
Algorithms

Quicksort

Homework 2

 Assigned today, due next Wednesday

 Will be on web page shortly after class

 Go over now

Review: Quicksort

 Sorts in place

 Sorts O(n lg n) in the average case

 Sorts O(n2) in the worst case

 But in practice, it’s quick

 And the worst case doesn’t happen often (but more

on this later…)

Quicksort

 Another divide-and-conquer algorithm

 The array A[p..r] is partitioned into two non-

empty subarrays A[p..q] and A[q+1..r]

 Invariant: All elements in A[p..q] are less than all

elements in A[q+1..r]

 The subarrays are recursively sorted by calls to

quicksort

 Unlike merge sort, no combining step: two

subarrays form an already-sorted array

Quicksort Code

Quicksort(A, p, r)

{

 if (p < r)

 {

 q = Partition(A, p, r);

 Quicksort(A, p, q);

 Quicksort(A, q+1, r);

 }

}

Partition

 Clearly, all the action takes place in the
partition() function

 Rearranges the subarray in place

 End result:

Two subarrays

All values in first subarray all values in second

 Returns the index of the “pivot” element

separating the two subarrays

 How do you suppose we implement this?

Partition In Words

 Partition(A, p, r):

 Select an element to act as the “pivot” (which?)

 Grow two regions, A[p..i] and A[j..r]

All elements in A[p..i] <= pivot

All elements in A[j..r] >= pivot

 Increment i until A[i] >= pivot

 Decrement j until A[j] <= pivot

 Swap A[i] and A[j]

 Repeat until i >= j

 Return j

Note: slightly different from

book’s partition()

Partition Code

Partition(A, p, r)

 x = A[p];

 i = p - 1;

 j = r + 1;

 while (TRUE)

 repeat

 j--;

 until A[j] <= x;

 repeat

 i++;

 until A[i] >= x;

 if (i < j)

 Swap(A, i, j);

 else

 return j;

Illustrate on

A = {5, 3, 2, 6, 4, 1, 3, 7};

What is the running time of
partition()?

Partition Code

Partition(A, p, r)

 x = A[p];

 i = p - 1;

 j = r + 1;

 while (TRUE)

 repeat

 j--;

 until A[j] <= x;

 repeat

 i++;

 until A[i] >= x;

 if (i < j)

 Swap(A, i, j);

 else

 return j;

partition() runs in O(n) time

Analyzing Quicksort

 What will be the worst case for the algorithm?

 Partition is always unbalanced

 What will be the best case for the algorithm?

 Partition is perfectly balanced

 Which is more likely?

 The latter, by far, except...

 Will any particular input elicit the worst case?

 Yes: Already-sorted input

Analyzing Quicksort

 In the worst case:

T(1) = (1)

T(n) = T(n - 1) + (n)

 Works out to

 T(n) = (n2)

 Analyzing Quicksort

 In the best case:

T(n) = 2T(n/2) + (n)

 What does this work out to?

T(n) = (n lg n)

 Improving Quicksort

 The real liability of quicksort is that it runs in

O(n2) on already-sorted input

 Book discusses two solutions:

 Randomize the input array, OR

 Pick a random pivot element

 How will these solve the problem?

 By insuring that no particular input can be chosen

to make quicksort run in O(n2) time

Analyzing Quicksort: Average Case

 Assuming random input, average-case running

time is much closer to O(n lg n) than O(n2)

 First, a more intuitive explanation/example:

 Suppose that partition() always produces a 9-to-1

split. This looks quite unbalanced!

 The recurrence is thus:

 T(n) = T(9n/10) + T(n/10) + n

 How deep will the recursion go? (draw it)

Use n instead of O(n)

for convenience (how?)

Analyzing Quicksort: Average Case

 Intuitively, a real-life run of quicksort will

produce a mix of “bad” and “good” splits

 Randomly distributed among the recursion tree

 Pretend for intuition that they alternate between

best-case (n/2 : n/2) and worst-case (n-1 : 1)

 What happens if we bad-split root node, then

good-split the resulting size (n-1) node?

Analyzing Quicksort: Average Case

 Intuitively, a real-life run of quicksort will

produce a mix of “bad” and “good” splits

 Randomly distributed among the recursion tree

 Pretend for intuition that they alternate between

best-case (n/2 : n/2) and worst-case (n-1 : 1)

 What happens if we bad-split root node, then

good-split the resulting size (n-1) node?

We fail English

Analyzing Quicksort: Average Case

 Intuitively, a real-life run of quicksort will

produce a mix of “bad” and “good” splits

 Randomly distributed among the recursion tree

 Pretend for intuition that they alternate between

best-case (n/2 : n/2) and worst-case (n-1 : 1)

 What happens if we bad-split root node, then

good-split the resulting size (n-1) node?

We end up with three subarrays, size 1, (n-1)/2, (n-1)/2

Combined cost of splits = n + n -1 = 2n -1 = O(n)

No worse than if we had good-split the root node!

Analyzing Quicksort: Average Case

 Intuitively, the O(n) cost of a bad split

(or 2 or 3 bad splits) can be absorbed

into the O(n) cost of each good split

 Thus running time of alternating bad and good

splits is still O(n lg n), with slightly higher

constants

 How can we be more rigorous?

Analyzing Quicksort: Average Case

 For simplicity, assume:

 All inputs distinct (no repeats)

 Slightly different partition() procedure

partition around a random element, which is not

included in subarrays

all splits (0:n-1, 1:n-2, 2:n-3, … , n-1:0) equally likely

 What is the probability of a particular split

happening?

 Answer: 1/n

Analyzing Quicksort: Average Case

 So partition generates splits

 (0:n-1, 1:n-2, 2:n-3, … , n-2:1, n-1:0)

each with probability 1/n

 If T(n) is the expected running time,

 What is each term under the summation for?

 What is the (n) term for?

1

0

1
1 n

k

nknTkT
n

nT

Analyzing Quicksort: Average Case

 So…

 Note: this is just like the book’s recurrence (p166),

except that the summation starts with k=0

 We’ll take care of that in a second

1

0

1

0

2

1
1

n

k

n

k

nkT
n

nknTkT
n

nT

Write it on

the board

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

 Assume that the inductive hypothesis holds

 Substitute it in for some value < n

 Prove that it follows for n

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

What’s the answer?

 Assume that the inductive hypothesis holds

 Substitute it in for some value < n

 Prove that it follows for n

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

T(n) = O(n lg n)

 Assume that the inductive hypothesis holds

 Substitute it in for some value < n

 Prove that it follows for n

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

T(n) = O(n lg n)

 Assume that the inductive hypothesis holds

What’s the inductive hypothesis?

 Substitute it in for some value < n

 Prove that it follows for n

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

T(n) = O(n lg n)

 Assume that the inductive hypothesis holds

T(n) an lg n + b for some constants a and b

 Substitute it in for some value < n

 Prove that it follows for n

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

T(n) = O(n lg n)

 Assume that the inductive hypothesis holds

T(n) an lg n + b for some constants a and b

 Substitute it in for some value < n

What value?

 Prove that it follows for n

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

T(n) = O(n lg n)

 Assume that the inductive hypothesis holds

T(n) an lg n + b for some constants a and b

 Substitute it in for some value < n

The value k in the recurrence

 Prove that it follows for n

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

T(n) = O(n lg n)

 Assume that the inductive hypothesis holds

T(n) an lg n + b for some constants a and b

 Substitute it in for some value < n

The value k in the recurrence

 Prove that it follows for n

Grind through it…

Note: leaving the same

recurrence as the book

What are we doing here?

Analyzing Quicksort: Average Case

1

1

1

1

1

1

1

0

1

0

lg
2

2
lg

2

lg
2

lg
2

2

n

k

n

k

n

k

n

k

n

k

nbkak
n

n
n

b
bkak

n

nbkakb
n

nbkak
n

nkT
n

nT The recurrence to be solved

What are we doing here?

What are we doing here?

Plug in inductive hypothesis

Expand out the k=0 case

2b/n is just a constant,

so fold it into (n)

What are we doing here?

What are we doing here?

Evaluate the summation:

b+b+…+b = b (n-1)

The recurrence to be solved

Since n-1<n, 2b(n-1)/n < 2b

Analyzing Quicksort: Average Case

 nbkk
n

a

nn
n

b
kk

n

a

nb
n

kak
n

nbkak
n

nT

n

k

n

k

n

k

n

k

n

k

2lg
2

)1(
2

lg
2

2
lg

2

lg
2

1

1

1

1

1

1

1

1

1

1

What are we doing here? Distribute the summation

This summation gets its own set of slides later

How did we do this?
Pick a large enough that

an/4 dominates (n)+b

What are we doing here?
Remember, our goal is to get

T(n) an lg n + b

What the hell? We’ll prove this later

What are we doing here? Distribute the (2a/n) term

The recurrence to be solved

Analyzing Quicksort: Average Case

bnan

n
a

bnbnan

nbn
a

nan

nbnnn
n

a

nbkk
n

a
nT

n

k

lg

4
lg

2
4

lg

2
8

1
lg

2

12

2lg
2

22

1

1

Analyzing Quicksort: Average Case

 So T(n) an lg n + b for certain a and b

 Thus the induction holds

 Thus T(n) = O(n lg n)

 Thus quicksort runs in O(n lg n) time on average

(phew!)

 Oh yeah, the summation…

What are we doing here?
The lg k in the second term

is bounded by lg n

Tightly Bounding

The Key Summation

1

2

12

1

1

2

12

1

1

2

12

1

1

1

lglg

lglg

lglglg

n

nk

n

k

n

nk

n

k

n

nk

n

k

n

k

knkk

nkkk

kkkkkk

What are we doing here?
Move the lg n outside the

summation

What are we doing here?
Split the summation for a

tighter bound

The summation bound so far

Tightly Bounding

The Key Summation

1

2

12

1

1

2

12

1

1

2

12

1

1

2

12

1

1

1

lg1lg

lg1lg

lg2lg

lglglg

n

nk

n

k

n

nk

n

k

n

nk

n

k

n

nk

n

k

n

k

knkn

knnk

knnk

knkkkk

What are we doing here?
The lg k in the first term is

bounded by lg n/2

What are we doing here? lg n/2 = lg n - 1

What are we doing here?
Move (lg n - 1) outside the

summation

The summation bound so far

Tightly Bounding

The Key Summation

12

1

12

1

1

1

1

2

12

1

12

1

1

2

12

1

1

1

2

)(1
lg

lg

lglg

lg1lglg

n

k

n

k

n

k

n

nk

n

k

n

k

n

nk

n

k

n

k

k
nn

n

kkn

knkkn

knknkk

What are we doing here? Distribute the (lg n - 1)

What are we doing here?
The summations overlap in

range; combine them

What are we doing here? The Guassian series

The summation bound so far

Tightly Bounding

The Key Summation

48

1
lglg

2

1

1
222

1
lg1

2

1

lg1
2

1

lg
2

)(1
lg

22

12

1

12

1

1

1

n
nnnnn

nn
nnn

knnn

kn
nn

kk

n

k

n

k

n

k

What are we doing here?
Rearrange first term, place

upper bound on second

What are we doing? X Guassian series

What are we doing?
Multiply it

all out

Tightly Bounding

The Key Summation

!!Done!

2when
8

1
lg

2

1

48

1
lglg

2

1
lg

22

22
1

1

nnnn

n
nnnnnkk

n

k

