Algorithms

Linear-Time Sorting Algorithms

Sorting So Far

- Insertion sort:
- Easy to code
- Fast on small inputs (less than ~ 50 elements)
- Fast on nearly-sorted inputs
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ worst case
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ average (equally-likely inputs) case
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ reverse-sorted case

Sorting So Far

- Merge sort:
- Divide-and-conquer:
- Split array in half
- Recursively sort subarrays
\bullet Linear-time merge step
- O(n $\lg \mathrm{n})$ worst case
- Doesn't sort in place

Sorting So Far

- Heap sort:
- Uses the very useful heap data structure
- Complete binary tree
- Heap property: parent key > children's keys
- O(n $\lg \mathrm{n})$ worst case
- Sorts in place
- Fair amount of shuffling memory around

Sorting So Far

- Quick sort:
- Divide-and-conquer:
- Partition array into two subarrays, recursively sort
- All of first subarray < all of second subarray
\bullet No merge step needed!
- O(n $\lg \mathrm{n})$ average case
- Fast in practice
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ worst case
- Naïve implementation: worst case on sorted input
- Address this with randomized quicksort

How Fast Can We Sort?

- We will provide a lower bound, then beat it
- How do you suppose we'll beat it?
- First, an observation: all of the sorting algorithms so far are comparison sorts
- The only operation used to gain ordering information about a sequence is the pairwise comparison of two elements
- Theorem: all comparison sorts are $\Omega(\mathrm{n} \lg \mathrm{n})$
- A comparison sort must do $\mathrm{O}(\mathrm{n})$ comparisons (why?)
- What about the gap between $\mathrm{O}(\mathrm{n})$ and $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

Decision Trees

- Decision trees provide an abstraction of comparison sorts
- A decision tree represents the comparisons made by a comparison sort. Every thing else ignored
- (Draw examples on board)
- What do the leaves represent?
- How many leaves must there be?

Decision Trees

- Decision trees can model comparison sorts. For a given algorithm:
- One tree for each n
- Tree paths are all possible execution traces
- What's the longest path in a decision tree for insertion sort? For merge sort?
- What is the asymptotic height of any decision tree for sorting n elements?
- Answer: $\Omega(n \lg n) \quad$ (now let's prove it...)

Lower Bound For Comparison Sorting

- Thm: Any decision tree that sorts n elements has height $\Omega(n \lg n)$
- What's the minimum \# of leaves?
- What's the maximum \# of leaves of a binary tree of height h?
- Clearly the minimum \# of leaves is less than or equal to the maximum \# of leaves

Lower Bound For Comparison Sorting

- So we have...
$n!\leq 2^{h}$
- Taking logarithms: $\lg (n!) \leq h$
- Stirling's approximation tells us:
$n!>\left(\frac{n}{e}\right)^{n}$
- Thus: $h \geq \lg \left(\frac{n}{e}\right)^{n}$

Lower Bound For Comparison Sorting

- So we have

$$
\begin{aligned}
h & \geq \lg \left(\frac{n}{e}\right)^{n} \\
& =n \lg n-n \lg e \\
& =\Omega(n \lg n)
\end{aligned}
$$

- Thus the minimum height of a decision tree is $\Omega(n \lg n)$

Lower Bound For Comparison Sorts

- Thus the time to comparison sort n elements is $\Omega(n \lg n)$
- Corollary: Heapsort and Mergesort are asymptotically optimal comparison sorts
- But the name of this lecture is "Sorting in linear time"!
- How can we do better than $\Omega(n \lg n)$?

Sorting In Linear Time

- Counting sort
- No comparisons between elements!
- But...depends on assumption about the numbers being sorted
- We assume numbers are in the range $1 . . k$
- The algorithm:
- Input: $\mathrm{A}[1 . . n]$, where $\mathrm{A}[\mathrm{j}] \in\{1,2,3, \ldots, k\}$
- Output: B[1..n], sorted (notice: not sorting in place)
- Also: Array C[1..k] for auxiliary storage

Counting Sort

1	CountingSort ($\mathrm{A}, \mathrm{B}, \mathrm{k}$)
2	for $i=1$ to k
3	C[i] $=0$;
4	for $\mathrm{j}=1$ to n
5	C[A[j]] += 1;
6	for $i=2$ to k
7	$\mathrm{C}[\mathrm{i}]=\mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$;
8	for $\mathrm{j}=\mathrm{n}$ downto 1
9	$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}] \mathrm{]}]=\mathrm{A}[\mathrm{j}]$;
10	C[A[j] $]$ - ${ }^{\text {c }}$;
	rough example: $A=\{41343\}, k=4$

Counting Sort

1	CountingSort (A, B, k)
2	for $i=1$ to k
3	$C[i]=0 ;$
4	for $j=1$ to n
5	$C[A[j]]+=1 ;$
6	for $i=2$ to k
7	$C[i]=C[i]+C[i-1] ;$
8	for $j=n$ downto 1
9	$B[C[A[j]]]=A[j] ;$
10	$C[A[j]]=1 ;$

What will be the running time?

Counting Sort

- Total time: $\mathrm{O}(n+k)$
- Usually, $k=\mathrm{O}(n)$
- Thus counting sort runs in $\mathrm{O}(n)$ time
- But sorting is $\Omega(n \lg n)$!
- No contradiction--this is not a comparison sort (in fact, there are no comparisons at all!)
- Notice that this algorithm is stable

Counting Sort

- Cool! Why don't we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large $\left(2^{32}=4,294,967,296\right)$

Counting Sort

- How did IBM get rich originally?
- Answer: punched card readers for census tabulation in early 1900's.
- In particular, a card sorter that could sort cards into different bins
- Each column can be punched in 12 places
- Decimal digits use 10 places
- Problem: only one column can be sorted on at a time

Radix Sort

- Intuitively, you might sort on the most significant digit, then the second msd, etc.
- Problem: lots of intermediate piles of cards (read: scratch arrays) to keep track of
- Key idea: sort the least significant digit first RadixSort (A, d)

$$
\text { for } i=1 \text { to } d
$$

StableSort(A) on digit i

- Example: Fig 9.3

Radix Sort

- Can we prove it will work?
- Sketch of an inductive argument (induction on the number of passes):
- Assume lower-order digits $\{\mathrm{j}: \mathrm{j}<\mathrm{i}\}$ are sorted
- Show that sorting next digit i leaves array correctly sorted
- If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
- If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order

Radix Sort

- What sort will we use to sort on digits?
- Counting sort is obvious choice:
- Sort n numbers on digits that range from 1.. k
- Time: $\mathrm{O}(n+k)$
- Each pass over n numbers with d digits takes time $\mathrm{O}(n+k)$, so total time $\mathrm{O}(d n+d k)$
- When d is constant and $k=\mathrm{O}(n)$, takes $\mathrm{O}(n)$ time
- How many bits in a computer word?

Radix Sort

- Problem: sort 1 million 64-bit numbers
- Treat as four-digit radix 2^{16} numbers
- Can sort in just four passes with radix sort!
- Compares well with typical $\mathrm{O}(n \lg n)$ comparison sort
- Requires approx $\lg n=20$ operations per number being sorted
- So why would we ever use anything but radix sort?

Radix Sort

- In general, radix sort based on counting sort is
- Fast
- Asymptotically fast (i.e., $\mathrm{O}(n)$)
- Simple to code
- A good choice
- To think about: Can radix sort be used on floating-point numbers?

