
Algorithms 

Quicksort 



Homework 2 

 Assigned today, due next Wednesday 

 Will be on web page shortly after class 

 Go over now 



Review: Quicksort 

 Sorts in place 

 Sorts O(n lg n) in the average case 

 Sorts O(n2) in the worst case 

 But in practice, it’s quick 

 And the worst case doesn’t happen often (but more 

on this later…) 



Quicksort 

 Another divide-and-conquer algorithm 

 The array A[p..r] is partitioned into two non-

empty subarrays A[p..q] and A[q+1..r]  

 Invariant: All elements in A[p..q] are less than all 

elements in A[q+1..r] 

 The subarrays are recursively sorted by calls to 

quicksort 

 Unlike merge sort, no combining step: two 

subarrays form an already-sorted array 



Quicksort Code 

Quicksort(A, p, r) 

{ 

    if (p < r) 

    { 

        q = Partition(A, p, r); 

        Quicksort(A, p, q); 

        Quicksort(A, q+1, r); 

    } 

} 



Partition 

 Clearly, all the action takes place in the 
partition() function 

 Rearranges the subarray in place 

 End result:  

Two subarrays 

All values in first subarray  all values in second 

 Returns the index of the “pivot” element 

separating the two subarrays 

 How do you suppose we implement this? 



Partition In Words 

 Partition(A, p, r): 

 Select an element to act as the “pivot” (which?) 

 Grow two regions, A[p..i] and A[j..r] 

All elements in A[p..i] <= pivot 

All elements in A[j..r] >= pivot 

 Increment i until A[i] >= pivot  

 Decrement j until A[j] <= pivot 

 Swap A[i] and A[j] 

 Repeat until i >= j  

 Return j 

Note: slightly different from 

book’s partition() 



Partition Code 

Partition(A, p, r) 

    x = A[p]; 

    i = p - 1; 

    j = r + 1; 

    while (TRUE) 

        repeat  

            j--; 

        until A[j] <= x; 

        repeat  

            i++; 

        until A[i] >= x; 

        if (i < j) 

            Swap(A, i, j); 

        else 

            return j; 

Illustrate on  

A = {5, 3, 2, 6, 4, 1, 3, 7}; 

What is the running time of 
partition()? 



Partition Code 

Partition(A, p, r) 

    x = A[p]; 

    i = p - 1; 

    j = r + 1; 

    while (TRUE) 

        repeat  

            j--; 

        until A[j] <= x; 

        repeat  

            i++; 

        until A[i] >= x; 

        if (i < j) 

            Swap(A, i, j); 

        else 

            return j; 

partition() runs in O(n) time 



Analyzing Quicksort 

 What will be the worst case for the algorithm? 

 Partition is always unbalanced 

 What will be the best case for the algorithm? 

 Partition is perfectly balanced 

 Which is more likely? 

 The latter, by far, except... 

 Will any particular input elicit the worst case? 

 Yes: Already-sorted input 



Analyzing Quicksort 

 In the worst case: 

T(1) = (1) 

T(n) = T(n - 1) + (n) 

 Works out to 

 T(n) = (n2) 

 



 Analyzing Quicksort 

 In the best case: 

T(n) = 2T(n/2) + (n) 

 What does this work out to? 

T(n) = (n lg n)  



 Improving Quicksort 

 The real liability of quicksort is that it runs in 

O(n2) on already-sorted input 

 Book discusses two solutions: 

 Randomize the input array, OR 

 Pick a random pivot element 

 How will these solve the problem? 

 By insuring that no particular input can be chosen 

to make quicksort run in O(n2) time 



Analyzing Quicksort: Average Case 

 Assuming random input, average-case running 

time is much closer to O(n lg n) than O(n2) 

 First, a more intuitive explanation/example: 

 Suppose that partition() always produces a 9-to-1 

split.  This looks quite unbalanced! 

 The recurrence is thus: 

 T(n) = T(9n/10) + T(n/10) + n   

  How deep will the recursion go?  (draw it) 

Use n instead of O(n)  

for convenience (how?) 



Analyzing Quicksort: Average Case 

 Intuitively, a real-life run of quicksort will 

produce a mix of “bad” and “good” splits 

 Randomly distributed among the recursion tree 

 Pretend for intuition that they alternate between 

best-case (n/2 : n/2) and worst-case (n-1 : 1) 

 What happens if we bad-split root node, then 

good-split the resulting size (n-1) node? 



Analyzing Quicksort: Average Case 

 Intuitively, a real-life run of quicksort will 

produce a mix of “bad” and “good” splits 

 Randomly distributed among the recursion tree 

 Pretend for intuition that they alternate between 

best-case (n/2 : n/2) and worst-case (n-1 : 1) 

 What happens if we bad-split root node, then 

good-split the resulting size (n-1) node? 

We fail English 



Analyzing Quicksort: Average Case 

 Intuitively, a real-life run of quicksort will 

produce a mix of “bad” and “good” splits 

 Randomly distributed among the recursion tree 

 Pretend for intuition that they alternate between 

best-case (n/2 : n/2) and worst-case (n-1 : 1) 

 What happens if we bad-split root node, then 

good-split the resulting size (n-1) node? 

We end up with three subarrays, size 1, (n-1)/2, (n-1)/2 

Combined cost of splits = n + n -1 = 2n -1 = O(n) 

No worse than if we had good-split the root node! 



Analyzing Quicksort: Average Case 

 Intuitively, the O(n) cost of a bad split  

(or 2 or 3 bad splits) can be absorbed  

into the O(n) cost of each good split 

 Thus running time of alternating bad and good 

splits is still O(n lg n), with slightly higher 

constants 

 How can we be more rigorous? 



Analyzing Quicksort: Average Case 

 For simplicity, assume: 

 All inputs distinct (no repeats) 

 Slightly different partition() procedure 

partition around a random element, which is not 

included in subarrays 

all splits (0:n-1, 1:n-2, 2:n-3, … , n-1:0) equally likely 

 What is the probability of a particular split 

happening? 

 Answer: 1/n 



Analyzing Quicksort: Average Case 

 So partition generates splits  

 (0:n-1,  1:n-2,  2:n-3, … ,  n-2:1,  n-1:0)  

each with probability 1/n 

 If T(n) is the expected running time, 

 

 

 What is each term under the summation for? 

 What is the (n) term for?  
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Analyzing Quicksort: Average Case 

 So… 

 

 

 

 

 

 Note: this is just like the book’s recurrence (p166), 

except that the summation starts with k=0 

 We’ll take care of that in a second  
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Write it on  

the board 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

 Assume that the inductive hypothesis holds 

 Substitute it in for some value < n 

 Prove that it follows for n 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

What’s the answer? 

 Assume that the inductive hypothesis holds 

 Substitute it in for some value < n 

 Prove that it follows for n 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

T(n) = O(n lg n) 

 Assume that the inductive hypothesis holds 

 Substitute it in for some value < n 

 Prove that it follows for n 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

T(n) = O(n lg n) 

 Assume that the inductive hypothesis holds 

What’s the inductive hypothesis? 

 Substitute it in for some value < n 

 Prove that it follows for n 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

T(n) = O(n lg n) 

 Assume that the inductive hypothesis holds 

T(n)  an lg n + b   for some constants a and b 

 Substitute it in for some value < n 

 Prove that it follows for n 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

T(n) = O(n lg n) 

 Assume that the inductive hypothesis holds 

T(n)  an lg n + b   for some constants a and b 

 Substitute it in for some value < n 

What value? 

 Prove that it follows for n 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

T(n) = O(n lg n) 

 Assume that the inductive hypothesis holds 

T(n)  an lg n + b   for some constants a and b 

 Substitute it in for some value < n 

The value k in the recurrence 

 Prove that it follows for n 



Analyzing Quicksort: Average Case 

 We can solve this recurrence using the dreaded 

substitution method 

 Guess the answer 

T(n) = O(n lg n) 

 Assume that the inductive hypothesis holds 

T(n)  an lg n + b   for some constants a and b 

 Substitute it in for some value < n 

The value k in the recurrence 

 Prove that it follows for n 

Grind through it…  



Note: leaving the same 

recurrence as the book 

What are we doing here? 

Analyzing Quicksort: Average Case 
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nT The recurrence to be solved 

What are we doing here? 

What are we doing here? 

Plug in inductive hypothesis 

Expand out the k=0 case 

2b/n is just a constant,  

so fold it into (n) 



What are we doing here? 

What are we doing here? 

Evaluate the summation:  

b+b+…+b = b (n-1) 

The recurrence to be solved 

Since n-1<n, 2b(n-1)/n < 2b 

Analyzing Quicksort: Average Case 
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What are we doing here? Distribute the summation 

This summation gets its own set of slides later 



How did we do this? 
Pick a large enough that 

an/4 dominates (n)+b  

What are we doing here? 
Remember, our goal is to get 

T(n)  an lg n + b 

What the hell? We’ll prove this later 

What are we doing here? Distribute the (2a/n) term 

The recurrence to be solved 

Analyzing Quicksort: Average Case 
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Analyzing Quicksort: Average Case 

 So T(n)  an lg n + b  for certain a and b 

 Thus the induction holds 

 Thus T(n) = O(n lg n) 

 Thus quicksort runs in O(n lg n) time on average 

(phew!) 

 Oh yeah, the summation…  



What are we doing here? 
The lg k in the second term 

is bounded by lg n 

Tightly Bounding  

The Key Summation 
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What are we doing here? 
Move the lg n outside the 

summation 

What are we doing here? 
Split the summation for a 

tighter bound 



The summation bound so far 

Tightly Bounding 

The Key Summation 
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What are we doing here? 
The lg k in the first term is 

bounded by lg n/2 

What are we doing here? lg n/2 = lg n - 1 

What are we doing here? 
Move (lg n - 1) outside the 

summation 



The summation bound so far 

Tightly Bounding 

The Key Summation 

 
 

 

   

 

 

   




















































 








12

1

12

1

1

1

1

2

12

1

12

1

1

2

12

1

1

1

2

)(1
lg

lg

lglg

lg1lglg

n

k

n

k

n

k

n

nk

n

k

n

k

n

nk

n

k

n

k

k
nn

n

kkn

knkkn

knknkk

What are we doing here? Distribute the (lg n - 1) 

What are we doing here? 
The summations overlap in  

range; combine them 

What are we doing here? The Guassian series 



The summation bound so far 

Tightly Bounding  

The Key Summation 
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What are we doing here? 
Rearrange first term, place 

upper bound on second 

What are we doing? X Guassian series 

What are we doing? 
Multiply it  

all out 



Tightly Bounding  

The Key Summation 

 

!!Done!
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