
Algorithms 

Quicksort 



Homework 2 

 Assigned today, due next Wednesday 

 Will be on web page shortly after class 

 Go over now 



Review: Quicksort 

 Sorts in place 

 Sorts O(n lg n) in the average case 

 Sorts O(n2) in the worst case 

 But in practice, it’s quick 

 And the worst case doesn’t happen often (but more 

on this later…) 



Quicksort 

 Another divide-and-conquer algorithm 

 The array A[p..r] is partitioned into two non-

empty subarrays A[p..q] and A[q+1..r]  

 Invariant: All elements in A[p..q] are less than all 

elements in A[q+1..r] 

 The subarrays are recursively sorted by calls to 

quicksort 

 Unlike merge sort, no combining step: two 

subarrays form an already-sorted array 



Quicksort Code 

Quicksort(A, p, r) 

{ 

    if (p < r) 

    { 

        q = Partition(A, p, r); 

        Quicksort(A, p, q); 

        Quicksort(A, q+1, r); 

    } 

} 



Partition 

 Clearly, all the action takes place in the 
partition() function 

 Rearranges the subarray in place 

 End result:  

Two subarrays 

All values in first subarray  all values in second 

 Returns the index of the “pivot” element 

separating the two subarrays 

 How do you suppose we implement this? 



Partition In Words 

 Partition(A, p, r): 

 Select an element to act as the “pivot” (which?) 

 Grow two regions, A[p..i] and A[j..r] 

All elements in A[p..i] <= pivot 

All elements in A[j..r] >= pivot 

 Increment i until A[i] >= pivot  

 Decrement j until A[j] <= pivot 

 Swap A[i] and A[j] 

 Repeat until i >= j  

 Return j 

Note: slightly different from 

book’s partition() 



Partition Code 

Partition(A, p, r) 

    x = A[p]; 

    i = p - 1; 

    j = r + 1; 

    while (TRUE) 

        repeat  

            j--; 

        until A[j] <= x; 

        repeat  

            i++; 

        until A[i] >= x; 

        if (i < j) 

            Swap(A, i, j); 

        else 

            return j; 

Illustrate on  

A = {5, 3, 2, 6, 4, 1, 3, 7}; 

What is the running time of 
partition()? 



Partition Code 

Partition(A, p, r) 

    x = A[p]; 

    i = p - 1; 

    j = r + 1; 

    while (TRUE) 

        repeat  

            j--; 

        until A[j] <= x; 

        repeat  

            i++; 

        until A[i] >= x; 

        if (i < j) 

            Swap(A, i, j); 

        else 

            return j; 

partition() runs in O(n) time 



Analyzing Quicksort 

 What will be the worst case for the algorithm? 

 Partition is always unbalanced 

 What will be the best case for the algorithm? 

 Partition is perfectly balanced 

 Which is more likely? 

 The latter, by far, except... 

 Will any particular input elicit the worst case? 

 Yes: Already-sorted input 



Analyzing Quicksort 

 In the worst case: 

T(1) = (1) 

T(n) = T(n - 1) + (n) 

 Works out to 

 T(n) = (n2) 

 



 Analyzing Quicksort 

 In the best case: 

T(n) = 2T(n/2) + (n) 

 What does this work out to? 

T(n) = (n lg n)  



 Improving Quicksort 

 The real liability of quicksort is that it runs in 

O(n2) on already-sorted input 

 Book discusses two solutions: 

 Randomize the input array, OR 

 Pick a random pivot element 

 How will these solve the problem? 

 By insuring that no particular input can be chosen 

to make quicksort run in O(n2) time 



Analyzing Quicksort: Average Case 

 Assuming random input, average-case running 

time is much closer to O(n lg n) than O(n2) 

 First, a more intuitive explanation/example: 

 Suppose that partition() always produces a 9-to-1 

split.  This looks quite unbalanced! 

 The recurrence is thus: 

 T(n) = T(9n/10) + T(n/10) + n   

  How deep will the recursion go?  (draw it) 

Use n instead of O(n)  

for convenience (how?) 



Analyzing Quicksort: Average Case 

 Intuitively, a real-life run of quicksort will 

produce a mix of “bad” and “good” splits 

 Randomly distributed among the recursion tree 

 Pretend for intuition that they alternate between 

best-case (n/2 : n/2) and worst-case (n-1 : 1) 

 What happens if we bad-split root node, then 

good-split the resulting size (n-1) node? 



Analyzing Quicksort: Average Case 

 Intuitively, a real-life run of quicksort will 

produce a mix of “bad” and “good” splits 

 Randomly distributed among the recursion tree 

 Pretend for intuition that they alternate between 

best-case (n/2 : n/2) and worst-case (n-1 : 1) 

 What happens if we bad-split root node, then 

good-split the resulting size (n-1) node? 

We fail English 



Analyzing Quicksort: Average Case 

 Intuitively, a real-life run of quicksort will 

produce a mix of “bad” and “good” splits 

 Randomly distributed among the recursion tree 

 Pretend for intuition that they alternate between 

best-case (n/2 : n/2) and worst-case (n-1 : 1) 

 What happens if we bad-split root node, then 

good-split the resulting size (n-1) node? 

We end up with three subarrays, size 1, (n-1)/2, (n-1)/2 

Combined cost of splits = n + n -1 = 2n -1 = O(n) 

No worse than if we had good-split the root node! 



Analyzing Quicksort: Average Case 

 Intuitively, the O(n) cost of a bad split  

(or 2 or 3 bad splits) can be absorbed  

into the O(n) cost of each good split 

 Thus running time of alternating bad and good 

splits is still O(n lg n), with slightly higher 

constants 

 How can we be more rigorous? 



Analyzing Quicksort: Average Case 

 For simplicity, assume: 

 All inputs distinct (no repeats) 

 Slightly different partition() procedure 

partition around a random element, which is not 

included in subarrays 

all splits (0:n-1, 1:n-2, 2:n-3, … , n-1:0) equally likely 

 What is the probability of a particular split 

happening? 

 Answer: 1/n 



Analyzing Quicksort: Average Case 

 So partition generates splits  

 (0:n-1,  1:n-2,  2:n-3, … ,  n-2:1,  n-1:0)  

each with probability 1/n 

 If T(n) is the expected running time, 

 

 

 What is each term under the summation for? 

 What is the (n) term for?  
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Analyzing Quicksort: Average Case 

 So… 

 

 

 

 

 

 Note: this is just like the book’s recurrence (p166), 

except that the summation starts with k=0 

 We’ll take care of that in a second  
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Write it on  

the board 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

 Assume that the inductive hypothesis holds 

 Substitute it in for some value < n 

 Prove that it follows for n 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

What’s the answer? 

 Assume that the inductive hypothesis holds 

 Substitute it in for some value < n 

 Prove that it follows for n 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

T(n) = O(n lg n) 

 Assume that the inductive hypothesis holds 

 Substitute it in for some value < n 

 Prove that it follows for n 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

T(n) = O(n lg n) 

 Assume that the inductive hypothesis holds 

What’s the inductive hypothesis? 

 Substitute it in for some value < n 

 Prove that it follows for n 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

T(n) = O(n lg n) 

 Assume that the inductive hypothesis holds 

T(n)  an lg n + b   for some constants a and b 

 Substitute it in for some value < n 

 Prove that it follows for n 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

T(n) = O(n lg n) 

 Assume that the inductive hypothesis holds 

T(n)  an lg n + b   for some constants a and b 

 Substitute it in for some value < n 

What value? 

 Prove that it follows for n 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

T(n) = O(n lg n) 

 Assume that the inductive hypothesis holds 

T(n)  an lg n + b   for some constants a and b 

 Substitute it in for some value < n 

The value k in the recurrence 

 Prove that it follows for n 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

T(n) = O(n lg n) 

 Assume that the inductive hypothesis holds 

T(n)  an lg n + b   for some constants a and b 

 Substitute it in for some value < n 

The value k in the recurrence 

 Prove that it follows for n 

Grind through it…  



Note: leaving the same 

recurrence as the book 

What are we doing here? 

Analyzing Quicksort: Average Case 
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What are we doing here? 

What are we doing here? 

Plug in inductive hypothesis 

Expand out the k=0 case 

2b/n is just a constant,  

so fold it into (n) 



What are we doing here? 

What are we doing here? 

Evaluate the summation:  

b+b+…+b = b (n-1) 

The recurrence to be solved 

Since n-1<n, 2b(n-1)/n < 2b 

Analyzing Quicksort: Average Case 
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What are we doing here? Distribute the summation 

This summation gets its own set of slides later 



How did we do this? 
Pick a large enough that 

an/4 dominates (n)+b  

What are we doing here? 
Remember, our goal is to get 

T(n)  an lg n + b 

What the hell? We’ll prove this later 

What are we doing here? Distribute the (2a/n) term 

The recurrence to be solved 

Analyzing Quicksort: Average Case 
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Analyzing Quicksort: Average Case 

 So T(n)  an lg n + b  for certain a and b 

 Thus the induction holds 

 Thus T(n) = O(n lg n) 

 Thus quicksort runs in O(n lg n) time on average 

(phew!) 

 Oh yeah, the summation…  



What are we doing here? 
The lg k in the second term 

is bounded by lg n 

Tightly Bounding  

The Key Summation 
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What are we doing here? 
Move the lg n outside the 

summation 

What are we doing here? 
Split the summation for a 

tighter bound 



The summation bound so far 

Tightly Bounding 

The Key Summation 
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What are we doing here? 
The lg k in the first term is 

bounded by lg n/2 

What are we doing here? lg n/2 = lg n - 1 

What are we doing here? 
Move (lg n - 1) outside the 

summation 



The summation bound so far 

Tightly Bounding 

The Key Summation 
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What are we doing here? Distribute the (lg n - 1) 

What are we doing here? 
The summations overlap in  

range; combine them 

What are we doing here? The Guassian series 



The summation bound so far 

Tightly Bounding  

The Key Summation 
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What are we doing here? 
Rearrange first term, place 

upper bound on second 

What are we doing? X Guassian series 

What are we doing? 
Multiply it  

all out 



Tightly Bounding  

The Key Summation 
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