
Algorithms

Linear-Time Sorting Algorithms

Sorting So Far

 Insertion sort:

 Easy to code

 Fast on small inputs (less than ~50 elements)

 Fast on nearly-sorted inputs

 O(n2) worst case

 O(n2) average (equally-likely inputs) case

 O(n2) reverse-sorted case

Sorting So Far

 Merge sort:

 Divide-and-conquer:

Split array in half

Recursively sort subarrays

Linear-time merge step

 O(n lg n) worst case

 Doesn’t sort in place

Sorting So Far

 Heap sort:

 Uses the very useful heap data structure

Complete binary tree

Heap property: parent key > children’s keys

 O(n lg n) worst case

 Sorts in place

 Fair amount of shuffling memory around

Sorting So Far

 Quick sort:

 Divide-and-conquer:

Partition array into two subarrays, recursively sort

All of first subarray < all of second subarray

No merge step needed!

 O(n lg n) average case

 Fast in practice

 O(n2) worst case

Naïve implementation: worst case on sorted input

Address this with randomized quicksort

How Fast Can We Sort?

 We will provide a lower bound, then beat it

 How do you suppose we’ll beat it?

 First, an observation: all of the sorting

algorithms so far are comparison sorts

 The only operation used to gain ordering

information about a sequence is the pairwise

comparison of two elements

 Theorem: all comparison sorts are (n lg n)

A comparison sort must do O(n) comparisons (why?)

What about the gap between O(n) and O(n lg n)

Decision Trees

 Decision trees provide an abstraction of

comparison sorts

 A decision tree represents the comparisons made

by a comparison sort. Every thing else ignored

 (Draw examples on board)

 What do the leaves represent?

 How many leaves must there be?

Decision Trees

 Decision trees can model comparison sorts.

For a given algorithm:

 One tree for each n

 Tree paths are all possible execution traces

 What’s the longest path in a decision tree for

insertion sort? For merge sort?

 What is the asymptotic height of any decision

tree for sorting n elements?

 Answer: (n lg n) (now let’s prove it…)

Lower Bound For

Comparison Sorting

 Thm: Any decision tree that sorts n elements

has height (n lg n)

 What’s the minimum # of leaves?

 What’s the maximum # of leaves of a binary

tree of height h?

 Clearly the minimum # of leaves is less than or

equal to the maximum # of leaves

Lower Bound For

Comparison Sorting

 So we have…

n! 2h

 Taking logarithms:

lg (n!) h

 Stirling’s approximation tells us:

 Thus:

n

e

n
n

!

n

e

n
h

 lg

Lower Bound For

Comparison Sorting

 So we have

 Thus the minimum height of a decision tree is
(n lg n)

 nn

ennn

e

n
h

n

lg

lglg

lg

Lower Bound For

Comparison Sorts

 Thus the time to comparison sort n elements is

(n lg n)

 Corollary: Heapsort and Mergesort are

asymptotically optimal comparison sorts

 But the name of this lecture is “Sorting in

linear time”!

 How can we do better than (n lg n)?

Sorting In Linear Time

 Counting sort

 No comparisons between elements!

 But…depends on assumption about the numbers

being sorted

We assume numbers are in the range 1.. k

 The algorithm:

 Input: A[1..n], where A[j] {1, 2, 3, …, k}

Output: B[1..n], sorted (notice: not sorting in place)

Also: Array C[1..k] for auxiliary storage

Counting Sort

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

Work through example: A={4 1 3 4 3}, k = 4

Counting Sort

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

What will be the running time?

Takes time O(k)

Takes time O(n)

Counting Sort

 Total time: O(n + k)

 Usually, k = O(n)

 Thus counting sort runs in O(n) time

 But sorting is (n lg n)!

 No contradiction--this is not a comparison sort (in

fact, there are no comparisons at all!)

 Notice that this algorithm is stable

Counting Sort

 Cool! Why don’t we always use counting sort?

 Because it depends on range k of elements

 Could we use counting sort to sort 32 bit

integers? Why or why not?

 Answer: no, k too large (232 = 4,294,967,296)

Counting Sort

 How did IBM get rich originally?

 Answer: punched card readers for census

tabulation in early 1900’s.

 In particular, a card sorter that could sort cards

into different bins

Each column can be punched in 12 places

Decimal digits use 10 places

 Problem: only one column can be sorted on at a

time

Radix Sort

 Intuitively, you might sort on the most

significant digit, then the second msd, etc.

 Problem: lots of intermediate piles of cards

(read: scratch arrays) to keep track of

 Key idea: sort the least significant digit first

 RadixSort(A, d)

 for i=1 to d

 StableSort(A) on digit i

 Example: Fig 9.3

Radix Sort

 Can we prove it will work?

 Sketch of an inductive argument (induction on

the number of passes):

 Assume lower-order digits {j: j<i}are sorted

 Show that sorting next digit i leaves array correctly

sorted

 If two digits at position i are different, ordering numbers

by that digit is correct (lower-order digits irrelevant)

 If they are the same, numbers are already sorted on the

lower-order digits. Since we use a stable sort, the

numbers stay in the right order

Radix Sort

 What sort will we use to sort on digits?

 Counting sort is obvious choice:

 Sort n numbers on digits that range from 1..k

 Time: O(n + k)

 Each pass over n numbers with d digits takes

time O(n+k), so total time O(dn+dk)

 When d is constant and k=O(n), takes O(n) time

 How many bits in a computer word?

Radix Sort

 Problem: sort 1 million 64-bit numbers

 Treat as four-digit radix 216 numbers

 Can sort in just four passes with radix sort!

 Compares well with typical O(n lg n)

comparison sort

 Requires approx lg n = 20 operations per number

being sorted

 So why would we ever use anything but radix

sort?

Radix Sort

 In general, radix sort based on counting sort is

 Fast

 Asymptotically fast (i.e., O(n))

 Simple to code

 A good choice

 To think about: Can radix sort be used on

floating-point numbers?

