
Algorithms

Medians and Order Statistics

Structures for Dynamic Sets

Homework 3

● On the web shortly…

■ Due Wednesday at the beginning of class (test)

Review: Radix Sort

● Radix sort:

■ Assumption: input has d digits ranging from 0 to k

■ Basic idea:

○ Sort elements by digit starting with least significant

○ Use a stable sort (like counting sort) for each stage

■ Each pass over n numbers with d digits takes time

O(n+k), so total time O(dn+dk)

○ When d is constant and k=O(n), takes O(n) time

■ Fast! Stable! Simple!

■ Doesn’t sort in place

Review: Bucket Sort

● Bucket sort

■ Assumption: input is n reals from [0, 1)

■ Basic idea:

○ Create n linked lists (buckets) to divide interval [0,1)

into subintervals of size 1/n

○ Add each input element to appropriate bucket and sort

buckets with insertion sort

■ Uniform input distribution O(1) bucket size

○ Therefore the expected total time is O(n)

■ These ideas will return when we study hash tables

Review: Order Statistics

● The ith order statistic in a set of n elements is

the ith smallest element

● The minimum is thus the 1st order statistic

● The maximum is (duh) the nth order statistic

● The median is the n/2 order statistic

■ If n is even, there are 2 medians

● Could calculate order statistics by sorting

■ Time: O(n lg n) w/ comparison sort

■ We can do better

Review: The Selection Problem

● The selection problem: find the ith smallest

element of a set

● Two algorithms:

■ A practical randomized algorithm with O(n)

expected running time

■ A cool algorithm of theoretical interest only with

O(n) worst-case running time

Review: Randomized Selection

● Key idea: use partition() from quicksort

■ But, only need to examine one subarray

■ This savings shows up in running time: O(n)

 A[q] A[q]

q p r

Review: Randomized Selection

RandomizedSelect(A, p, r, i)

 if (p == r) then return A[p];

 q = RandomizedPartition(A, p, r)

 k = q - p + 1;

 if (i == k) then return A[q]; // not in book

 if (i < k) then

 return RandomizedSelect(A, p, q-1, i);

 else

 return RandomizedSelect(A, q+1, r, i-k);

 A[q] A[q]

k

q p r

Review: Randomized Selection

● Average case

■ For upper bound, assume ith element always falls

in larger side of partition:

■ We then showed that T(n) = O(n) by substitution

1

2/

1

0

2

1,max
1

n

nk

n

k

nkT
n

nknkT
n

nT

Worst-Case Linear-Time Selection

● Randomized algorithm works well in practice

● What follows is a worst-case linear time

algorithm, really of theoretical interest only

● Basic idea:

■ Generate a good partitioning element

■ Call this element x

Worst-Case Linear-Time Selection

● The algorithm in words:

1. Divide n elements into groups of 5

2. Find median of each group (How? How long?)

3. Use Select() recursively to find median x of the n/5
 medians

4. Partition the n elements around x. Let k = rank(x)

5. if (i == k) then return x

 if (i < k) then use Select() recursively to find ith smallest

 element in first partition

 else (i > k) use Select() recursively to find (i-k)th smallest

 element in last partition

Worst-Case Linear-Time Selection

● (Sketch situation on the board)

● How many of the 5-element medians are x?

■ At least 1/2 of the medians = n/5 / 2 = n/10

● How many elements are x?

■ At least 3 n/10 elements

● For large n, 3 n/10 n/4 (How large?)

● So at least n/4 elements x

● Similarly: at least n/4 elements x

Worst-Case Linear-Time Selection

● Thus after partitioning around x, step 5 will

call Select() on at most 3n/4 elements

● The recurrence is therefore:

enough big is if

20

)(2019

)(435

435

435)(

ccn

ncncn

ncn

ncncn

nnTnT

nnTnTnT

???

???

???

???

???

 n/5 n/5

Substitute T(n) = cn

Combine fractions

Express in desired form

What we set out to prove

Worst-Case Linear-Time Selection

● Intuitively:

■ Work at each level is a constant fraction (19/20)

smaller

○ Geometric progression!

■ Thus the O(n) work at the root dominates

Linear-Time Median Selection

● Given a “black box” O(n) median algorithm,
what can we do?

■ ith order statistic:

○ Find median x

○ Partition input around x

○ if (i (n+1)/2) recursively find ith element of first half

○ else find (i - (n+1)/2)th element in second half

○ T(n) = T(n/2) + O(n) = O(n)

■ Can you think of an application to sorting?

Linear-Time Median Selection

● Worst-case O(n lg n) quicksort

■ Find median x and partition around it

■ Recursively quicksort two halves

■ T(n) = 2T(n/2) + O(n) = O(n lg n)

Structures…

● Done with sorting and order statistics for now

● Ahead of schedule, so…

● Next part of class will focus on data structures

● We will get a couple in before the first exam

■ Yes, these will be on this exam

Dynamic Sets

● Next few lectures will focus on data structures

rather than straight algorithms

● In particular, structures for dynamic sets

■ Elements have a key and satellite data

■ Dynamic sets support queries such as:

○ Search(S, k), Minimum(S), Maximum(S),

Successor(S, x), Predecessor(S, x)

■ They may also support modifying operations like:

○ Insert(S, x), Delete(S, x)

Binary Search Trees

● Binary Search Trees (BSTs) are an important

data structure for dynamic sets

● In addition to satellite data, eleements have:

■ key: an identifying field inducing a total ordering

■ left: pointer to a left child (may be NULL)

■ right: pointer to a right child (may be NULL)

■ p: pointer to a parent node (NULL for root)

Binary Search Trees

● BST property:

 key[left(x)] key[x] key[right(x)]

● Example:

F

B H

K D A

Inorder Tree Walk

● What does the following code do?

TreeWalk(x)

 TreeWalk(left[x]);

 print(x);

 TreeWalk(right[x]);

● A: prints elements in sorted (increasing) order

● This is called an inorder tree walk

■ Preorder tree walk: print root, then left, then right

■ Postorder tree walk: print left, then right, then root

Inorder Tree Walk

● Example:

● How long will a tree walk take?

● Prove that inorder walk prints in

monotonically increasing order

F

B H

K D A

Operations on BSTs: Search

● Given a key and a pointer to a node, returns an

element with that key or NULL:

 TreeSearch(x, k)

 if (x = NULL or k = key[x])

 return x;

 if (k < key[x])

 return TreeSearch(left[x], k);

 else

 return TreeSearch(right[x], k);

BST Search: Example

● Search for D and C:

F

B H

K D A

Operations on BSTs: Search

● Here’s another function that does the same:

 TreeSearch(x, k)

 while (x != NULL and k != key[x])

 if (k < key[x])

 x = left[x];

 else

 x = right[x];

 return x;

● Which of these two functions is more efficient?

Operations of BSTs: Insert

● Adds an element x to the tree so that the binary

search tree property continues to hold

● The basic algorithm

■ Like the search procedure above

■ Insert x in place of NULL

■ Use a “trailing pointer” to keep track of where you
came from (like inserting into singly linked list)

BST Insert: Example

● Example: Insert C

F

B H

K D A

C

BST Search/Insert: Running Time

● What is the running time of TreeSearch() or

TreeInsert()?

● A: O(h), where h = height of tree

● What is the height of a binary search tree?

● A: worst case: h = O(n) when tree is just a

linear string of left or right children

■ We’ll keep all analysis in terms of h for now

■ Later we’ll see how to maintain h = O(lg n)

Sorting With Binary Search Trees

● Informal code for sorting array A of length n:

BSTSort(A)

 for i=1 to n

 TreeInsert(A[i]);

 InorderTreeWalk(root);

● Argue that this is (n lg n)

● What will be the running time in the

■ Worst case?

■ Average case? (hint: remind you of anything?)

Sorting With BSTs

● Average case analysis

■ It’s a form of quicksort!

for i=1 to n

 TreeInsert(A[i]);

InorderTreeWalk(root);

3 1 8 2 6 7 5

5 7

1 2 8 6 7 5

2 6 7 5

3

1 8

2 6

5 7

Sorting with BSTs

● Same partitions are done as with quicksort, but

in a different order

■ In previous example

○ Everything was compared to 3 once

○ Then those items < 3 were compared to 1 once

○ Etc.

■ Same comparisons as quicksort, different order!

○ Example: consider inserting 5

Sorting with BSTs

● Since run time is proportional to the number of

comparisons, same time as quicksort: O(n lg n)

● Which do you think is better, quicksort or

BSTsort? Why?

Sorting with BSTs

● Since run time is proportional to the number of

comparisons, same time as quicksort: O(n lg n)

● Which do you think is better, quicksort or

BSTSort? Why?

● A: quicksort

■ Better constants

■ Sorts in place

■ Doesn’t need to build data structure

More BST Operations

● BSTs are good for more than sorting. For

example, can implement a priority queue

● What operations must a priority queue have?

■ Insert

■ Minimum

■ Extract-Min

BST Operations: Minimum

● How can we implement a Minimum() query?

● What is the running time?

BST Operations: Successor

● For deletion, we will need a Successor()

operation

● Draw Fig 13.2

● What is the successor of node 3? Node 15?

Node 13?

● What are the general rules for finding the

successor of node x? (hint: two cases)

BST Operations: Successor

● Two cases:

■ x has a right subtree: successor is minimum node

in right subtree

■ x has no right subtree: successor is first ancestor of

x whose left child is also ancestor of x

○ Intuition: As long as you move to the left up the tree,

you’re visiting smaller nodes.

● Predecessor: similar algorithm

BST Operations: Delete

● Deletion is a bit tricky

● 3 cases:

■ x has no children:

○ Remove x

■ x has one child:

○ Splice out x

■ x has two children:

○ Swap x with successor

○ Perform case 1 or 2 to delete it

F

B H

K D A

C
Example: delete K

or H or B

BST Operations: Delete

● Why will case 2 always go to case 0 or case 1?

● A: because when x has 2 children, its

successor is the minimum in its right subtree

● Could we swap x with predecessor instead of

successor?

● A: yes. Would it be a good idea?

● A: might be good to alternate

● Up next: guaranteeing a O(lg n) height tree

