapInsert(A, key) // what’s running time?

{

 heap_size[A] ++;

 i = heap_size[A];

 while (i > 1 AND A[Parent(i)] < key)

 {

 A[i] = A[Parent(i)];

 i = Parent(i);

 }

 A[i] = key;

}

Implementing Priority Queues

HeapMaximum(A)

{

 // This one is really tricky:

 return A[i];

}

Implementing Priority Queues

HeapExtractMax(A)

{

 if (heap_size[A] < 1) { error; }

 max = A[1];

 A[1] = A[heap_size[A]]

 heap_size[A] --;

 Heapify(A, 1);

 return max;

}

Back To Combat Billiards

 Extract the next collision Ci from the queue

 Advance the system to the time Ti of the collision

 Recompute the next collision(s) for the ball(s)

involved

 Insert collision(s) into the queue, using the time of

occurrence as the key

 Find the next overall collision Ci+1 and repeat

Using A Priority Queue

For Event Simulation

 More natural to use Minimum() and

ExtractMin()

 What if a player hits a ball?

 Need to code up a Delete() operation

 How? What will the running time be?

Quicksort

 Sorts in place

 Sorts O(n lg n) in the average case

 Sorts O(n2) in the worst case

 So why would people use it instead of merge

sort?

Quicksort

 Another divide-and-conquer algorithm

 The array A[p..r] is partitioned into two non-

empty subarrays A[p..q] and A[q+1..r]

 Invariant: All elements in A[p..q] are less than all

elements in A[q+1..r]

 The subarrays are recursively sorted by calls to

quicksort

 Unlike merge sort, no combining step: two

subarrays form an already-sorted array

Quicksort Code

Quicksort(A, p, r)

{

 if (p < r)

 {

 q = Partition(A, p, r);

 Quicksort(A, p, q);

 Quicksort(A, q+1, r);

 }

}

Partition

 Clearly, all the action takes place in the
partition() function

 Rearranges the subarray in place

 End result:

Two subarrays

All values in first subarray  all values in second

 Returns the index of the “pivot” element

separating the two subarrays

 How do you suppose we implement this

function?

Partition In Words

 Partition(A, p, r):

 Select an element to act as the “pivot” (which?)

 Grow two regions, A[p..i] and A[j..r]

All elements in A[p..i] <= pivot

All elements in A[j..r] >= pivot

 Increment i until A[i] >= pivot

 Decrement j until A[j] <= pivot

 Swap A[i] and A[j]

 Repeat until i >= j

 Return j

Partition Code

Partition(A, p, r)

 x = A[p];

 i = p - 1;

 j = r + 1;

 while (TRUE)

 repeat

 j--;

 until A[j] <= x;

 repeat

 i++;

 until A[i] >= x;

 if (i < j)

 Swap(A, i, j);

 else

 return j;

Illustrate on

A = {5, 3, 2, 6, 4, 1, 3, 7};

What is the running time of
partition()?

