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Homework 3 

● On the web shortly… 

■ Due Wednesday at the beginning of class (test) 



Review: Radix Sort 

● Radix sort: 

■ Assumption: input has d digits ranging from 0 to k 

■ Basic idea:  

○ Sort elements by digit starting with least significant 

○ Use a stable sort (like counting sort) for each stage 

■ Each pass over n numbers with d digits takes time 

O(n+k), so total time O(dn+dk) 

○ When d is constant and k=O(n), takes O(n) time 

■ Fast!  Stable! Simple! 

■ Doesn’t sort in place 



Review: Bucket Sort 

● Bucket sort 

■ Assumption: input is n reals from [0, 1) 

■ Basic idea:  

○ Create n linked lists (buckets) to divide interval [0,1) 

into subintervals of size 1/n 

○ Add each input element to appropriate bucket and sort 

buckets with insertion sort 

■ Uniform input distribution  O(1) bucket size 

○ Therefore the expected total time is O(n) 

■ These ideas will return when we study hash tables 



Review: Order Statistics 

● The ith order statistic in a set of n elements is 

the ith smallest element 

● The minimum is thus the 1st order statistic  

● The maximum is (duh) the nth order statistic 

● The median is the n/2 order statistic 

■ If n is even, there are 2 medians 

● Could calculate order statistics by sorting 

■ Time: O(n lg n) w/ comparison sort 

■ We can do better 



Review: The Selection Problem 

● The selection problem: find the ith smallest 

element of a set  

● Two algorithms: 

■ A practical randomized algorithm with O(n) 

expected running time 

■ A cool algorithm of theoretical interest only with 

O(n) worst-case running time 



Review: Randomized Selection 

● Key idea: use partition() from quicksort 

■ But, only need to examine one subarray 

■ This savings shows up in running time: O(n) 

 A[q]  A[q] 

q p r 



Review: Randomized Selection 

RandomizedSelect(A, p, r, i) 

    if (p == r) then return A[p]; 

    q = RandomizedPartition(A, p, r) 

    k = q - p + 1; 

    if (i == k) then return A[q];   // not in book 

    if (i < k) then 

        return RandomizedSelect(A, p, q-1, i); 

    else 

        return RandomizedSelect(A, q+1, r, i-k); 

     

 A[q]  A[q] 

k 

q p r 



Review: Randomized Selection 

● Average case 

■ For upper bound, assume ith element always falls 

in larger side of partition: 

 

 

 

 

 

■ We then showed that T(n) = O(n) by substitution 
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Worst-Case Linear-Time Selection 

● Randomized algorithm works well in practice 

● What follows is a worst-case linear time 

algorithm, really of theoretical interest only 

● Basic idea:  

■ Generate a good partitioning element 

■ Call this element x 



Worst-Case Linear-Time Selection 

● The algorithm in words: 

1.  Divide n elements into groups of 5 

2.  Find median of each group (How?  How long?) 

3.  Use Select() recursively to find median x of the n/5 
 medians 

4.  Partition the n elements around x.  Let k = rank(x) 

5.  if (i == k) then return x 

  if (i < k) then use Select() recursively to find ith smallest 

  element in first partition 

 else (i > k) use Select() recursively to find (i-k)th smallest 

  element in last partition 



Worst-Case Linear-Time Selection 

● (Sketch situation on the board) 

● How many of the 5-element medians are  x? 

■ At least 1/2 of the medians = n/5 / 2 = n/10 

● How many elements are  x? 

■ At least 3 n/10  elements 

● For large n,    3 n/10   n/4  (How large?) 

● So at least n/4 elements  x 

● Similarly: at least n/4 elements  x 



Worst-Case Linear-Time Selection 

● Thus after partitioning around x, step 5 will 

call Select() on at most 3n/4 elements 

● The recurrence is therefore:  
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 n/5    n/5 

Substitute T(n) = cn 

Combine fractions  

Express in desired form 

What we set out to prove 



Worst-Case Linear-Time Selection 

● Intuitively: 

■ Work at each level is a constant fraction (19/20) 

smaller 

○ Geometric progression! 

■ Thus the O(n) work at the root dominates 



Linear-Time Median Selection 

● Given a “black box” O(n) median algorithm, 
what can we do? 

■ ith order statistic:  

○ Find median x 

○ Partition input around x 

○ if (i  (n+1)/2)  recursively find ith element of first half 

○ else find (i - (n+1)/2)th element in second half 

○ T(n) = T(n/2) + O(n) = O(n) 

■ Can you think of an application to sorting? 



Linear-Time Median Selection 

● Worst-case O(n lg n) quicksort 

■ Find median x and partition around it 

■ Recursively quicksort two halves 

■ T(n) = 2T(n/2) + O(n) = O(n lg n) 



Structures… 

● Done with sorting and order statistics for now 

● Ahead of schedule, so… 

● Next part of class will focus on data structures 

● We will get a couple in before the first exam 

■ Yes, these will be on this exam 

 



Dynamic Sets 

● Next few lectures will focus on data structures 

rather than straight algorithms 

● In particular, structures for dynamic sets 

■ Elements have a key and satellite data 

■ Dynamic sets support queries such as: 

○ Search(S, k), Minimum(S), Maximum(S), 

Successor(S, x), Predecessor(S, x) 

■ They may also support modifying operations like: 

○ Insert(S, x), Delete(S, x) 



Binary Search Trees 

● Binary Search Trees (BSTs) are an important 

data structure for dynamic sets 

● In addition to satellite data, eleements have: 

■ key: an identifying field inducing a total ordering 

■ left: pointer to a left child (may be NULL) 

■ right: pointer to a right child (may be NULL) 

■ p: pointer to a parent node (NULL for root) 



Binary Search Trees 

● BST property:  

 key[left(x)]  key[x]  key[right(x)] 

● Example: 

F 

B H 

K D A 



Inorder Tree Walk 

● What does the following code do? 

TreeWalk(x) 

    TreeWalk(left[x]); 

    print(x); 

    TreeWalk(right[x]); 

● A: prints elements in sorted (increasing) order 

● This is called an inorder tree walk 

■ Preorder tree walk: print root, then left, then right 

■ Postorder tree walk: print left, then right, then root 



Inorder Tree Walk 

● Example: 

 

 

 

 

● How long will a tree walk take? 

● Prove that inorder walk prints in 

monotonically increasing order 

 

F 

B H 

K D A 



Operations on BSTs: Search 

● Given a key and a pointer to a node, returns an 

element with that key or NULL:  
  

   TreeSearch(x, k) 

        if (x = NULL  or  k = key[x]) 

            return x; 

        if (k < key[x])  

            return TreeSearch(left[x], k); 

        else 

            return TreeSearch(right[x], k); 

 



BST Search: Example 

● Search for D and C: 

F 

B H 

K D A 



Operations on BSTs: Search 

● Here’s another function that does the same:  
     

    TreeSearch(x, k) 

        while (x != NULL  and  k != key[x])  

            if (k < key[x]) 

                x = left[x]; 

            else 

                x = right[x]; 

        return x; 

● Which of these two functions is more efficient? 



Operations of BSTs: Insert 

● Adds an element x to the tree so that the binary 

search tree property continues to hold 

● The basic algorithm 

■ Like the search procedure above 

■ Insert x in place of NULL 

■ Use a “trailing pointer” to keep track of where you 
came from (like inserting into singly linked list) 



BST Insert: Example 

● Example: Insert C 

F 

B H 

K D A 

C 



BST Search/Insert: Running Time 

● What is the running time of TreeSearch() or 

TreeInsert()? 

● A: O(h), where h = height of tree 

● What is the height of a binary search tree? 

● A: worst case: h = O(n)  when tree is just a 

linear string of left or right children 

■ We’ll keep all analysis in terms of h for now 

■ Later we’ll see how to maintain h = O(lg n) 



Sorting With Binary Search Trees 

● Informal code for sorting array A of length n: 

BSTSort(A) 

    for i=1 to n 

        TreeInsert(A[i]); 

    InorderTreeWalk(root); 

● Argue that this is (n lg n) 

● What will be the running time in the  

■ Worst case?   

■ Average case? (hint: remind you of anything?) 



Sorting With BSTs 

● Average case analysis 

■ It’s a form of quicksort! 

for i=1 to n 

    TreeInsert(A[i]); 

InorderTreeWalk(root); 

3 1 8 2 6 7 5 

5 7 

1 2 8 6 7 5 

2 6 7 5 

3 

1 8 

2 6 

5 7 



Sorting with BSTs 

● Same partitions are done as with quicksort, but 

in a different order 

■ In previous example 

○ Everything was compared to 3 once 

○ Then those items < 3 were compared to 1 once 

○ Etc. 

■ Same comparisons as quicksort, different order! 

○ Example: consider inserting 5 

 



Sorting with BSTs 

● Since run time is proportional to the number of 

comparisons, same time as quicksort: O(n lg n) 

● Which do you think is better, quicksort or 

BSTsort?  Why? 

 



Sorting with BSTs 

● Since run time is proportional to the number of 

comparisons, same time as quicksort: O(n lg n) 

● Which do you think is better, quicksort or 

BSTSort?  Why? 

● A: quicksort 

■ Better constants 

■ Sorts in place 

■ Doesn’t need to build data structure 

 



More BST Operations 

● BSTs are good for more than sorting.  For 

example, can implement a priority queue 

● What operations must a priority queue have? 

■ Insert 

■ Minimum 

■ Extract-Min 

 

 



BST Operations: Minimum 

● How can we implement a Minimum() query? 

● What is the running time? 

 



BST Operations: Successor 

● For deletion, we will need a Successor() 

operation 

● Draw Fig 13.2 

● What is the successor of node 3?  Node 15?  

Node 13? 

● What are the general rules for finding the 

successor of node x?  (hint: two cases)  



BST Operations: Successor 

● Two cases: 

■ x has a right subtree: successor is minimum node 

in right subtree 

■ x has no right subtree: successor is first ancestor of 

x whose left child is also ancestor of x 

○ Intuition: As long as you move to the left up the tree, 

you’re visiting smaller nodes.   

● Predecessor: similar algorithm 



BST Operations: Delete 

● Deletion is a bit tricky 

● 3 cases: 

■ x has no children:  

○ Remove x 

■ x has one child:  

○ Splice out x 

■ x has two children:  

○ Swap x with successor 

○ Perform case 1 or 2 to delete it 

 

F 

B H 

K D A 

C 
Example: delete K 

or H or B 



BST Operations: Delete 

● Why will case 2 always go to case 0 or case 1? 

● A: because when x has 2 children, its 

successor is the minimum in its right subtree 

● Could we swap x with predecessor instead of 

successor? 

● A: yes.  Would it be a good idea? 

● A: might be good to alternate 

● Up next: guaranteeing a O(lg n) height tree 

 


