
Algorithms 

Linear-Time Sorting Algorithms 



Sorting So Far 

 Insertion sort: 

 Easy to code 

 Fast on small inputs (less than ~50 elements) 

 Fast on nearly-sorted inputs 

 O(n2) worst case 

 O(n2) average (equally-likely inputs) case 

 O(n2) reverse-sorted case 



Sorting So Far 

 Merge sort: 

 Divide-and-conquer: 

Split array in half 

Recursively sort subarrays 

Linear-time merge step 

 O(n lg n) worst case 

 Doesn’t sort in place 



Sorting So Far 

 Heap sort: 

 Uses the very useful heap data structure 

Complete binary tree 

Heap property: parent key > children’s keys 

 O(n lg n) worst case 

 Sorts in place 

 Fair amount of shuffling memory around 



Sorting So Far 

 Quick sort: 

 Divide-and-conquer: 

Partition array into two subarrays, recursively sort 

All of first subarray < all of second subarray 

No merge step needed! 

 O(n lg n) average case 

 Fast in practice 

 O(n2) worst case 

Naïve implementation: worst case on sorted input 

Address this with randomized quicksort 

 



How Fast Can We Sort? 

 We will provide a lower bound, then beat it 

 How do you suppose we’ll beat it? 

 First, an observation: all of the sorting 

algorithms so far are comparison sorts 

 The only operation used to gain ordering 

information about a sequence is the pairwise 

comparison of two elements 

 Theorem: all comparison sorts are (n lg n) 

A comparison sort must do O(n) comparisons (why?) 

What about the gap between O(n) and O(n lg n) 



Decision Trees 

 Decision trees provide an abstraction of 

comparison sorts 

 A decision tree represents the comparisons made 

by a comparison sort.  Every thing else ignored 

 (Draw examples on board) 

 What do the leaves represent? 

 How many leaves must there be? 



Decision Trees 

 Decision trees can model comparison sorts.  

For a given algorithm: 

 One tree for each n 

 Tree paths are all possible execution traces 

 What’s the longest path in a decision tree for 

insertion sort?  For merge sort? 

 What is the asymptotic height of any decision 

tree for sorting n elements? 

 Answer: (n lg n)    (now let’s prove it…) 



Lower Bound For  

Comparison Sorting 

 Thm: Any decision tree that sorts n elements 

has height (n lg n) 

 What’s the minimum # of leaves? 

 What’s the maximum # of leaves of a binary 

tree of height h? 

 Clearly the minimum # of leaves is less than or 

equal to the maximum # of leaves 



Lower Bound For  

Comparison Sorting 

 So we have…     

n!  2h 

 Taking logarithms:     

lg (n!)  h 

 Stirling’s approximation tells us: 
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Lower Bound For  

Comparison Sorting 

 So we have 

 

 

 

 

 

 

 Thus the minimum height of a decision tree is 
(n lg n)  
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Lower Bound For  

Comparison Sorts 

 Thus the time to comparison sort n elements is 

(n lg n) 

 Corollary: Heapsort and Mergesort are 

asymptotically optimal comparison sorts 

 But the name of this lecture is “Sorting in 

linear time”! 

 How can we do better than (n lg n)? 



Sorting In Linear Time  

 Counting sort 

 No comparisons between elements! 

 But…depends on assumption about the numbers 

being sorted 

We assume numbers are in the range 1.. k 

 The algorithm: 

 Input: A[1..n], where A[j]  {1, 2, 3, …, k} 

Output: B[1..n], sorted (notice: not sorting in place) 

Also: Array C[1..k] for auxiliary storage 



Counting Sort 

1  CountingSort(A, B, k) 

2   for i=1 to k 

3    C[i]= 0; 

4   for j=1 to n 

5    C[A[j]] += 1; 

6   for i=2 to k 

7    C[i] = C[i] + C[i-1]; 

8   for j=n downto 1 

9    B[C[A[j]]] = A[j]; 

10    C[A[j]] -= 1; 

Work through example: A={4 1 3 4 3}, k = 4 



Counting Sort 

1  CountingSort(A, B, k) 

2   for i=1 to k 

3    C[i]= 0; 

4   for j=1 to n 

5    C[A[j]] += 1; 

6   for i=2 to k 

7    C[i] = C[i] + C[i-1]; 

8   for j=n downto 1 

9    B[C[A[j]]] = A[j]; 

10    C[A[j]] -= 1; 

What will be the running time? 

Takes time O(k) 

Takes time O(n) 



Counting Sort 

 Total time: O(n + k) 

 Usually, k = O(n) 

 Thus counting sort runs in O(n) time 

 But sorting is (n lg n)! 

 No contradiction--this is not a comparison sort (in 

fact, there are no comparisons at all!) 

 Notice that this algorithm is stable  

 



Counting Sort 

 Cool!  Why don’t we always use counting sort? 

 Because it depends on range k of elements 

 Could we use counting sort to sort 32 bit 

integers?  Why or why not? 

 Answer: no, k too large (232 = 4,294,967,296) 



Counting Sort 

 How did IBM get rich originally? 

 Answer: punched card readers for census 

tabulation in early 1900’s.   

 In particular, a card sorter that could sort cards 

into different bins 

Each column can be punched in 12 places 

Decimal digits use 10 places 

 Problem: only one column can be sorted on at a 

time 



Radix Sort 

 Intuitively, you might sort on the most 

significant digit, then the second msd, etc. 

 Problem: lots of intermediate piles of cards 

(read: scratch arrays) to keep track of 

 Key idea: sort the least significant digit first 

    RadixSort(A, d) 

       for i=1 to d 

          StableSort(A) on digit i 

 Example: Fig 9.3 



Radix Sort 

 Can we prove it will work? 

 Sketch of an inductive argument (induction on 

the number of passes): 

 Assume lower-order digits {j: j<i}are sorted 

 Show that sorting next digit i leaves array correctly 

sorted  

 If two digits at position i are different, ordering numbers 

by that digit is correct (lower-order digits irrelevant) 

 If they are the same, numbers are already sorted on the 

lower-order digits.  Since we use a stable sort, the 

numbers stay in the right order 



Radix Sort 

 What sort will we use to sort on digits? 

 Counting sort is obvious choice:  

 Sort n numbers on digits that range from 1..k 

 Time: O(n + k) 

 Each pass over n numbers with d digits takes 

time O(n+k), so total time O(dn+dk) 

 When d is constant and k=O(n), takes O(n) time 

 How many bits in a computer word? 



Radix Sort 

 Problem: sort 1 million 64-bit numbers 

 Treat as four-digit radix 216 numbers 

 Can sort in just four passes with radix sort! 

 Compares well with typical O(n lg n) 

comparison sort  

 Requires approx lg n = 20 operations per number 

being sorted 

 So why would we ever use anything but radix 

sort? 



Radix Sort 

 In general, radix sort based on counting sort is 

 Fast 

 Asymptotically fast (i.e., O(n)) 

 Simple to code 

 A good choice 

 To think about: Can radix sort be used on 

floating-point numbers? 


