# Algorithms

#### Administrative

- Reminder: homework 3 due today
- Reminder: Exam 1 Wednesday, Feb 13
  - 1 8.5x11 crib sheet allowed
    - Both sides, mechanical reproduction okay
    - You will turn it in with the exam

# **Review Of Topics**

- Asymptotic notation
- Solving recurrences
- Sorting algorithms
  - Insertion sort
  - Merge sort
  - Heap sort
  - Quick sort
  - Counting sort
  - Radix sort

- Medians/order statistics
  - Randomized algorithm
  - Worst-case algorithm
- Structures for dynamic sets
  - Priority queues
  - BST basics

#### **Review: Induction**

- Suppose
  - S(k) is true for fixed constant k
    - $\circ$  Often k = 0
  - $S(n) \rightarrow S(n+1)$  for all  $n \ge k$
- Then S(n) is true for all n >= k

# **Proof By Induction**

- Claim:S(n) is true for all n >= k
- Basis:
  - Show formula is true when n = k
- Inductive hypothesis:
  - Assume formula is true for an arbitrary n

• Step:

■ Show that formula is then true for n+1

# Induction Example: Gaussian Closed Form

• Prove  $1 + 2 + 3 + \ldots + n = n(n+1) / 2$ 

Basis:

• If n = 0, then 0 = 0(0+1) / 2

Inductive hypothesis:

• Assume 1 + 2 + 3 + ... + n = n(n+1) / 2

■ Step (show true for n+1):

 $1 + 2 + \ldots + n + n + 1 = (1 + 2 + \ldots + n) + (n+1)$ 

= n(n+1)/2 + n+1 = [n(n+1) + 2(n+1)]/2

= (n+1)(n+2)/2 = (n+1)(n+1+1)/2

# Induction Example: Geometric Closed Form

- Prove  $a^0 + a^1 + \dots + a^n = (a^{n+1} 1)/(a 1)$  for all  $a \neq 1$ 
  - Basis: show that  $a^0 = (a^{0+1} 1)/(a 1)$  $a^0 = 1 = (a^1 - 1)/(a - 1)$
  - Inductive hypothesis:
    - Assume  $a^0 + a^1 + \ldots + a^n = (a^{n+1} 1)/(a 1)$

• Step (show true for n+1):  

$$a^{0} + a^{1} + \dots + a^{n+1} = a^{0} + a^{1} + \dots + a^{n} + a^{n+1}$$
  
 $= (a^{n+1} - 1)/(a - 1) + a^{n+1} = (a^{n+1+1} - 1)/(a - 1)$ 

# Review: Asymptotic Performance

- *Asymptotic performance*: How does algorithm behave as the problem size gets very large?
  - Running time
  - Memory/storage requirements
  - Use the RAM model:
    - All memory equally expensive to access
    - No concurrent operations
    - All reasonable instructions take unit time
      - Except, of course, function calls
    - Constant word size

# **Review: Running Time**

- Number of primitive steps that are executed
  - Except for time of executing a function call most statements roughly require the same amount of time
  - We can be more exact if need be
- Worst case vs. average case

### **Review: Asymptotic Notation**

- Upper Bound Notation:
  - f(n) is O(g(n)) if there exist positive constants cand  $n_0$  such that  $f(n) \le c \cdot g(n)$  for all  $n \ge n_0$
  - Formally,  $O(g(n)) = \{ f(n): \exists positive constants c and n_0 such that f(n) \le c \cdot g(n) \forall n \ge n_0 \}$
- Big O fact:
  - A polynomial of degree k is  $O(n^k)$

#### **Review: Asymptotic Notation**

- Asymptotic lower bound:
  - f(n) is  $\Omega(g(n))$  if  $\exists$  positive constants *c* and  $n_0$  such that  $0 \le c \cdot g(n) \le f(n) \forall n \ge n_0$
- Asymptotic tight bound:
  - f(n) is  $\Theta(g(n))$  if  $\exists$  positive constants  $c_1, c_2$ , and  $n_0$ such that  $c_1 g(n) \le f(n) \le c_2 g(n) \forall n \ge n_0$
  - $f(n) = \Theta(g(n))$  if and only if f(n) = O(g(n)) AND  $f(n) = \Omega(g(n))$

# Review: Other Asymptotic Notations

- A function f(n) is o(g(n)) if  $\exists$  positive constants *c* and  $n_0$  such that  $f(n) < c g(n) \forall n \ge n_0$
- A function f(n) is  $\omega(g(n))$  if  $\exists$  positive constants *c* and  $n_0$  such that  $c g(n) < f(n) \forall n \ge n_0$
- Intuitively,
  - o() is like <
- $\omega$ () is like >
- $\Theta$ () is like =
- O() is like  $\leq$   $\Omega$ () is like  $\geq$

#### **Review: Merge Sort**

```
MergeSort(A, left, right) {
  if (left < right) {</pre>
      mid = floor((left + right) / 2);
      MergeSort(A, left, mid);
      MergeSort(A, mid+1, right);
      Merge(A, left, mid, right);
  }
}
// Merge() takes two sorted subarrays of A and
// merges them into a single sorted subarray of A.
// Code for this is in the book. It requires O(n)
// time, and *does* require allocating O(n) space
```

### **Review: Analysis of Merge Sort**

| Statement                                   | Effort       |
|---------------------------------------------|--------------|
| MergeSort(A, left, right) {                 | T(n)         |
| if (left < right) {                         | $\Theta$ (1) |
| <pre>mid = floor((left + right) / 2);</pre> | Θ(1)         |
| <pre>MergeSort(A, left, mid);</pre>         | T(n/2)       |
| <pre>MergeSort(A, mid+1, right);</pre>      | T(n/2)       |
| Merge(A, left, mid, right);                 | Θ(n)         |
| }                                           |              |
| So $T(n) = \Theta(1)$ when $n = 1$ and      |              |

- So  $T(n) = \Theta(1)$  when n = 1, and  $2T(n/2) + \Theta(n)$  when n > 1
- This expression is a *recurrence*

### **Review: Solving Recurrences**

- Substitution method
- Iteration method
- Master method

## **Review: Solving Recurrences**

- The substitution method
  - A.k.a. the "making a good guess method"
  - Guess the form of the answer, then use induction to find the constants and show that solution works
  - Example: merge sort
    - $\circ T(n) = 2T(n/2) + cn$
    - $\circ$  We guess that the answer is O(n lg n)
    - Prove it by induction

• Can similarly show  $T(n) = \Omega(n \lg n)$ , thus  $\Theta(n \lg n)$ 

### **Review: Solving Recurrences**

- The "iteration method"
  - Expand the recurrence
  - Work some algebra to express as a summation
  - Evaluate the summation
- We showed several examples including complex ones:

$$T(n) = \begin{cases} c & n = 1\\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

#### **Review: The Master Theorem**

- Given: a *divide and conquer* algorithm
  - An algorithm that divides the problem of size n into a subproblems, each of size n/b
  - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function f(n)
- Then, the Master Theorem gives us a cookbook for the algorithm's running time:

#### **Review: The Master Theorem**

• if T(n) = aT(n/b) + f(n) then

$$T(n) = \begin{cases} \Theta(n^{\log_{b} a}) & f(n) = O(n^{\log_{b} a - \varepsilon}) \\ \Theta(n^{\log_{b} a} \log n) & f(n) = \Theta(n^{\log_{b} a}) \\ \Theta(f(n)) & f(n) = \Omega(n^{\log_{b} a + \varepsilon}) \text{AND} \\ af(n/b) < cf(n) & \text{for large } n \end{cases} \begin{cases} \varepsilon > 0 \\ c < 1 \end{cases}$$

#### **Review: Heaps**

• A *heap* is a "complete" binary tree, usually represented as an array:



#### **Review: Heaps**

To represent a heap as an array:
Parent(i) { return [i/2]; }
Left(i) { return 2\*i; }
right(i) { return 2\*i + 1; }

### **Review: The Heap Property**

- Heaps also satisfy the *heap property*:
  - $A[Parent(i)] \ge A[i]$  for all nodes i > 1
    - In other words, the value of a node is at most the value of its parent
    - The largest value is thus stored at the root (A[1])
- Because the heap is a binary tree, the height of any node is at most Θ(lg n)

# Review: Heapify()

- **Heapify()**: maintain the heap property
  - Given: a node i in the heap with children l and r
  - Given: two subtrees rooted at *l* and *r*, assumed to be heaps
  - Action: let the value of the parent node "float down" so subtree at *i* satisfies the heap property
    - If A[i] < A[1] or A[i] < A[r], swap A[i] with the largest of A[1] and A[r]
    - Recurse on that subtree
  - Running time: O(h), h = height of heap = O(lg n)

# Review: BuildHeap()

- We can build a heap in a bottom-up manner by running **Heapify()** on successive subarrays
  - Fact: for array of length *n*, all elements in range  $A[\lfloor n/2 \rfloor + 1 ... n]$  are heaps (*Why?*)
  - So:
    - Walk backwards through the array from n/2 to 1, calling **Heapify()** on each node.
    - Order of processing guarantees that the children of node *i* are heaps when *i* is processed

#### Review: BuildHeap()

```
// given an unsorted array A, make A a heap
BuildHeap(A)
```

```
heap_size(A) = length(A);
for (i = [length[A]/2] downto 1)
Heapify(A, i);
```

{

}

## **Review: Priority Queues**

- Heapsort is a nice algorithm, but in practice Quicksort (coming up) usually wins
- But the heap data structure is incredibly useful for implementing *priority queues* 
  - A data structure for maintaining a set *S* of elements, each with an associated value or *key*
  - Supports the operations Insert(),
     Maximum(), and ExtractMax()
  - What might a priority queue be useful for?

# **Review: Priority Queue Operations**

- Insert(S, x) inserts the element x into set S
- Maximum(S) returns the element of S with the maximum key
- ExtractMax(S) removes and returns the element of S with the maximum key

# Review: Implementing Priority Queues

```
HeapInsert(A, key) // what's running time?
{
    heap size[A] ++;
    i = heap size[A];
    while (i > 1 AND A[Parent(i)] < key)</pre>
    {
        A[i] = A[Parent(i)];
        i = Parent(i);
    }
    A[i] = key;
```

# **Review:** Implementing Priority Queues

```
HeapExtractMax(A)
    if (heap size[A] < 1) { error; }</pre>
    \max = A[1];
    A[1] = A[heap size[A]]
    heap size[A] --;
    Heapify(A, 1);
    return max;
```

{

}

#### **Review: Quicksort**

- Another divide-and-conquer algorithm
  - The array A[p..r] is *partitioned* into two nonempty subarrays A[p..q] and A[q+1..r]
    - Invariant: All elements in A[p..q] are less than all elements in A[q+1..r]
  - The subarrays are recursively sorted by calls to quicksort
  - Unlike merge sort, no combining step: two subarrays form an already-sorted array

#### **Review: Quicksort Code**

```
Quicksort(A, p, r)
{
    if (p < r)
    {
        q = Partition(A, p, r);
        Quicksort(A, p, q);
        Quicksort(A, q+1, r);
    }
```

#### **Review:** Partition

- Clearly, all the action takes place in the **partition()** function
  - Rearranges the subarray in place
  - End result:
    - Two subarrays
    - All values in first subarray  $\leq$  all values in second
  - Returns the index of the "pivot" element separating the two subarrays

## **Review: Partition In Words**

- Partition(A, p, r):
  - Select an element to act as the "pivot" (which?)
  - Grow two regions, A[p..i] and A[j..r]
    - All elements in A[p..i] <= pivot
    - All elements in A[j..r] >= pivot
- → Increment i until A[i] >= pivot
  - Decrement j until A[j] <= pivot</p>
  - Swap A[i] and A[j]
  - Repeat until i >= j
  - Return j

Note: slightly different from old book's partition(), very different from new book

## **Review: Analyzing Quicksort**

- What will be the worst case for the algorithm?
  - Partition is always unbalanced
- What will be the best case for the algorithm?
  Partition is balanced
- Which is more likely?
  - The latter, by far, except...
- Will any particular input elicit the worst case?
  - Yes: Already-sorted input

### **Review: Analyzing Quicksort**

• In the worst case:

 $T(1) = \Theta(1)$  $T(n) = T(n - 1) + \Theta(n)$ 

- Works out to
  - $T(n) = \Theta(n^2)$

## **Review: Analyzing Quicksort**

• In the best case:

 $T(n) = 2T(n/2) + \Theta(n)$ 

• What does this work out to?

 $T(n) = \Theta(n \lg n)$ 

Review: Analyzing Quicksort (Average Case)

- Intuitively, the O(n) cost of a bad split (or 2 or 3 bad splits) can be absorbed into the O(n) cost of each good split
- Thus running time of alternating bad and good splits is still O(n lg n), with slightly higher constants
- We can be more rigorous...

## Analyzing Quicksort: Average Case

- So partition generates splits

   (0:n-1, 1:n-2, 2:n-3, ..., n-2:1, n-1:0)
   each with probability 1/n
- If T(n) is the expected running time,

$$T(n) = \frac{1}{n} \sum_{k=0}^{n-1} \left[ T(k) + T(n-1-k) \right] + \Theta(n)$$

• What is each term under the summation for?

• What is the  $\Theta(n)$  term for?

# Analyzing Quicksort: Average Case

- So partition generates splits

   (0:n-1, 1:n-2, 2:n-3, ..., n-2:1, n-1:0)
   each with probability 1/n
- If T(n) is the expected running time,

$$T(n) = \frac{1}{n} \sum_{k=0}^{n-1} \left[ T(k) + T(n-1-k) \right] + \Theta(n)$$

• What are terms under the summation for? the  $\Theta(n)$ ?

• Massive proof that you should look over

- Insertion sort:
  - Easy to code
  - Fast on small inputs (less than ~50 elements)
  - Fast on nearly-sorted inputs
  - O(n<sup>2</sup>) worst case
  - O(n<sup>2</sup>) average (equally-likely inputs) case
  - O(n<sup>2</sup>) reverse-sorted case

- Merge sort:
  - Divide-and-conquer:
    - Split array in half
    - Recursively sort subarrays
    - Linear-time merge step
  - O(n lg n) worst case
  - Doesn't sort in place

- Heap sort:
  - Uses the very useful heap data structure
    - Complete binary tree
    - Heap property: parent key > children's keys
  - O(n lg n) worst case
  - Sorts in place
  - Fair amount of shuffling memory around

- Quick sort:
  - Divide-and-conquer:
    - Partition array into two subarrays, recursively sort
    - All of first subarray < all of second subarray
    - No merge step needed!
  - O(n lg n) average case
  - Fast in practice
  - O(n<sup>2</sup>) worst case
    - Naïve implementation: worst case on sorted input
    - Address this with randomized quicksort

#### **Review: Comparison Sorts**

- Comparison sorts: O(n lg n) at best
  - Model sort with decision tree
  - Path down tree = execution trace of algorithm
  - Leaves of tree = possible permutations of input
  - Tree must have n! leaves, so O(n lg n) height

# **Review: Counting Sort**

- Counting sort:
  - Assumption: input is in the range 1..k
  - Basic idea:
    - Count number of elements  $k \leq$  each element *i*
    - $\circ$  Use that number to place *i* in position *k* of sorted array
  - No comparisons! Runs in time O(n + k)
  - Stable sort
  - Does not sort in place:
    - $\circ$  O(n) array to hold sorted output
    - O(k) array for scratch storage

#### **Review: Counting Sort**

| 1  | CountingSort(A, B, k) |
|----|-----------------------|
| 2  | for i=1 to k          |
| 3  | C[i] = 0;             |
| 4  | for j=1 to n          |
| 5  | C[A[j]] += 1;         |
| 6  | for i=2 to k          |
| 7  | C[i] = C[i] + C[i-1]; |
| 8  | for j=n downto 1      |
| 9  | B[C[A[j]]] = A[j];    |
| 10 | C[A[j]] -= 1;         |

### **Review: Radix Sort**

- Radix sort:
  - Assumption: input has d digits ranging from 0 to k
    Basic idea:
    - Sort elements by digit starting with *least* significant
    - Use a stable sort (like counting sort) for each stage
  - Each pass over *n* numbers with *d* digits takes time O(n+k), so total time O(dn+dk)
    - When *d* is constant and k=O(n), takes O(n) time
  - Fast! Stable! Simple!
  - Doesn't sort in place

### **Review: Bucket Sort**

- Bucket sort
  - Assumption: input is *n* reals from [0, 1)
  - Basic idea:
    - Create *n* linked lists (*buckets*) to divide interval [0,1) into subintervals of size 1/*n*
    - Add each input element to appropriate bucket and sort buckets with insertion sort
  - Uniform input distribution  $\rightarrow$  O(1) bucket size

 $\circ$  Therefore the expected total time is O(n)

These ideas will return when we study *hash tables* 

### **Review: Order Statistics**

- The *i*th *order statistic* in a set of *n* elements is the *i*th smallest element
- The *minimum* is thus the 1st order statistic
- The *maximum* is (duh) the *n*th order statistic
- The *median* is the n/2 order statistic
  - If *n* is even, there are 2 medians
- Could calculate order statistics by sorting
  - Time: O(n lg n) w/ comparison sort
  - We can do better

### **Review: The Selection Problem**

- The *selection problem*: find the *i*th smallest element of a set
- Two algorithms:
  - A practical randomized algorithm with O(n) expected running time
  - A cool algorithm of theoretical interest only with O(n) worst-case running time

### **Review: Randomized Selection**

- Key idea: use partition() from quicksort
  - But, only need to examine one subarray
  - This savings shows up in running time: O(n)

| $\leq A[q]$ |   | $\geq A[q]$ |   |
|-------------|---|-------------|---|
| р           | q |             | r |

#### **Review: Randomized Selection**

RandomizedSelect(A, p, r, i)

return RandomizedSelect(A, q+1, r, i-k);

|   | k           |   |             |   |
|---|-------------|---|-------------|---|
|   | $\leq A[q]$ |   | $\geq A[q]$ |   |
| р |             | q |             | r |

#### **Review: Randomized Selection**

- Average case
  - For upper bound, assume *i*th element always falls in larger side of partition:

$$T(n) \leq \frac{1}{n} \sum_{k=0}^{n-1} T(\max(k, n-k-1)) + \Theta(n)$$

$$\leq \frac{2}{n} \sum_{k=n/2}^{n-1} T(k) + \Theta(n)$$

• We then showed that T(n) = O(n) by substitution

- Randomized algorithm works well in practice
- What follows is a worst-case linear time algorithm, really of theoretical interest only
- Basic idea:
  - Generate a good partitioning element
  - Call this element *x*

- The algorithm in words:
  - 1. Divide *n* elements into groups of 5
  - 2. Find median of each group (*How? How long?*)
  - 3. Use Select() recursively to find median x of the  $\lfloor n/5 \rfloor$  medians
  - 4. Partition the *n* elements around *x*. Let  $k = \operatorname{rank}(x)$
  - 5. **if** (i == k) **then** return x
    - if (i < k) then use Select() recursively to find ith smallest
       element in first partition</pre>
    - else (i > k) use Select() recursively to find (i-k)th smallest
       element in last partition

- (Sketch situation on the board)
- How many of the 5-element medians are ≤x?
  At least 1/2 of the medians = [[n/5]/2] = [n/10]
- *How many elements are*  $\leq x$ ?
  - At least  $3 \lfloor n/10 \rfloor$  elements
- For large n,  $3 \lfloor n/10 \rfloor \ge n/4$  (*How large?*)
- So at least n/4 elements  $\leq x$
- Similarly: at least n/4 elements  $\ge x$

- Thus after partitioning around *x*, step 5 will call Select() on at most 3*n*/4 elements
- The recurrence is therefore:  $T(n) \le T(|n/5|) + T(3n/4) + \Theta(n)$  $\leq T(n/5) + T(3n/4) + \Theta(n)$  $|n/5| \le n/5$  $\leq cn/5 + 3cn/4 + \Theta(n)$ Substitute T(n) = cn $= 19cn/20 + \Theta(n)$ **Combine fractions**  $= cn - (cn/20 - \Theta(n))$ Express in desired form  $\leq cn$  if c is big enough What we set out to prove

#### **Review: Binary Search Trees**

- *Binary Search Trees* (BSTs) are an important data structure for dynamic sets
- In addition to satellite data, elements have:
  - *key*: an identifying field inducing a total ordering
  - left: pointer to a left child (may be NULL)
  - *right*: pointer to a right child (may be NULL)
  - *p*: pointer to a parent node (NULL for root)

#### **Review: Binary Search Trees**

- BST property: key[left(x)] ≤ key[x] ≤ key[right(x)]
- Example:



#### Review: Inorder Tree Walk

- An *inorder walk* prints the set in sorted order: TreeWalk(x) TreeWalk(left[x]); print(x); TreeWalk(right[x]);
  - Easy to show by induction on the BST property
  - *Preorder tree walk*: print root, then left, then right
  - *Postorder tree walk*: print left, then right, then root