Algorithms

Medians and Order Statistics Structures for Dynamic Sets

Homework 3

- On the web shortly...

■ Due Wednesday at the beginning of class (test)

Review: Radix Sort

- Radix sort:

- Assumption: input has d digits ranging from 0 to k
- Basic idea:
- Sort elements by digit starting with least significant
- Use a stable sort (like counting sort) for each stage
- Each pass over n numbers with d digits takes time $\mathrm{O}(n+k)$, so total time $\mathrm{O}(d n+d k)$
- When d is constant and $k=\mathrm{O}(n)$, takes $\mathrm{O}(n)$ time

■ Fast! Stable! Simple!

- Doesn't sort in place

Review: Bucket Sort

- Bucket sort

- Assumption: input is n reals from $[0,1)$
- Basic idea:
- Create n linked lists (buckets) to divide interval $[0,1$) into subintervals of size $1 / n$
- Add each input element to appropriate bucket and sort buckets with insertion sort

■ Uniform input distribution $\rightarrow \mathrm{O}(1)$ bucket size

- Therefore the expected total time is $\mathrm{O}(\mathrm{n})$
- These ideas will return when we study hash tables

Review: Order Statistics

- The i th order statistic in a set of n elements is the i th smallest element
- The minimum is thus the 1 st order statistic
- The maximum is (duh) the nth order statistic
- The median is the $n / 2$ order statistic
- If n is even, there are 2 medians
- Could calculate order statistics by sorting
- Time: O(n lg n) w/ comparison sort
- We can do better

Review: The Selection Problem

- The selection problem: find the i th smallest element of a set
- Two algorithms:
- A practical randomized algorithm with $\mathrm{O}(\mathrm{n})$ expected running time
- A cool algorithm of theoretical interest only with $\mathrm{O}(\mathrm{n})$ worst-case running time

Review: Randomized Selection

- Key idea: use partition() from quicksort
- But, only need to examine one subarray
- This savings shows up in running time: $\mathrm{O}(\mathrm{n})$

Review: Randomized Selection

RandomizedSelect(A, $\mathrm{P}, \mathrm{r}, \mathrm{i})$

```
    if (p == r) then return A[p];
    q = RandomizedPartition(A, p, r)
    k = q - p + 1;
    if (i == k) then return A[q]; // not in book
    if (i < k) then
        return RandomizedSelect(A, p, q-1, i);
    else
```

 return RandomizedSelect(A, q+1, r, i-k);

Review: Randomized Selection

- Average case

■ For upper bound, assume i th element always falls in larger side of partition:

$$
T(n) \leq \frac{1}{n} \sum_{k=0}^{n-1} T(\max (k, n-k-1))+\Theta(n)
$$

$$
\leq \frac{2}{n} \sum_{k=n / 2}^{n-1} T(k)+\Theta(n)
$$

■ We then showed that $\mathrm{T}(n)=\mathrm{O}(n)$ by substitution

Worst-Case Linear-Time Selection

- Randomized algorithm works well in practice
- What follows is a worst-case linear time algorithm, really of theoretical interest only
- Basic idea:
- Generate a good partitioning element
- Call this element x

Worst-Case Linear-Time Selection

- The algorithm in words:

1. Divide n elements into groups of 5
2. Find median of each group (How? How long?)
3. Use Select() recursively to find median x of the $\lfloor n / 5\rfloor$ medians
4. Partition the n elements around x. Let $k=\operatorname{rank}(x)$
5. if $(i==k)$ then return x
if $(\mathrm{i}<\mathrm{k})$ then use Select() recursively to find i th smallest element in first partition
else (i $>\mathrm{k}$) use Select() recursively to find $(i-k)$ th smallest element in last partition

Worst-Case Linear-Time Selection

- (Sketch situation on the board)
- How many of the 5 -element medians are $\leq x$?
- At least $1 / 2$ of the medians $=\lfloor\lfloor\mathrm{n} / 5\rfloor / 2\rfloor=\lfloor\mathrm{n} / 10\rfloor$
- How many elements are $\leq x$?
- At least $3\lfloor\mathrm{n} / 10\rfloor$ elements
- For large $n, \quad 3\lfloor\mathrm{n} / 10\rfloor \geq \mathrm{n} / 4 \quad$ (How large?)
- So at least $n / 4$ elements $\leq x$
- Similarly: at least $n / 4$ elements $\geq x$

Worst-Case Linear-Time Selection

- Thus after partitioning around x, step 5 will call Select() on at most $3 n / 4$ elements
- The recurrence is therefore:

$$
\begin{array}{rlr}
T(n) & \leq T(\lfloor n / 5\rfloor)+T(3 n / 4)+\Theta(n) & \\
& \leq T(n / 5)+T(3 n / 4)+\Theta(n) & \lfloor n / 5\rfloor \leq n / 5 \\
& \leq c n / 5+3 c n / 4+\Theta(n) & \text { Substitute } T(n)=c n \\
& =19 c n / 20+\Theta(n) & \text { Combine fractions } \\
& =c n-(c n / 20-\Theta(n)) & \text { Express in desired form } \\
& \leq c n \quad \text { if } c \text { is big enough } \text { What we set out to prove }
\end{array}
$$

Worst-Case Linear-Time Selection

- Intuitively:
- Work at each level is a constant fraction (19/20) smaller
- Geometric progression!
- Thus the $\mathrm{O}(\mathrm{n})$ work at the root dominates

Linear-Time Median Selection

- Given a "black box" $\mathrm{O}(\mathrm{n})$ median algorithm, what can we do?
- i th order statistic:
- Find median x
- Partition input around x
- if $(i \leq(\mathrm{n}+1) / 2)$ recursively find i th element of first half
- else find $(i-(\mathrm{n}+1) / 2)$ th element in second half
$\circ \mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{n})$
- Can you think of an application to sorting?

Linear-Time Median Selection

- Worst-case $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ quicksort
- Find median x and partition around it
- Recursively quicksort two halves
- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

Structures...

- Done with sorting and order statistics for now
- Ahead of schedule, so...
- Next part of class will focus on data structures
- We will get a couple in before the first exam
- Yes, these will be on this exam

Dynamic Sets

- Next few lectures will focus on data structures rather than straight algorithms
- In particular, structures for dynamic sets
- Elements have a key and satellite data
$■$ Dynamic sets support queries such as:
- Search(S, k), Minimum(S), Maximum(S), Successor(S, x), Predecessor(S, x)
- They may also support modifying operations like:
$\circ \operatorname{Insert}(\mathbf{S}, \boldsymbol{x}), \operatorname{Delete}(\mathbf{S , x}$)

Binary Search Trees

- Binary Search Trees (BSTs) are an important data structure for dynamic sets
- In addition to satellite data, eleements have:
- key: an identifying field inducing a total ordering
- left: pointer to a left child (may be NULL)
- right: pointer to a right child (may be NULL)
- p: pointer to a parent node (NULL for root)

Binary Search Trees

- BST property: $\operatorname{key}[\operatorname{left}(\mathrm{x})] \leq \operatorname{key}[\mathrm{x}] \leq \operatorname{key}[\operatorname{right}(\mathrm{x})]$
- Example:

Inorder Tree Walk

- What does the following code do? TreeWalk(x)

$$
\begin{aligned}
& \text { TreeWalk(left[x]); } \\
& \text { print(x); } \\
& \text { TreeWalk(right[x]); }
\end{aligned}
$$

- A: prints elements in sorted (increasing) order
- This is called an inorder tree walk
- Preorder tree walk: print root, then left, then right
- Postorder tree walk: print left, then right, then root

Inorder Tree Walk

- Example:

- How long will a tree walk take?
- Prove that inorder walk prints in monotonically increasing order

Operations on BSTs: Search

- Given a key and a pointer to a node, returns an element with that key or NULL:

TreeSearch (x, k)

$$
\begin{aligned}
& \text { if }(x=N U L L \text { or } k=\text { key }[x]) \\
& \quad \text { return } x ; \\
& \text { if }(k<k e y[x]) \\
& \text { return TreeSearch (left }[x], k) \text {; } \\
& \text { else }
\end{aligned}
$$

return TreeSearch (right[x], k);

BST Search: Example

- Search for D and C :

Operations on BSTs: Search

- Here's another function that does the same:

TreeSearch (\mathbf{x}, \mathbf{k}) while (x ! = NULL and $k!=$ key[x])
if (k < key[x])
x $=$ left[x];
else

$$
\mathbf{x}=\operatorname{right}[\mathrm{x}] ;
$$

return \mathbf{x};

- Which of these two functions is more efficient?

Operations of BSTs: Insert

- Adds an element x to the tree so that the binary search tree property continues to hold
- The basic algorithm
- Like the search procedure above
- Insert x in place of NULL
- Use a "trailing pointer" to keep track of where you came from (like inserting into singly linked list)

BST Insert: Example

- Example: Insert C

BST Search/Insert: Running Time

- What is the running time of TreeSearch() or TreeInsert()?
- A: $\mathrm{O}(h)$, where $h=$ height of tree
- What is the height of a binary search tree?
- A: worst case: $h=\mathrm{O}(n)$ when tree is just a linear string of left or right children
- We'll keep all analysis in terms of h for now
- Later we'll see how to maintain $h=\mathrm{O}(\lg n)$

Sorting With Binary Search Trees

- Informal code for sorting array A of length n : BSTSort(A)

for $i=1$ to n

TreeInsert(A[i]);
InorderTreeWalk (root) ;

- Argue that this is $\Omega(n \lg n)$
- What will be the running time in the
- Worst case?

■ Average case? (hint: remind you of anything?)

Sorting With BSTs

- Average case analysis

■ It's a form of quicksort!

```
for i=1 to n
    TreeInsert(A[i]);
InorderTreeWalk(root);
```


Sorting with BSTs

- Same partitions are done as with quicksort, but in a different order

■ In previous example

- Everything was compared to 3 once
- Then those items <3 were compared to 1 once
- Etc.
- Same comparisons as quicksort, different order!
- Example: consider inserting 5

Sorting with BSTs

- Since run time is proportional to the number of comparisons, same time as quicksort: $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- Which do you think is better, quicksort or BSTsort? Why?

Sorting with BSTs

- Since run time is proportional to the number of comparisons, same time as quicksort: $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- Which do you think is better, quicksort or BSTSort? Why?
- A: quicksort
- Better constants
- Sorts in place
- Doesn't need to build data structure

More BST Operations

- BSTs are good for more than sorting. For example, can implement a priority queue
- What operations must a priority queue have?
- Insert
- Minimum
- Extract-Min

BST Operations: Minimum

- How can we implement a Minimum() query?
- What is the running time?

BST Operations: Successor

- For deletion, we will need a Successor() operation
- Draw Fig 13.2
- What is the successor of node 3? Node 15? Node 13?
- What are the general rules for finding the successor of node x ? (hint: two cases)

BST Operations: Successor

- Two cases:
- x has a right subtree: successor is minimum node in right subtree
- x has no right subtree: successor is first ancestor of x whose left child is also ancestor of x
\circ Intuition: As long as you move to the left up the tree, you're visiting smaller nodes.
- Predecessor: similar algorithm

BST Operations: Delete

- Deletion is a bit tricky
- 3 cases:
- x has no children:
- Remove x

■ x has one child:

- Splice out x

- x has two children:
- Swap x with successor
- Perform case 1 or 2 to delete it

BST Operations: Delete

- Why will case 2 always go to case 0 or case 1?
- A: because when x has 2 children, its successor is the minimum in its right subtree
- Could we swap x with predecessor instead of successor?
- A: yes. Would it be a good idea?
- A: might be good to alternate
- Up next: guaranteeing a $O(\lg n)$ height tree

