Algorithms

Quicksort

Homework 2

- Assigned today, due next Wednesday
- Will be on web page shortly after class
- Go over now

Review: Quicksort

- Sorts in place
- Sorts O(n lg n) in the average case
- Sorts $O(n^2)$ in the worst case
 - But in practice, it's quick
 - And the worst case doesn't happen often (but more on this later...)

Quicksort

- Another divide-and-conquer algorithm
 - The array A[p..r] is *partitioned* into two nonempty subarrays A[p..q] and A[q+1..r]
 - Invariant: All elements in A[p..q] are less than all elements in A[q+1..r]
 - The subarrays are recursively sorted by calls to quicksort
 - Unlike merge sort, no combining step: two subarrays form an already-sorted array

Quicksort Code

```
Quicksort(A, p, r)
{
    if (p < r)
    {
        q = Partition(A, p, r);
        Quicksort(A, p, q);
        Quicksort(A, q+1, r);
    }
```

Partition

- Clearly, all the action takes place in the **partition()** function
 - Rearranges the subarray in place
 - End result:
 - Two subarrays
 - All values in first subarray \leq all values in second
 - Returns the index of the "pivot" element separating the two subarrays

• How do you suppose we implement this?

Partition In Words

- Partition(A, p, r):
 - Select an element to act as the "pivot" (which?)
 - Grow two regions, A[p..i] and A[j..r]
 - All elements in A[p..i] <= pivot</p>
 - ◆ All elements in A[j..r] >= pivot
- → Increment i until A[i] >= pivot
 - Decrement j until A[j] <= pivot</p>
 - Swap A[i] and A[j]
 - Repeat until i >= j
 - Return j

Note: slightly different from book's partition()

Partition Code

```
Partition(A, p, r)
    x = A[p];
                                       Illustrate on
    i = p - 1;
                              \mathbf{A} = \{5, 3, 2, 6, 4, 1, 3, 7\};
    j = r + 1;
    while (TRUE)
         repeat
             j--;
        until A[j] <= x;</pre>
                                         What is the running time of
         repeat
                                            partition()?
             i++;
        until A[i] >= x;
         if (i < j)
             Swap(A, i, j);
         else
             return j;
```

Partition Code

```
Partition(A, p, r)
    \mathbf{x} = \mathbf{A}[\mathbf{p}];
     i = p - 1;
     j = r + 1;
    while (TRUE)
          repeat
               j--;
         until A[j] <= x;</pre>
                                          partition() runs in O(n) time
          repeat
               i++;
         until A[i] >= x;
          if (i < j)
               Swap(A, i, j);
          else
               return j;
```

Analyzing Quicksort

- What will be the worst case for the algorithm?
 - Partition is always unbalanced
- What will be the best case for the algorithm?
 - Partition is perfectly balanced
- Which is more likely?
 - The latter, by far, except...
- Will any particular input elicit the worst case?
 - Yes: Already-sorted input

Analyzing Quicksort

• In the worst case:

 $T(1) = \Theta(1)$ $T(n) = T(n - 1) + \Theta(n)$

- Works out to
 - $T(n) = \Theta(n^2)$

Analyzing Quicksort

• In the best case:

 $T(n) = 2T(n/2) + \Theta(n)$

• What does this work out to?

 $T(n) = \Theta(n \lg n)$

Improving Quicksort

- The real liability of quicksort is that it runs in O(n²) on already-sorted input
- Book discusses two solutions:
 - Randomize the input array, OR
 - Pick a random pivot element
- *How will these solve the problem?*
 - By insuring that no particular input can be chosen to make quicksort run in O(n²) time

- Assuming random input, average-case running time is much closer to O(n lg n) than O(n²)
- First, a more intuitive explanation/example:
 - Suppose that partition() always produces a 9-to-1 split. This looks quite unbalanced!
 - The recurrence is thus: T(n) = T(9n/10) + T(n/10) + nUse n instead of O(n) for convenience (how?)
 - *How deep will the recursion go?* (draw it)

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
 - Randomly distributed among the recursion tree
 - Pretend for intuition that they alternate between best-case (n/2 : n/2) and worst-case (n-1 : 1)
 - What happens if we bad-split root node, then good-split the resulting size (n-1) node?

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
 - Randomly distributed among the recursion tree
 - Pretend for intuition that they alternate between best-case (n/2 : n/2) and worst-case (n-1 : 1)
 - What happens if we bad-split root node, then good-split the resulting size (n-1) node?
 - We fail English

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
 - Randomly distributed among the recursion tree
 - Pretend for intuition that they alternate between best-case (n/2 : n/2) and worst-case (n-1 : 1)
 - What happens if we bad-split root node, then good-split the resulting size (n-1) node?
 - We end up with three subarrays, size 1, (n-1)/2, (n-1)/2
 - Combined cost of splits = n + n 1 = 2n 1 = O(n)
 - No worse than if we had good-split the root node!

- Intuitively, the O(n) cost of a bad split (or 2 or 3 bad splits) can be absorbed into the O(n) cost of each good split
- Thus running time of alternating bad and good splits is still O(n lg n), with slightly higher constants
- How can we be more rigorous?

- For simplicity, assume:
 - All inputs distinct (no repeats)
 - Slightly different partition() procedure
 - partition around a random element, which is not included in subarrays
 - ◆ all splits (0:n-1, 1:n-2, 2:n-3, ..., n-1:0) equally likely
- What is the probability of a particular split happening?
- Answer: 1/n

- So partition generates splits (0:n-1, 1:n-2, 2:n-3, ..., n-2:1, n-1:0) each with probability 1/n
- If T(n) is the expected running time,

$$T(n) = \frac{1}{n} \sum_{k=0}^{n-1} \left[T(k) + T(n-1-k) \right] + \Theta(n)$$

• What is each term under the summation for?

• What is the $\Theta(n)$ term for?

• So...

$$T(n) = \frac{1}{n} \sum_{k=0}^{n-1} \left[T(k) + T(n-1-k) \right] + \Theta(n)$$

$$= \frac{2}{n} \sum_{k=0}^{n-1} T(k) + \Theta(n) \quad \qquad \text{Write it on} \\ \text{the board} \\ \text{the board} \\ \end{array}$$

- Note: this is just like the book's recurrence (p166), except that the summation starts with k=0
- We'll take care of that in a second

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - Assume that the inductive hypothesis holds
 - Substitute it in for some value < n</p>
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - ♦ What's the answer?
 - Assume that the inductive hypothesis holds
 - Substitute it in for some value < n</p>
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - $T(n) = O(n \lg n)$
 - Assume that the inductive hypothesis holds
 - Substitute it in for some value < n</p>
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - \bullet T(n) = O(n lg n)
 - Assume that the inductive hypothesis holds
 - What's the inductive hypothesis?
 - Substitute it in for some value < n</p>
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - \bullet T(n) = O(n lg n)
 - Assume that the inductive hypothesis holds
 - $T(n) \le an \lg n + b$ for some constants *a* and *b*
 - Substitute it in for some value < n</p>
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - \bullet T(n) = O(n lg n)
 - Assume that the inductive hypothesis holds
 - $T(n) \le an \lg n + b$ for some constants *a* and *b*
 - Substitute it in for some value < n</p>
 - ◆ What value?
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - $T(n) = O(n \lg n)$
 - Assume that the inductive hypothesis holds
 - $T(n) \le an \lg n + b$ for some constants *a* and *b*
 - Substitute it in for some value < n</p>
 - The value *k* in the recurrence
 - Prove that it follows for n

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - \bullet T(n) = O(n lg n)
 - Assume that the inductive hypothesis holds
 - $T(n) \le an \lg n + b$ for some constants *a* and *b*
 - Substitute it in for some value < n</p>
 - The value *k* in the recurrence
 - Prove that it follows for n
 - Grind through it...

Analyzing Quicksort: Average Case $T(n) = \frac{2}{n} \sum_{k=0}^{n-1} T(k) + \Theta(n)$ The recurrence to be solved $\leq \frac{2}{n} \sum_{n=1}^{n-1} \left(ak \lg k + b \right) + \Theta(n)$ Plug in inductive hypothesis $\leq \frac{2}{n} \left| b + \sum_{k=1}^{n-1} \left(ak \lg k + b \right) \right| + \Theta(n) \text{ Expand out the } k = 0 \text{ case}$ $= \frac{2}{n} \sum_{k=1}^{n-1} (ak \lg k + b) + \frac{2b}{n} + \Theta(n) \frac{2b/n \text{ is just a constant,}}{so \text{ fold it into } \Theta(n)}$ $=\frac{2}{n}\sum_{k=1}^{n-1}(ak \lg k+b)+\Theta(n)$ *Note: leaving the same* recurrence as the book

$$T(n) = \frac{2}{n} \sum_{k=1}^{n-1} (ak \lg k + b) + \Theta(n)$$
 The recurrence to be solved
$$= \frac{2}{n} \sum_{k=1}^{n-1} ak \lg k + \frac{2}{n} \sum_{k=1}^{n-1} b + \Theta(n)$$
 Distribute the summation
$$= \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + \frac{2b}{n} (n-1) + \Theta(n) \sum_{b+b+\ldots+b=b}^{Evaluate the summation:} b+b+\ldots+b=b (n-1)$$
$$\leq \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + 2b + \Theta(n)$$
 Since $n-1 < n, 2b(n-1)/n < 2b$

This summation gets its own set of slides later

$$T(n) \leq \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + 2b + \Theta(n)$$
 The recurrence to be solved
$$\leq \frac{2a}{n} \left(\frac{1}{2}n^2 \lg n - \frac{1}{8}n^2\right) + 2b + \Theta(n)$$
 We'll prove this later

$$= an \lg n - \frac{a}{4}n + 2b + \Theta(n)$$

Distribute the (2a/n) term

$$= an \lg n + b + \left(\Theta(n) + b - \frac{a}{4}n\right)$$

$$\leq an \lg n + b$$

Remember, our goal is to get $T(n) \le an \lg n + b$

Pick a large enough that an/4 dominates $\Theta(n)+b$

- So $T(n) \le an \lg n + b$ for certain *a* and *b*
 - Thus the induction holds
 - Thus $T(n) = O(n \lg n)$
 - Thus quicksort runs in O(n lg n) time on average (phew!)
- Oh yeah, the summation...

$$\sum_{k=1}^{n-1} k \lg k = \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg k + \sum_{k=\lceil n/2 \rceil}^{n-1} k \lg k$$
$$\leq \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg k + \sum_{k=\lceil n/2 \rceil}^{n-1} k \lg n$$
$$= \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

Split the summation for a tighter bound

The lg k in the second term is bounded by lg n

Move the lg *n outside the summation*

$$\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$\leq \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg (n/2) + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$
The summation bound so far

$$= \sum_{k=1}^{\lceil n/2 \rceil - 1} k \lg (n/2) + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$= \sum_{k=1}^{\lceil n/2 \rceil - 1} k (\lg n - 1) + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k \lg n/2 = \lg n - 1$$

$$= (\lg n - 1) \sum_{k=1}^{\lceil n/2 \rceil - 1} k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$
Move (lg n - 1) outside the summation

$$\sum_{k=1}^{n-1} k \lg k \le (\lg n-1) \sum_{k=1}^{\lceil n/2 \rceil -1} k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$= \lg n \sum_{k=1}^{\lceil n/2 \rceil -1} k - \sum_{k=1}^{\lceil n/2 \rceil -1} k + \lg n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$= \lg n \sum_{k=1}^{n-1} k - \sum_{k=1}^{\lceil n/2 \rceil -1} k$$

$$= \lg n \left(\frac{(n-1)(n)}{2} \right) - \sum_{k=1}^{\lceil n/2 \rceil -1} k$$
The Guassian series

$$\sum_{k=1}^{n-1} k \lg k \le \frac{1}{2} \left(n^2 \lg n - n \lg n \right) - \frac{1}{8} n^2 + \frac{n}{4}$$
$$\le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \text{ when } n \ge 2$$

Done!!!