Algorithms

Medians and Order Statistics Structures for Dynamic Sets

Homework 3

• On the web shortly...

Due Wednesday at the beginning of class (test)

Review: Radix Sort

- Radix sort:
 - Assumption: input has d digits ranging from 0 to k
 Basic idea:
 - Sort elements by digit starting with *least* significant
 - Use a stable sort (like counting sort) for each stage
 - Each pass over *n* numbers with *d* digits takes time O(n+k), so total time O(dn+dk)
 - When *d* is constant and k=O(n), takes O(n) time
 - Fast! Stable! Simple!
 - Doesn't sort in place

Review: Bucket Sort

- Bucket sort
 - Assumption: input is *n* reals from [0, 1)
 - Basic idea:
 - Create *n* linked lists (*buckets*) to divide interval [0,1) into subintervals of size 1/*n*
 - Add each input element to appropriate bucket and sort buckets with insertion sort
 - Uniform input distribution \rightarrow O(1) bucket size

 \circ Therefore the expected total time is O(n)

These ideas will return when we study *hash tables*

Review: Order Statistics

- The *i*th *order statistic* in a set of *n* elements is the *i*th smallest element
- The *minimum* is thus the 1st order statistic
- The *maximum* is (duh) the *n*th order statistic
- The *median* is the n/2 order statistic
 - If *n* is even, there are 2 medians
- Could calculate order statistics by sorting
 - Time: O(n lg n) w/ comparison sort
 - We can do better

Review: The Selection Problem

- The *selection problem*: find the *i*th smallest element of a set
- Two algorithms:
 - A practical randomized algorithm with O(n) expected running time
 - A cool algorithm of theoretical interest only with O(n) worst-case running time

Review: Randomized Selection

- Key idea: use partition() from quicksort
 - But, only need to examine one subarray
 - This savings shows up in running time: O(n)

$\leq A[q]$		$\geq A[q]$	
р	q		r

Review: Randomized Selection

RandomizedSelect(A, p, r, i)

return RandomizedSelect(A, q+1, r, i-k);

	k			
	$\leq A[q]$		$\geq A[q]$	
р		q		r

Review: Randomized Selection

- Average case
 - For upper bound, assume *i*th element always falls in larger side of partition:

$$T(n) \leq \frac{1}{n} \sum_{k=0}^{n-1} T(\max(k, n-k-1)) + \Theta(n)$$

$$\leq \frac{2}{n} \sum_{k=n/2}^{n-1} T(k) + \Theta(n)$$

• We then showed that T(n) = O(n) by substitution

- Randomized algorithm works well in practice
- What follows is a worst-case linear time algorithm, really of theoretical interest only
- Basic idea:
 - Generate a good partitioning element
 - Call this element *x*

- The algorithm in words:
 - 1. Divide *n* elements into groups of 5
 - 2. Find median of each group (*How? How long?*)
 - 3. Use Select() recursively to find median x of the $\lfloor n/5 \rfloor$ medians
 - 4. Partition the *n* elements around *x*. Let $k = \operatorname{rank}(x)$
 - 5. **if** (i == k) **then** return x
 - if (i < k) then use Select() recursively to find ith smallest
 element in first partition</pre>
 - else (i > k) use Select() recursively to find (i-k)th smallest
 element in last partition

- (Sketch situation on the board)
- How many of the 5-element medians are ≤ x?
 At least 1/2 of the medians = [_n/5]/2] = [n/10]
- *How many elements are* $\leq x$?
 - At least $3 \lfloor n/10 \rfloor$ elements
- For large n, $3 \lfloor n/10 \rfloor \ge n/4$ (*How large?*)
- So at least n/4 elements $\leq x$
- Similarly: at least n/4 elements $\ge x$

- Thus after partitioning around *x*, step 5 will call Select() on at most 3*n*/4 elements
- The recurrence is therefore: $T(n) \le T\left(|n/5|\right) + T\left(3n/4\right) + \Theta(n)$ $\leq T(n/5) + T(3n/4) + \Theta(n)$ $|n/5| \leq n/5$ $\leq cn/5 + 3cn/4 + \Theta(n)$ Substitute T(n) = cn $= 19cn/20 + \Theta(n)$ **Combine fractions** $= cn - (cn/20 - \Theta(n))$ Express in desired form $\leq cn$ if c is big enough What we set out to prove

- Intuitively:
 - Work at each level is a constant fraction (19/20) smaller
 - Geometric progression!
 - Thus the O(n) work at the root dominates

Linear-Time Median Selection

- Given a "black box" O(n) median algorithm, what can we do?
 - *i*th order statistic:
 - \circ Find median x
 - \circ Partition input around *x*
 - if (i ≤ (n+1)/2) recursively find *i*th element of first half
 - \circ else find (*i* (n+1)/2)th element in second half
 - $\circ T(n) = T(n/2) + O(n) = O(n)$

• Can you think of an application to sorting?

Linear-Time Median Selection

- Worst-case O(n lg n) quicksort
 - Find median *x* and partition around it
 - Recursively quicksort two halves
 - $T(n) = 2T(n/2) + O(n) = O(n \lg n)$

Structures...

- Done with sorting and order statistics for now
- Ahead of schedule, so...
- Next part of class will focus on *data structures*
- We will get a couple in before the first exam
 - Yes, these will be on this exam

Dynamic Sets

- Next few lectures will focus on data structures rather than straight algorithms
- In particular, structures for *dynamic sets*Elements have a *key* and *satellite data*
 - Dynamic sets support *queries* such as:
 - Search(S, k), Minimum(S), Maximum(S), Successor(S, x), Predecessor(S, x)
 - They may also support *modifying operations* like:
 Insert(S, x), Delete(S, x)

Binary Search Trees

- *Binary Search Trees* (BSTs) are an important data structure for dynamic sets
- In addition to satellite data, eleements have:
 - *key*: an identifying field inducing a total ordering
 - left: pointer to a left child (may be NULL)
 - right: pointer to a right child (may be NULL)
 - *p*: pointer to a parent node (NULL for root)

Binary Search Trees

- BST property: key[left(x)] ≤ key[x] ≤ key[right(x)]
- Example:

Inorder Tree Walk

- What does the following code do? TreeWalk(x) TreeWalk(left[x]); print(x); TreeWalk(right[x]);
- A: prints elements in sorted (increasing) order
- This is called an *inorder tree walk*

Preorder tree walk: print root, then left, then right

• *Postorder tree walk*: print left, then right, then root

Inorder Tree Walk

- *How long will a tree walk take?*
- Prove that inorder walk prints in monotonically increasing order

Operations on BSTs: Search

• Given a key and a pointer to a node, returns an element with that key or NULL:

```
TreeSearch(x, k)
if (x = NULL or k = key[x])
    return x;
if (k < key[x])
    return TreeSearch(left[x], k);
else
    return TreeSearch(right[x], k);</pre>
```

BST Search: Example

• Search for *D* and *C*:

Operations on BSTs: Search

• Here's another function that does the same:

TreeSearch(x, k)
while (x != NULL and k != key[x])
if (k < key[x])
x = left[x];
else
x = right[x];
return x;</pre>

• Which of these two functions is more efficient?

Operations of BSTs: Insert

- Adds an element x to the tree so that the binary search tree property continues to hold
- The basic algorithm
 - Like the search procedure above
 - Insert x in place of NULL
 - Use a "trailing pointer" to keep track of where you came from (like inserting into singly linked list)

BST Insert: Example

BST Search/Insert: Running Time

- What is the running time of TreeSearch() or TreeInsert()?
- A: O(h), where h = height of tree
- What is the height of a binary search tree?
- A: worst case: h = O(n) when tree is just a linear string of left or right children
 - We'll keep all analysis in terms of *h* for now

• Later we'll see how to maintain $h = O(\lg n)$

Sorting With Binary Search Trees

 Informal code for sorting array A of length n: BSTSort(A) for i=1 to n TreeInsert(A[i]);

InorderTreeWalk(root);

- Argue that this is $\Omega(n \lg n)$
- What will be the running time in the
 Worst case?

Average case? (hint: remind you of anything?)

Sorting With BSTs

Average case analysis
It's a form of quicksort!

for i=1 to n
 TreeInsert(A[i]);
InorderTreeWalk(root);

Sorting with BSTs

- Same partitions are done as with quicksort, but in a different order
 - In previous example
 - Everything was compared to 3 once
 - Then those items < 3 were compared to 1 once
 - Etc.
 - Same comparisons as quicksort, different order!
 Example: consider inserting 5

Sorting with BSTs

- Since run time is proportional to the number of comparisons, same time as quicksort: O(n lg n)
- Which do you think is better, quicksort or BSTsort? Why?

Sorting with BSTs

- Since run time is proportional to the number of comparisons, same time as quicksort: O(n lg n)
- Which do you think is better, quicksort or BSTSort? Why?
- A: quicksort
 - Better constants
 - Sorts in place
 - Doesn't need to build data structure

More BST Operations

- BSTs are good for more than sorting. For example, can implement a priority queue
- What operations must a priority queue have?
 - Insert
 - Minimum
 - Extract-Min

BST Operations: Minimum

- *How can we implement a Minimum() query?*
- What is the running time?

BST Operations: Successor

- For deletion, we will need a Successor() operation
- Draw Fig 13.2
- What is the successor of node 3? Node 15? Node 13?
- What are the general rules for finding the successor of node x? (hint: two cases)

BST Operations: Successor

• Two cases:

- x has a right subtree: successor is minimum node in right subtree
- x has no right subtree: successor is first ancestor of x whose left child is also ancestor of x
 - Intuition: As long as you move to the left up the tree, you're visiting smaller nodes.
- Predecessor: similar algorithm

BST Operations: Delete

- x has two children:
 - Swap x with successor
 - Perform case 1 or 2 to delete it

BST Operations: Delete

- Why will case 2 always go to case 0 or case 1?
- A: because when x has 2 children, its successor is the minimum in its right subtree
- Could we swap x with predecessor instead of successor?
- A: yes. *Would it be a good idea?*
- A: might be good to alternate
- Up next: guaranteeing a O(lg n) height tree