
Algorithms

Linear-Time Sorting Algorithms

Sorting So Far

 Insertion sort:

 Easy to code

 Fast on small inputs (less than ~50 elements)

 Fast on nearly-sorted inputs

 O(n2) worst case

 O(n2) average (equally-likely inputs) case

 O(n2) reverse-sorted case

Sorting So Far

 Merge sort:

 Divide-and-conquer:

Split array in half

Recursively sort subarrays

Linear-time merge step

 O(n lg n) worst case

 Doesn’t sort in place

Sorting So Far

 Heap sort:

 Uses the very useful heap data structure

Complete binary tree

Heap property: parent key > children’s keys

 O(n lg n) worst case

 Sorts in place

 Fair amount of shuffling memory around

Sorting So Far

 Quick sort:

 Divide-and-conquer:

Partition array into two subarrays, recursively sort

All of first subarray < all of second subarray

No merge step needed!

 O(n lg n) average case

 Fast in practice

 O(n2) worst case

Naïve implementation: worst case on sorted input

Address this with randomized quicksort

How Fast Can We Sort?

 We will provide a lower bound, then beat it

 How do you suppose we’ll beat it?

 First, an observation: all of the sorting

algorithms so far are comparison sorts

 The only operation used to gain ordering

information about a sequence is the pairwise

comparison of two elements

 Theorem: all comparison sorts are (n lg n)

A comparison sort must do O(n) comparisons (why?)

What about the gap between O(n) and O(n lg n)

Decision Trees

 Decision trees provide an abstraction of

comparison sorts

 A decision tree represents the comparisons made

by a comparison sort. Every thing else ignored

 (Draw examples on board)

 What do the leaves represent?

 How many leaves must there be?

Decision Trees

 Decision trees can model comparison sorts.

For a given algorithm:

 One tree for each n

 Tree paths are all possible execution traces

 What’s the longest path in a decision tree for

insertion sort? For merge sort?

 What is the asymptotic height of any decision

tree for sorting n elements?

 Answer: (n lg n) (now let’s prove it…)

Lower Bound For

Comparison Sorting

 Thm: Any decision tree that sorts n elements

has height (n lg n)

 What’s the minimum # of leaves?

 What’s the maximum # of leaves of a binary

tree of height h?

 Clearly the minimum # of leaves is less than or

equal to the maximum # of leaves

Lower Bound For

Comparison Sorting

 So we have…

n!  2h

 Taking logarithms:

lg (n!)  h

 Stirling’s approximation tells us:

 Thus:

n

e

n
n 








!

n

e

n
h 








 lg

Lower Bound For

Comparison Sorting

 So we have

 Thus the minimum height of a decision tree is
(n lg n)

 nn

ennn

e

n
h

n

lg

lglg

lg















Lower Bound For

Comparison Sorts

 Thus the time to comparison sort n elements is

(n lg n)

 Corollary: Heapsort and Mergesort are

asymptotically optimal comparison sorts

 But the name of this lecture is “Sorting in

linear time”!

 How can we do better than (n lg n)?

Sorting In Linear Time

 Counting sort

 No comparisons between elements!

 But…depends on assumption about the numbers

being sorted

We assume numbers are in the range 1.. k

 The algorithm:

 Input: A[1..n], where A[j]  {1, 2, 3, …, k}

Output: B[1..n], sorted (notice: not sorting in place)

Also: Array C[1..k] for auxiliary storage

Counting Sort

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

Work through example: A={4 1 3 4 3}, k = 4

Counting Sort

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

What will be the running time?

Takes time O(k)

Takes time O(n)

Counting Sort

 Total time: O(n + k)

 Usually, k = O(n)

 Thus counting sort runs in O(n) time

 But sorting is (n lg n)!

 No contradiction--this is not a comparison sort (in

fact, there are no comparisons at all!)

 Notice that this algorithm is stable

Counting Sort

 Cool! Why don’t we always use counting sort?

 Because it depends on range k of elements

 Could we use counting sort to sort 32 bit

integers? Why or why not?

 Answer: no, k too large (232 = 4,294,967,296)

Counting Sort

 How did IBM get rich originally?

 Answer: punched card readers for census

tabulation in early 1900’s.

 In particular, a card sorter that could sort cards

into different bins

Each column can be punched in 12 places

Decimal digits use 10 places

 Problem: only one column can be sorted on at a

time

Radix Sort

 Intuitively, you might sort on the most

significant digit, then the second msd, etc.

 Problem: lots of intermediate piles of cards

(read: scratch arrays) to keep track of

 Key idea: sort the least significant digit first

 RadixSort(A, d)

 for i=1 to d

 StableSort(A) on digit i

 Example: Fig 9.3

Radix Sort

 Can we prove it will work?

 Sketch of an inductive argument (induction on

the number of passes):

 Assume lower-order digits {j: j<i}are sorted

 Show that sorting next digit i leaves array correctly

sorted

 If two digits at position i are different, ordering numbers

by that digit is correct (lower-order digits irrelevant)

 If they are the same, numbers are already sorted on the

lower-order digits. Since we use a stable sort, the

numbers stay in the right order

Radix Sort

 What sort will we use to sort on digits?

 Counting sort is obvious choice:

 Sort n numbers on digits that range from 1..k

 Time: O(n + k)

 Each pass over n numbers with d digits takes

time O(n+k), so total time O(dn+dk)

 When d is constant and k=O(n), takes O(n) time

 How many bits in a computer word?

Radix Sort

 Problem: sort 1 million 64-bit numbers

 Treat as four-digit radix 216 numbers

 Can sort in just four passes with radix sort!

 Compares well with typical O(n lg n)

comparison sort

 Requires approx lg n = 20 operations per number

being sorted

 So why would we ever use anything but radix

sort?

Radix Sort

 In general, radix sort based on counting sort is

 Fast

 Asymptotically fast (i.e., O(n))

 Simple to code

 A good choice

 To think about: Can radix sort be used on

floating-point numbers?

