
Algorithms

Quicksort

Homework 2

 Assigned today, due next Wednesday

 Will be on web page shortly after class

 Go over now

Review: Quicksort

 Sorts in place

 Sorts O(n lg n) in the average case

 Sorts O(n2) in the worst case

 But in practice, it’s quick

 And the worst case doesn’t happen often (but more

on this later…)

Quicksort

 Another divide-and-conquer algorithm

 The array A[p..r] is partitioned into two non-

empty subarrays A[p..q] and A[q+1..r]

 Invariant: All elements in A[p..q] are less than all

elements in A[q+1..r]

 The subarrays are recursively sorted by calls to

quicksort

 Unlike merge sort, no combining step: two

subarrays form an already-sorted array

Quicksort Code

Quicksort(A, p, r)

{

 if (p < r)

 {

 q = Partition(A, p, r);

 Quicksort(A, p, q);

 Quicksort(A, q+1, r);

 }

}

Partition

 Clearly, all the action takes place in the
partition() function

 Rearranges the subarray in place

 End result:

Two subarrays

All values in first subarray  all values in second

 Returns the index of the “pivot” element

separating the two subarrays

 How do you suppose we implement this?

Partition In Words

 Partition(A, p, r):

 Select an element to act as the “pivot” (which?)

 Grow two regions, A[p..i] and A[j..r]

All elements in A[p..i] <= pivot

All elements in A[j..r] >= pivot

 Increment i until A[i] >= pivot

 Decrement j until A[j] <= pivot

 Swap A[i] and A[j]

 Repeat until i >= j

 Return j

Note: slightly different from

book’s partition()

Partition Code

Partition(A, p, r)

 x = A[p];

 i = p - 1;

 j = r + 1;

 while (TRUE)

 repeat

 j--;

 until A[j] <= x;

 repeat

 i++;

 until A[i] >= x;

 if (i < j)

 Swap(A, i, j);

 else

 return j;

Illustrate on

A = {5, 3, 2, 6, 4, 1, 3, 7};

What is the running time of
partition()?

Partition Code

Partition(A, p, r)

 x = A[p];

 i = p - 1;

 j = r + 1;

 while (TRUE)

 repeat

 j--;

 until A[j] <= x;

 repeat

 i++;

 until A[i] >= x;

 if (i < j)

 Swap(A, i, j);

 else

 return j;

partition() runs in O(n) time

Analyzing Quicksort

 What will be the worst case for the algorithm?

 Partition is always unbalanced

 What will be the best case for the algorithm?

 Partition is perfectly balanced

 Which is more likely?

 The latter, by far, except...

 Will any particular input elicit the worst case?

 Yes: Already-sorted input

Analyzing Quicksort

 In the worst case:

T(1) = (1)

T(n) = T(n - 1) + (n)

 Works out to

 T(n) = (n2)

 Analyzing Quicksort

 In the best case:

T(n) = 2T(n/2) + (n)

 What does this work out to?

T(n) = (n lg n)

 Improving Quicksort

 The real liability of quicksort is that it runs in

O(n2) on already-sorted input

 Book discusses two solutions:

 Randomize the input array, OR

 Pick a random pivot element

 How will these solve the problem?

 By insuring that no particular input can be chosen

to make quicksort run in O(n2) time

Analyzing Quicksort: Average Case

 Assuming random input, average-case running

time is much closer to O(n lg n) than O(n2)

 First, a more intuitive explanation/example:

 Suppose that partition() always produces a 9-to-1

split. This looks quite unbalanced!

 The recurrence is thus:

 T(n) = T(9n/10) + T(n/10) + n

 How deep will the recursion go? (draw it)

Use n instead of O(n)

for convenience (how?)

Analyzing Quicksort: Average Case

 Intuitively, a real-life run of quicksort will

produce a mix of “bad” and “good” splits

 Randomly distributed among the recursion tree

 Pretend for intuition that they alternate between

best-case (n/2 : n/2) and worst-case (n-1 : 1)

 What happens if we bad-split root node, then

good-split the resulting size (n-1) node?

Analyzing Quicksort: Average Case

 Intuitively, a real-life run of quicksort will

produce a mix of “bad” and “good” splits

 Randomly distributed among the recursion tree

 Pretend for intuition that they alternate between

best-case (n/2 : n/2) and worst-case (n-1 : 1)

 What happens if we bad-split root node, then

good-split the resulting size (n-1) node?

We fail English

Analyzing Quicksort: Average Case

 Intuitively, a real-life run of quicksort will

produce a mix of “bad” and “good” splits

 Randomly distributed among the recursion tree

 Pretend for intuition that they alternate between

best-case (n/2 : n/2) and worst-case (n-1 : 1)

 What happens if we bad-split root node, then

good-split the resulting size (n-1) node?

We end up with three subarrays, size 1, (n-1)/2, (n-1)/2

Combined cost of splits = n + n -1 = 2n -1 = O(n)

No worse than if we had good-split the root node!

Analyzing Quicksort: Average Case

 Intuitively, the O(n) cost of a bad split

(or 2 or 3 bad splits) can be absorbed

into the O(n) cost of each good split

 Thus running time of alternating bad and good

splits is still O(n lg n), with slightly higher

constants

 How can we be more rigorous?

Analyzing Quicksort: Average Case

 For simplicity, assume:

 All inputs distinct (no repeats)

 Slightly different partition() procedure

partition around a random element, which is not

included in subarrays

all splits (0:n-1, 1:n-2, 2:n-3, … , n-1:0) equally likely

 What is the probability of a particular split

happening?

 Answer: 1/n

Analyzing Quicksort: Average Case

 So partition generates splits

 (0:n-1, 1:n-2, 2:n-3, … , n-2:1, n-1:0)

each with probability 1/n

 If T(n) is the expected running time,

 What is each term under the summation for?

 What is the (n) term for?

        





1

0

1
1 n

k

nknTkT
n

nT

Analyzing Quicksort: Average Case

 So…

 Note: this is just like the book’s recurrence (p166),

except that the summation starts with k=0

 We’ll take care of that in a second

        

   















1

0

1

0

2

1
1

n

k

n

k

nkT
n

nknTkT
n

nT

Write it on

the board

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

 Assume that the inductive hypothesis holds

 Substitute it in for some value < n

 Prove that it follows for n

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

What’s the answer?

 Assume that the inductive hypothesis holds

 Substitute it in for some value < n

 Prove that it follows for n

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

T(n) = O(n lg n)

 Assume that the inductive hypothesis holds

 Substitute it in for some value < n

 Prove that it follows for n

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

T(n) = O(n lg n)

 Assume that the inductive hypothesis holds

What’s the inductive hypothesis?

 Substitute it in for some value < n

 Prove that it follows for n

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

T(n) = O(n lg n)

 Assume that the inductive hypothesis holds

T(n)  an lg n + b for some constants a and b

 Substitute it in for some value < n

 Prove that it follows for n

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

T(n) = O(n lg n)

 Assume that the inductive hypothesis holds

T(n)  an lg n + b for some constants a and b

 Substitute it in for some value < n

What value?

 Prove that it follows for n

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

T(n) = O(n lg n)

 Assume that the inductive hypothesis holds

T(n)  an lg n + b for some constants a and b

 Substitute it in for some value < n

The value k in the recurrence

 Prove that it follows for n

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded

substitution method

 Guess the answer

T(n) = O(n lg n)

 Assume that the inductive hypothesis holds

T(n)  an lg n + b for some constants a and b

 Substitute it in for some value < n

The value k in the recurrence

 Prove that it follows for n

Grind through it…

Note: leaving the same

recurrence as the book

What are we doing here?

Analyzing Quicksort: Average Case

     

   

   

   

   















































1

1

1

1

1

1

1

0

1

0

lg
2

2
lg

2

lg
2

lg
2

2

n

k

n

k

n

k

n

k

n

k

nbkak
n

n
n

b
bkak

n

nbkakb
n

nbkak
n

nkT
n

nT The recurrence to be solved

What are we doing here?

What are we doing here?

Plug in inductive hypothesis

Expand out the k=0 case

2b/n is just a constant,

so fold it into (n)

What are we doing here?

What are we doing here?

Evaluate the summation:

b+b+…+b = b (n-1)

The recurrence to be solved

Since n-1<n, 2b(n-1)/n < 2b

Analyzing Quicksort: Average Case

     

 

 

 nbkk
n

a

nn
n

b
kk

n

a

nb
n

kak
n

nbkak
n

nT

n

k

n

k

n

k

n

k

n

k





































2lg
2

)1(
2

lg
2

2
lg

2

lg
2

1

1

1

1

1

1

1

1

1

1

What are we doing here? Distribute the summation

This summation gets its own set of slides later

How did we do this?
Pick a large enough that

an/4 dominates (n)+b

What are we doing here?
Remember, our goal is to get

T(n)  an lg n + b

What the hell? We’ll prove this later

What are we doing here? Distribute the (2a/n) term

The recurrence to be solved

Analyzing Quicksort: Average Case

   

 

 

 

bnan

n
a

bnbnan

nbn
a

nan

nbnnn
n

a

nbkk
n

a
nT

n

k

























 




lg

4
lg

2
4

lg

2
8

1
lg

2

12

2lg
2

22

1

1

Analyzing Quicksort: Average Case

 So T(n)  an lg n + b for certain a and b

 Thus the induction holds

 Thus T(n) = O(n lg n)

 Thus quicksort runs in O(n lg n) time on average

(phew!)

 Oh yeah, the summation…

What are we doing here?
The lg k in the second term

is bounded by lg n

Tightly Bounding

The Key Summation

 

 

 

 

 

 









































1

2

12

1

1

2

12

1

1

2

12

1

1

1

lglg

lglg

lglglg

n

nk

n

k

n

nk

n

k

n

nk

n

k

n

k

knkk

nkkk

kkkkkk

What are we doing here?
Move the lg n outside the

summation

What are we doing here?
Split the summation for a

tighter bound

The summation bound so far

Tightly Bounding

The Key Summation

 

 

 
 

 

 
 

 

 
 

 





















































1

2

12

1

1

2

12

1

1

2

12

1

1

2

12

1

1

1

lg1lg

lg1lg

lg2lg

lglglg

n

nk

n

k

n

nk

n

k

n

nk

n

k

n

nk

n

k

n

k

knkn

knnk

knnk

knkkkk

What are we doing here?
The lg k in the first term is

bounded by lg n/2

What are we doing here? lg n/2 = lg n - 1

What are we doing here?
Move (lg n - 1) outside the

summation

The summation bound so far

Tightly Bounding

The Key Summation

 
 

 

   

 

 

   




















































 








12

1

12

1

1

1

1

2

12

1

12

1

1

2

12

1

1

1

2

)(1
lg

lg

lglg

lg1lglg

n

k

n

k

n

k

n

nk

n

k

n

k

n

nk

n

k

n

k

k
nn

n

kkn

knkkn

knknkk

What are we doing here? Distribute the (lg n - 1)

What are we doing here?
The summations overlap in

range; combine them

What are we doing here? The Guassian series

The summation bound so far

Tightly Bounding

The Key Summation

   

  

  

 
48

1
lglg

2

1

1
222

1
lg1

2

1

lg1
2

1

lg
2

)(1
lg

22

12

1

12

1

1

1

n
nnnnn

nn
nnn

knnn

kn
nn

kk

n

k

n

k

n

k































 

















What are we doing here?
Rearrange first term, place

upper bound on second

What are we doing? X Guassian series

What are we doing?
Multiply it

all out

Tightly Bounding

The Key Summation

 

!!Done!

2when
8

1
lg

2

1

48

1
lglg

2

1
lg

22

22
1

1








nnnn

n
nnnnnkk

n

k

