Algorithms

Quicksort



Homework 2

e Assigned today, due next Wednesday
e Will be on web page shortly after class

e (GO over now



Review: Quicksort

e Sorts 1n place
e Sorts O(n Ig n) 1n the average case

e Sorts O(n?) in the worst case
= But 1n practice, it’s quick

m And the worst case doesn’t happen often (but more
on this later...)



Quicksort

e Another divide-and-conquer algorithm

m The array A[p..r] 1s partitioned 1nto two non-
empty subarrays A[p..q] and A[g+1..1]
¢ Invariant: All elements in A[p..q] are less than all
elements in A[q+1..r]
m The subarrays are recursively sorted by calls to
quicksort

m Unlike merge sort, no combining step: two
subarrays form an already-sorted array



Quicksort Code

Quicksort (A, p, r)
{
if (p < r)
{
q = Partition(A, p, r);
Quicksort (A, p, 9);
Quicksort (A, g+l, r);



Partition

e (Clearly, all the action takes place in the
partition () function

m Rearranges the subarray in place

= End result:
¢ Two subarrays

& All values 1in first subarray < all values in second

= Returns the index of the “pivot” element
separating the two subarrays

e How do you suppose we implement this?



Partition In Words

e Partition(A, p, r):
m Select an element to act as the “pivot” (which?)

m Grow two regions, A[p..1] and A[j..r]
¢ All elements 1n A[p..1] <= pivot
¢ All elements 1n A[j..r] >= p1vot

> m Increment 1 until A[1] >= p1vot
s Decrement j until A[j] <= pivot

m Swap AJ1] and A[j]
e . Note: slightly different from
— = Repeat until 1 >= book’s partition ()

= Return j



Partition Code

Partition(A, p, r)

x = Alp];

] Illustrate on
i=p-1;

A = {5, 3, 2, 6, 4, 1/ 3/ 7};
j=r + 1;

while (TRUE)
repeat
J--=;
until A[j] <= x;
repeat What is the_ruijming time of
i+ partition()’?
until A[i] >= x;
if (i < j)
Swap (A, 1, 3j);
else

return j;



Partition Code

Partition (A, p, r)
x = Alpl;
i=p-1;
j=r + 1;
while (TRUE)
repeat
J--;
until A[]] <= x;
repeat partition () runsin O(n) time
i++;
until A[i] >= x;
if (1 < j)
Swap (A, i, j);
else

return j;



Analyzing Quicksort

e What will be the worst case for the algorithm?

m Partition 1s always unbalanced

e What will be the best case for the algorithm?

m Partition 1s perfectly balanced
e Which is more likely?
m The latter, by far, except...

e Will any particular input elicit the worst case?
m Yes: Already-sorted input



Analyzing Quicksort

e In the worst case:
T(1) =06(1)
Tn)=Tn-1)+ O(n)

e Works out to

T(n) = O(n?)



Analyzing Quicksort

e In the best case:
T(n) = 2T(n/2) + O(n)

e What does this work out to?
T(n) =O(n lgn)



Improving Quicksort

e The real lability of quicksort 1s that 1t runs in
O(n?) on already-sorted input
e Book discusses two solutions:

m Randomize the input array, OR

m Pick a random pivot element

e How will these solve the problem?

= By insuring that no particular input can be chosen
to make quicksort run in O(n?) time



Analyzing Quicksort: Average Case

e Assuming random input, average-case running
time is much closer to O(n Ig n) than O(n?)

e First, a more intuitive explanation/example:

m Suppose that partition() always produces a 9-to-1
split. This looks quite unbalanced!

) The FRETEne ls thus Use n instead of O(n)
T(n) — T(9Il/10) + T(H/IO) -+ n / for convenience (how?)

m How deep will the recursion go? (draw 1t)



Analyzing Quicksort: Average Case

e Intuitively, a real-life run of quicksort will
produce a mix of “bad” and “good” splits
m Randomly distributed among the recursion tree

= Pretend for intuition that they alternate between
best-case (n/2 : n/2) and worst-case (n-1 : 1)

m What happens if we bad-split root node, then
good-split the resulting size (n-1) node?



Analyzing Quicksort: Average Case

e Intuitively, a real-life run of quicksort will
produce a mix of “bad” and “good” splits
m Randomly distributed among the recursion tree

= Pretend for intuition that they alternate between
best-case (n/2 : n/2) and worst-case (n-1 : 1)

m What happens if we bad-split root node, then
good-split the resulting size (n-1) node?
+ We fail English



Analyzing Quicksort: Average Case

e Intuitively, a real-life run of quicksort will
produce a mix of “bad” and “good” splits

m Randomly distributed among the recursion tree

= Pretend for intuition that they alternate between
best-case (n/2 : n/2) and worst-case (n-1 : 1)

m What happens if we bad-split root node, then
good-split the resulting size (n-1) node?
¢ We end up with three subarrays, size 1, (n-1)/2, (n-1)/2
¢ Combined cost of splits=n+n -1 =2n -1 =0(n)
+ No worse than 1f we had good-split the root node!



Analyzing Quicksort: Average Case

e Intuitively, the O(n) cost of a bad split
(or 2 or 3 bad splits) can be absorbed
into the O(n) cost of each good split

e Thus running time of alternating bad and good
splits 1s still O(n 1g n), with slightly higher
constants

e How can we be more rigorous?



Analyzing Quicksort: Average Case

e For simplicity, assume:
= All inputs distinct (no repeats)
m Slightly different partition () procedure

# partition around a random element, which 1s not
included in subarrays

¢ all splits (0:n-1, 1:n-2, 2:n-3, ..., n-1:0) equally likely
e What is the probability of a particular split
happening?

e Answer: 1/n



Analyzing Quicksort: Average Case

e So partition generates splits
(On-1, 1:n-2, 2:n-3, ..., n-2:1, n-1:0)
each with probability 1/n

e [f T(n) 1s the expected running time,

T(n)= Z[T( )+ T(n—1-k)|+06(n)

e What is each term under the summation for?
e What is the O(n) term for?



Analyzing Quicksort: Average Case

® So... .
n)= LS [7(k)+ T(n—1- )]+ ©(n)
N k=0
2 n—1 Write it on
— —ZT(k)+ @(n) “—  the board
N k=0

m Note: this is just like the book’s recurrence (p166),
except that the summation starts with k=0

m We’ll take care of that in a second



Analyzing Quicksort: Average Case

e We can solve this recurrence using the dreaded
substitution method

m Guess the answer
m Assume that the inductive hypothesis holds
m Substitute 1t in for some value <n

m Prove that it follows for n



Analyzing Quicksort: Average Case

e We can solve this recurrence using the dreaded
substitution method

m Guess the answer
& What’s the answer?

= Assume that the inductive hypothesis holds
= Substitute it in for some value <n

m Prove that it follows for n



Analyzing Quicksort: Average Case

e We can solve this recurrence using the dreaded
substitution method
= Guess the answer
¢T(n)=0O(nlgn)
= Assume that the inductive hypothesis holds
= Substitute 1t in for some value <n

m Prove that it follows for n



Analyzing Quicksort: Average Case

e We can solve this recurrence using the dreaded
substitution method
m Guess the answer
¢ T(n)=0(nlgn)
= Assume that the inductive hypothesis holds
& What’s the inductive hypothesis?
= Substitute 1t in for some value <n

m Prove that it follows for n



Analyzing Quicksort: Average Case

e We can solve this recurrence using the dreaded
substitution method
m Guess the answer
¢ T(n)=0(nlg n)
= Assume that the inductive hypothesis holds
oT(n)<anlgn+ b for some constants a and b

m Substitute it in for some value <n

m Prove that it follows for n



Analyzing Quicksort: Average Case

e We can solve this recurrence using the dreaded
substitution method
m Guess the answer
¢ T(n)=0(nlg n)
= Assume that the inductive hypothesis holds
oT(n)<anlgn+ b for some constants a and b

m Substitute it in for some value <n
& What value?

m Prove that it follows for n



Analyzing Quicksort: Average Case

e We can solve this recurrence using the dreaded
substitution method
m Guess the answer
¢ T(n)=0(nlg n)
= Assume that the inductive hypothesis holds
oT(n)<anlgn+ b for some constants a and b

m Substitute it in for some value <n

¢ The value & in the recurrence

m Prove that it follows for n



Analyzing Quicksort: Average Case

e We can solve this recurrence using the dreaded
substitution method

= Guess the answer
¢ T(n)=0(nlg n)

= Assume that the inductive hypothesis holds
oT(n)<anlgn+ b for some constants a and b

= Substitute 1t in for some value <n
o The value & 1n the recurrence

m Prove that it follows for n
¢ Grind through 1it...



Analyzing Quicksort: Average Case

( ) Z T ( ( ) The recurrence to be solved

< % 2 (Cl k lg k+ b) @( ) Plug in inductive hypothesis
N k=0

n-1
b+ (Clk lg k + b) + @(n) Expand out the k=0 case

k=1

:lw

2 — Zb 2b/n is just a constant,
; Z (ak lg K+ b)+ - T ®( ) so fold it into &(n)
k=1

- ( klgk +b)+ @( ) Note: leaving the same

recurrence as the book
n -

[\.)



Analyzing Quicksort: Average Case

n—l
T(n) — g Z (Clk lg k + b) + @(n) The recurrence to be solved

n -

2 n—1 2 n—l
— Z ak lg k+— Z b + @(n) Distribute the summation

n = N j=

— 24 n§1: k lg k + 2b (I”l _ 1) + @(n)Evaluate the summation:
b+b+ooo+b = b (n-l)
n - n

28
< _a Z klg ki+2b+ @(n) Since n-1<n, 2b(n-1)/n < 2b
n k=1



Analyzing Quicksort: Average Case

n—1

( ) 261 Z k lg k 4+ 2b + @(n) The recurrence to be solved

n =

k=
261 (2 - lg N —— n j +2b+ ®(n) We’ll prove this later
n

= an lg n— Z n+2b+ ®(n) Distribute the (2a/n) term

A
= an lg n+b+ (@(n)—k b—— nj Remember, our goal is to get

4 T(n) <anlgn+b

< an lg n+b Pick a large enough that
o an/4 dominates &(n)+b



Analyzing Quicksort: Average Case

e SoT(n)<anlgn+ b for certain a and b
m Thus the induction holds
m Thus T(n) = O(n lg n)

m Thus quicksort runs in O(n Ig n) time on average
(phew!)

e Oh yeah, the summation...




Tightly Bounding
The Key Summation

[n/2]1 Split the summation for a
Zklgk = Zklgk+ Zklgk tighter bound
k=| n/2 |
’_n/2—|—1 n—1 The 1 ;
g k in the second term
< Zklgk+ Zklgn is bounded by 1g n
k=1 k=| n/2 |
| n/2]-1 L Move the Ig n outside the

— Z k lg k + lg n Z k summation



Tightly Bounding
The Key Summation

n—1 [n/2 -1 n—1
k 1g k< Z lg ko + lg n Z k The summation bound so far
k=1 k=1 k=| n/2 |
/2 |1 n_l The lg k in the first term is
< lg(n/2)+1gn Zk b;lungedby Ig :{/2
k=1 k= n/2 |
’—”/2 -1 n—l
— (lgn—1)+lgn Zk lgn/2=lgn-1
k=1 k= n/2 |

[n/2 -1 n—1 :
_ (lg 4 — 1) Z an lg - Z I i‘:z:;((llgol;- 1) outside the
= TS



Tightly Bounding
The Key Summation

n—l1 [n/2 -1
k lg < (lg n— 1) Z k + ]g 7 Z J The summation bound so far
= = =Ty

21 2]
— lgn Zk Zk+lgn Zk Distribute the (Ign - 1)
k=1

k=1 k=| n/2 |

/2 |1 The summations overlap in
= lg n k — Z k range; combine them
k=1

n—l

2

k=1 =
_ n/2 -1

= lg n( (n ;)(n)j — Z k The Guassian series

k=1



Tightly Bounding
The Key Summation

-1 _ 2]
k lg k< ((n 21)(71) j lg 7 — Z k The summation bound so far

k=1

n/2-1
< SDle—tlien— 3k
< l [ (n 1)] lg n— l (ﬁj(ﬁ — lj X Guassian series
2 2\ 2 )\ 2
1 1
< E(n lgn—nlg n)— gn + % z/l[lu;t;zl]t)lyit



Tightly Bounding
The Key Summation

ol 1 1 n
klok< —\n’len—nlen)l——n*+—
kz_; 5 2( 5 5 ) g 4
1, |
<—n'lgn——n"whenn=>?2
2 g

Done!!!



