
Algorithms 

Linear-Time Sorting Algorithms 



Sorting So Far 

 Insertion sort: 

 Easy to code 

 Fast on small inputs (less than ~50 elements) 

 Fast on nearly-sorted inputs 

 O(n2) worst case 

 O(n2) average (equally-likely inputs) case 

 O(n2) reverse-sorted case 



Sorting So Far 

 Merge sort: 

 Divide-and-conquer: 

Split array in half 

Recursively sort subarrays 

Linear-time merge step 

 O(n lg n) worst case 

 Doesn’t sort in place 



Sorting So Far 

 Heap sort: 

 Uses the very useful heap data structure 

Complete binary tree 

Heap property: parent key > children’s keys 

 O(n lg n) worst case 

 Sorts in place 

 Fair amount of shuffling memory around 



Sorting So Far 

 Quick sort: 

 Divide-and-conquer: 

Partition array into two subarrays, recursively sort 

All of first subarray < all of second subarray 

No merge step needed! 

 O(n lg n) average case 

 Fast in practice 

 O(n2) worst case 

Naïve implementation: worst case on sorted input 

Address this with randomized quicksort 

 



How Fast Can We Sort? 

 We will provide a lower bound, then beat it 

 How do you suppose we’ll beat it? 

 First, an observation: all of the sorting 

algorithms so far are comparison sorts 

 The only operation used to gain ordering 

information about a sequence is the pairwise 

comparison of two elements 

 Theorem: all comparison sorts are (n lg n) 

A comparison sort must do O(n) comparisons (why?) 

What about the gap between O(n) and O(n lg n) 



Decision Trees 

 Decision trees provide an abstraction of 

comparison sorts 

 A decision tree represents the comparisons made 

by a comparison sort.  Every thing else ignored 

 (Draw examples on board) 

 What do the leaves represent? 

 How many leaves must there be? 



Decision Trees 

 Decision trees can model comparison sorts.  

For a given algorithm: 

 One tree for each n 

 Tree paths are all possible execution traces 

 What’s the longest path in a decision tree for 

insertion sort?  For merge sort? 

 What is the asymptotic height of any decision 

tree for sorting n elements? 

 Answer: (n lg n)    (now let’s prove it…) 



Lower Bound For  

Comparison Sorting 

 Thm: Any decision tree that sorts n elements 

has height (n lg n) 

 What’s the minimum # of leaves? 

 What’s the maximum # of leaves of a binary 

tree of height h? 

 Clearly the minimum # of leaves is less than or 

equal to the maximum # of leaves 



Lower Bound For  

Comparison Sorting 

 So we have…     

n!  2h 

 Taking logarithms:     

lg (n!)  h 

 Stirling’s approximation tells us: 
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Lower Bound For  

Comparison Sorting 

 So we have 

 

 

 

 

 

 

 Thus the minimum height of a decision tree is 
(n lg n)  
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Lower Bound For  

Comparison Sorts 

 Thus the time to comparison sort n elements is 

(n lg n) 

 Corollary: Heapsort and Mergesort are 

asymptotically optimal comparison sorts 

 But the name of this lecture is “Sorting in 

linear time”! 

 How can we do better than (n lg n)? 



Sorting In Linear Time  

 Counting sort 

 No comparisons between elements! 

 But…depends on assumption about the numbers 

being sorted 

We assume numbers are in the range 1.. k 

 The algorithm: 

 Input: A[1..n], where A[j]  {1, 2, 3, …, k} 

Output: B[1..n], sorted (notice: not sorting in place) 

Also: Array C[1..k] for auxiliary storage 



Counting Sort 

1  CountingSort(A, B, k) 

2   for i=1 to k 

3    C[i]= 0; 

4   for j=1 to n 

5    C[A[j]] += 1; 

6   for i=2 to k 

7    C[i] = C[i] + C[i-1]; 

8   for j=n downto 1 

9    B[C[A[j]]] = A[j]; 

10    C[A[j]] -= 1; 

Work through example: A={4 1 3 4 3}, k = 4 



Counting Sort 

1  CountingSort(A, B, k) 

2   for i=1 to k 

3    C[i]= 0; 

4   for j=1 to n 

5    C[A[j]] += 1; 

6   for i=2 to k 

7    C[i] = C[i] + C[i-1]; 

8   for j=n downto 1 

9    B[C[A[j]]] = A[j]; 

10    C[A[j]] -= 1; 

What will be the running time? 

Takes time O(k) 

Takes time O(n) 



Counting Sort 

 Total time: O(n + k) 

 Usually, k = O(n) 

 Thus counting sort runs in O(n) time 

 But sorting is (n lg n)! 

 No contradiction--this is not a comparison sort (in 

fact, there are no comparisons at all!) 

 Notice that this algorithm is stable  

 



Counting Sort 

 Cool!  Why don’t we always use counting sort? 

 Because it depends on range k of elements 

 Could we use counting sort to sort 32 bit 

integers?  Why or why not? 

 Answer: no, k too large (232 = 4,294,967,296) 



Counting Sort 

 How did IBM get rich originally? 

 Answer: punched card readers for census 

tabulation in early 1900’s.   

 In particular, a card sorter that could sort cards 

into different bins 

Each column can be punched in 12 places 

Decimal digits use 10 places 

 Problem: only one column can be sorted on at a 

time 



Radix Sort 

 Intuitively, you might sort on the most 

significant digit, then the second msd, etc. 

 Problem: lots of intermediate piles of cards 

(read: scratch arrays) to keep track of 

 Key idea: sort the least significant digit first 

    RadixSort(A, d) 

       for i=1 to d 

          StableSort(A) on digit i 

 Example: Fig 9.3 



Radix Sort 

 Can we prove it will work? 

 Sketch of an inductive argument (induction on 

the number of passes): 

 Assume lower-order digits {j: j<i}are sorted 

 Show that sorting next digit i leaves array correctly 

sorted  

 If two digits at position i are different, ordering numbers 

by that digit is correct (lower-order digits irrelevant) 

 If they are the same, numbers are already sorted on the 

lower-order digits.  Since we use a stable sort, the 

numbers stay in the right order 



Radix Sort 

 What sort will we use to sort on digits? 

 Counting sort is obvious choice:  

 Sort n numbers on digits that range from 1..k 

 Time: O(n + k) 

 Each pass over n numbers with d digits takes 

time O(n+k), so total time O(dn+dk) 

 When d is constant and k=O(n), takes O(n) time 

 How many bits in a computer word? 



Radix Sort 

 Problem: sort 1 million 64-bit numbers 

 Treat as four-digit radix 216 numbers 

 Can sort in just four passes with radix sort! 

 Compares well with typical O(n lg n) 

comparison sort  

 Requires approx lg n = 20 operations per number 

being sorted 

 So why would we ever use anything but radix 

sort? 



Radix Sort 

 In general, radix sort based on counting sort is 

 Fast 

 Asymptotically fast (i.e., O(n)) 

 Simple to code 

 A good choice 

 To think about: Can radix sort be used on 

floating-point numbers? 


