Algorithms

Quicksort

Homework 2

- Assigned today, due next Wednesday
- Will be on web page shortly after class
- Go over now

Review: Quicksort

- Sorts in place
- Sorts $O(n \lg n)$ in the average case
- Sorts $O\left(n^{2}\right)$ in the worst case
- But in practice, it's quick
- And the worst case doesn't happen often (but more on this later...)

Quicksort

- Another divide-and-conquer algorithm
- The array $\mathrm{A}[\mathrm{p} . . \mathrm{r}]$ is partitioned into two nonempty subarrays $A[p . . q]$ and $A[q+1 . . r]$
- Invariant: All elements in $A[p . . q]$ are less than all elements in $\mathrm{A}[\mathrm{q}+1 . . \mathrm{r}]$
- The subarrays are recursively sorted by calls to quicksort
- Unlike merge sort, no combining step: two subarrays form an already-sorted array

Quicksort Code

Quicksort(A, p, r)
$\{$

$$
\begin{aligned}
& \text { if }(p<r) \\
& \{
\end{aligned}
$$

$q=\operatorname{Partition(A,p,r);~}$
Quicksort(A, p, q) ;
Quicksort(A, q+1, r);
\}
\}

Partition

- Clearly, all the action takes place in the partition() function
- Rearranges the subarray in place
- End result:
- Two subarrays
- All values in first subarray \leq all values in second
- Returns the index of the "pivot" element separating the two subarrays
- How do you suppose we implement this?

Partition In Words

- Partition(A, p, r):
- Select an element to act as the "pivot" (which?)
- Grow two regions, $\mathrm{A}[\mathrm{p} . . \mathrm{i}]$ and $\mathrm{A}[\mathrm{j} . . \mathrm{r}]$
- All elements in $\mathrm{A}[\mathrm{p} . \mathrm{i}]<=$ pivot
- All elements in $\mathrm{A}[\mathrm{j} . \mathrm{r}]>=$ pivot
\rightarrow Increment i until A[i]>=pivot
- Decrement juntil A[j] <= pivot
- Swap A[i] and A[j]
- Repeat until $\mathrm{i}>=\mathrm{j}$

Note: slightly different from book's partition ()

- Return j

Partition Code

```
Partition(A, p, r)
        x = A[p];
    i = p - 1;
    j = r + 1;
    while (TRUE)
        repeat
        j--;
        until A[j] <= x;
        repeat
        i++;
    until A[i] >= x;
    if (i < j)
        Swap(A, i, j);
        else
        return j;
```


Partition Code

```
Partition(A, p, r)
    x = A[p];
    i = p - 1;
    j = r + 1;
    while (TRUE)
        repeat
        j--;
    until A[j] <= x;
    repeat
        i++;
    until A[i] >= x;
    if (i < j)
        Swap(A, i, j);
        else
        return j;
```


Analyzing Quicksort

- What will be the worst case for the algorithm?
- Partition is always unbalanced
- What will be the best case for the algorithm?
- Partition is perfectly balanced
- Which is more likely?
- The latter, by far, except...
- Will any particular input elicit the worst case?
- Yes: Already-sorted input

Analyzing Quicksort

- In the worst case:

$$
\begin{aligned}
& \mathrm{T}(1)=\Theta(1) \\
& \mathrm{T}(\mathrm{n})=T(\mathrm{n}-1)+\Theta(\mathrm{n})
\end{aligned}
$$

- Works out to

$$
T(n)=\Theta\left(n^{2}\right)
$$

Analyzing Quicksort

- In the best case:

$$
\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n})
$$

- What does this work out to?

$$
T(n)=\Theta(n \lg n)
$$

Improving Quicksort

- The real liability of quicksort is that it runs in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ on already-sorted input
- Book discusses two solutions:
- Randomize the input array, OR
- Pick a random pivot element
- How will these solve the problem?
- By insuring that no particular input can be chosen to make quicksort run in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time

Analyzing Quicksort: Average Case

- Assuming random input, average-case running time is much closer to $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ than $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- First, a more intuitive explanation/example:
- Suppose that partition() always produces a 9-to-1 split. This looks quite unbalanced!
- The recurrence is thus:

$$
\mathrm{T}(\mathrm{n})=\mathrm{T}(9 \mathrm{n} / 10)+\mathrm{T}(\mathrm{n} / 10)+\mathrm{n}
$$

- How deep will the recursion go? (draw it)

Analyzing Quicksort: Average Case

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
- Randomly distributed among the recursion tree
- Pretend for intuition that they alternate between best-case ($\mathrm{n} / 2: \mathrm{n} / 2$) and worst-case ($\mathrm{n}-1: 1$)
- What happens if we bad-split root node, then good-split the resulting size (n-1) node?

Analyzing Quicksort: Average Case

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
- Randomly distributed among the recursion tree
- Pretend for intuition that they alternate between best-case ($\mathrm{n} / 2: \mathrm{n} / 2$) and worst-case ($\mathrm{n}-1: 1$)
- What happens if we bad-split root node, then good-split the resulting size (n-1) node?
- We fail English

Analyzing Quicksort: Average Case

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
- Randomly distributed among the recursion tree
- Pretend for intuition that they alternate between best-case ($\mathrm{n} / 2: \mathrm{n} / 2$) and worst-case ($\mathrm{n}-1: 1$)
- What happens if we bad-split root node, then good-split the resulting size (n-1) node?
- We end up with three subarrays, size $1,(\mathrm{n}-1) / 2,(\mathrm{n}-1) / 2$
- Combined cost of splits $=\mathrm{n}+\mathrm{n}-1=2 \mathrm{n}-1=\mathrm{O}(\mathrm{n})$
- No worse than if we had good-split the root node!

Analyzing Quicksort: Average Case

- Intuitively, the $\mathrm{O}(\mathrm{n})$ cost of a bad split (or 2 or 3 bad splits) can be absorbed into the $\mathrm{O}(\mathrm{n})$ cost of each good split
- Thus running time of alternating bad and good splits is still $O(n \lg n)$, with slightly higher constants
- How can we be more rigorous?

Analyzing Quicksort: Average Case

- For simplicity, assume:
- All inputs distinct (no repeats)
- Slightly different partition() procedure
\bullet partition around a random element, which is not included in subarrays
- all splits (0:n-1, 1:n-2, 2:n-3, .., n-1:0) equally likely
- What is the probability of a particular split happening?
- Answer: 1/n

Analyzing Quicksort: Average Case

- So partition generates splits

$$
(0: n-1,1: n-2,2: n-3, \ldots, n-2: 1, n-1: 0)
$$

each with probability $1 / n$

- If $T(n)$ is the expected running time,

$$
T(n)=\frac{1}{n} \sum_{k=0}^{n-1}[T(k)+T(n-1-k)]+\Theta(n)
$$

- What is each term under the summation for?
- What is the $\Theta(n)$ term for?

Analyzing Quicksort: Average Case

- So...

$$
T(n)=\frac{1}{n} \sum_{k=0}^{n-1}[T(k)+T(n-1-k)]+\Theta(n)
$$

$$
=\frac{2}{n} \sum_{k=0}^{n-1} T(k)+\Theta(n) \underbrace{\text { Write it on }}_{\text {the board }}
$$

- Note: this is just like the book's recurrence (p166), except that the summation starts with $\mathrm{k}=0$
- We'll take care of that in a second

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- Assume that the inductive hypothesis holds
- Substitute it in for some value $<\mathrm{n}$
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
-What's the answer?
- Assume that the inductive hypothesis holds
- Substitute it in for some value $<\mathrm{n}$
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- Assume that the inductive hypothesis holds
- Substitute it in for some value $<\mathrm{n}$
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- Assume that the inductive hypothesis holds
- What's the inductive hypothesis?
- Substitute it in for some value $<\mathrm{n}$
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $\mathrm{T}(n)=\mathrm{O}(n \lg n)$
- Assume that the inductive hypothesis holds
$-\mathrm{T}(n) \leq a n \lg n+b$ for some constants a and b
- Substitute it in for some value $<\mathrm{n}$
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $\mathrm{T}(n)=\mathrm{O}(n \lg n)$
- Assume that the inductive hypothesis holds
$-\mathrm{T}(n) \leq a n \lg n+b$ for some constants a and b
- Substitute it in for some value $<\mathrm{n}$
-What value?
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $\mathrm{T}(n)=\mathrm{O}(n \lg n)$
- Assume that the inductive hypothesis holds
$-\mathrm{T}(n) \leq a n \lg n+b$ for some constants a and b
- Substitute it in for some value $<\mathrm{n}$
- The value k in the recurrence
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $\mathrm{T}(n)=\mathrm{O}(n \lg n)$
- Assume that the inductive hypothesis holds
$-\mathrm{T}(n) \leq a n \lg n+b$ for some constants a and b
- Substitute it in for some value $<\mathrm{n}$
- The value k in the recurrence
- Prove that it follows for n
-Grind through it...

Analyzing Quicksort: Average Case

$$
T(n)=\frac{2}{n} \sum_{k=0}^{n-1} T(k)+\Theta(n)
$$

The recurrence to be solved

$$
\leq \frac{2}{n} \sum_{k=0}^{n-1}(a k \lg k+b)+\Theta(n)
$$

$\leq \frac{2}{n}\left[b+\sum_{k=1}^{n-1}(a k \lg k+b)\right]+\Theta(n)$ Expand out the $k=0$ case
$=\frac{2}{n} \sum_{k=1}^{n-1}(a k \lg k+b)+\frac{2 b}{n}+\Theta(n) \begin{aligned} & 2 b / n \text { is just a constant, } \\ & \text { so fold it into } \Theta(n)\end{aligned}$
$=\frac{2}{n} \sum_{k=1}^{n-1}(a k \lg k+b)+\Theta(n)$
Note: leaving the same recurrence as the book

Analyzing Quicksort: Average Case

$$
\begin{array}{rlr}
T(n) & =\frac{2}{n} \sum_{k=1}^{n-1}(a k \lg k+b)+\Theta(n) & \text { The recurrence to be solved } \\
& =\frac{2}{n} \sum_{k=1}^{n-1} a k \lg k+\frac{2}{n} \sum_{k=1}^{n-1} b+\Theta(n) & \text { Distribute the summation } \\
& =\frac{2 a}{n} \sum_{k=1}^{n-1} k \lg k+\frac{2 b}{n}(n-1)+\Theta(n) \begin{array}{l}
\text { Evaluate the summation: } \\
b+b+\ldots+b=b(n-1)
\end{array} \\
& \leq \frac{2 a^{n}}{n} k \lg k+2 b+\Theta(n) & \text { Since } n-1<n, 2 b(n-1) / n<2 b
\end{array}
$$

This summation gets its own set of slides later

Analyzing Quicksort: Average Case

$$
\begin{array}{rlr}
T(n) & \leq \frac{2 a}{n} \sum_{k=1}^{n-1} k \lg k+2 b+\Theta(n) & \text { The recurrence to be solved } \\
& \leq \frac{2 a}{n}\left(\frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}\right)+2 b+\Theta(n) \text { We'll prove this later } \\
& =\text { an } \lg n-\frac{a}{4} n+2 b+\Theta(n) \quad & \text { Distribute the }(2 a / n) \text { term } \\
& =\text { an } \lg n+b+\left(\Theta(n)+b-\frac{a}{4} n\right) \begin{array}{l}
\text { Remember, our goal is to get } \\
T(n) \leq \text { an } \lg n+b \\
\text { Pick a large enough that } \\
\text { an/4 dominates } \Theta(n)+b
\end{array} \\
& \leq \text { an } \lg n+b &
\end{array}
$$

Analyzing Quicksort: Average Case

- So $\mathrm{T}(n) \leq a n \lg n+b$ for certain a and b
- Thus the induction holds
- Thus $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- Thus quicksort runs in $O(n \lg n)$ time on average (phew!)
- Oh yeah, the summation...

Tightly Bounding The Key Summation

$\sum_{k=1}^{n-1} k \lg k=\sum_{k=1}^{\Gamma[n / 2-1} k \lg k+\sum_{k=[n / 2\rceil}^{n-1} k \lg k$ $\leq \sum_{k=1}^{[n / 2]-1} k \lg k+\sum_{k=n / n / 7}^{n-1} k \lg n$
$=\sum_{k=1}^{\lceil n / 27-1} k \lg k+\lg n \sum_{k=n / 2\rceil}^{n-1} k$

Split the summation for a tighter bound

The $\lg k$ in the second term is bounded by $\lg n$

Move the $\lg n$ outside the summation

Tightly Bounding The Key Summation

$\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{\lceil m / 2-1} k \lg k+\lg n \sum_{k=n / 2\rceil}^{n-1} k$

$$
\begin{aligned}
& \leq \sum_{k=1}^{\lceil n / 2\rceil-1} k \lg (n / 2)+\lg n \sum_{k=[n / 2\rceil}^{n-1} k \begin{array}{l}
\text { The } \lg k \text { in the first term is } \\
\text { bounded } \operatorname{lng} \lg n / 2
\end{array} \\
& =\sum_{k=1}^{[n / 27-1} k(\lg n-1)+\lg n \sum_{k=[n / 2\rceil}^{n-1} k \lg n / 2=\lg n-1 \\
& =(\lg n-1) \sum_{k=1}^{\lceil n / 2\rceil-1} k+\lg n \sum_{k=[n / 2\rceil}^{n-1} k \begin{array}{l}
\text { Move (} \lg n-1) \text { outside the } \\
\text { summation }
\end{array}
\end{aligned}
$$

Tightly Bounding The Key Summation

$$
\begin{aligned}
& \sum_{k=1}^{n-1} k \lg k \leq(\lg n-1) \sum_{k=1}^{\lceil n / 2\rceil-1} k+\lg n \sum_{k=\lceil n / 2\rceil}^{n-1} k \quad \text { The summation bound so far } \\
& =\lg n \sum_{k=1}^{\lceil n / 2\rceil-1} k-\sum_{k=1}^{\lceil n / 2\rceil-1} k+\lg n \sum_{k=\lceil n / 2\rceil}^{n-1} k \text { Distribute the }(\lg n-1) \\
& =\lg n \sum_{k=1}^{n-1} k-\sum_{k=1}^{\lceil n / 2\rceil-1} k \\
& =\lg n\left(\frac{(n-1)(n)}{2}\right)-\sum_{k=1}^{\lceil n / 2\rceil-1} k \quad \text { The Guassian series }
\end{aligned}
$$

Tightly Bounding The Key Summation

$$
\begin{aligned}
\sum_{k=1}^{n-1} k \lg k & \leq\left(\frac{(n-1)(n)}{2}\right) \lg n-\sum_{k=1}^{\lceil n / 2\rceil-1} k \quad \text { The summation bound so far } \\
& \leq \frac{1}{2}[n(n-1)] \lg n-\sum_{k=1}^{n / 2-1} k \quad \begin{array}{l}
\text { Rearrange first term, place } \\
\text { upper bound on second }
\end{array} \\
& \leq \frac{1}{2}[n(n-1)] \lg n-\frac{1}{2}\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right) X \text { Guassian series } \\
& \leq \frac{1}{2}\left(n^{2} \lg n-n \lg n\right)-\frac{1}{8} n^{2}+\frac{n}{4} \quad \begin{array}{l}
\text { Multiply it } \\
\text { all out }
\end{array}
\end{aligned}
$$

Tightly Bounding The Key Summation

$$
\begin{aligned}
\sum_{k=1}^{n-1} k \lg k & \leq \frac{1}{2}\left(n^{2} \lg n-n \lg n\right)-\frac{1}{8} n^{2}+\frac{n}{4} \\
& \leq \frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2} \text { when } n \geq 2
\end{aligned}
$$

Done!!!

