Algorithms

Administrative

- Reminder: homework 3 due today
- Reminder: Exam 1 Wednesday, Feb 13
- 18.5×11 crib sheet allowed
- Both sides, mechanical reproduction okay
- You will turn it in with the exam

Review Of Topics

- Asymptotic notation
- Solving recurrences
- Sorting algorithms
- Insertion sort
- Merge sort
- Heap sort
- Quick sort
- Counting sort
- Radix sort
- Medians/order statistics
- Randomized algorithm
- Worst-case algorithm
- Structures for dynamic sets
- Priority queues
- BST basics

Review: Induction

- Suppose
$-\mathrm{S}(\mathrm{k})$ is true for fixed constant k
- Often $\mathrm{k}=0$
- $\mathrm{S}(\mathrm{n}) \rightarrow \mathrm{S}(\mathrm{n}+1)$ for all $\mathrm{n}>=\mathrm{k}$
- Then $S(n)$ is true for all $n>=k$

Proof By Induction

- Claim: $\mathrm{S}(\mathrm{n})$ is true for all $\mathrm{n}>=\mathrm{k}$
- Basis:
- Show formula is true when $\mathrm{n}=\mathrm{k}$
- Inductive hypothesis:
- Assume formula is true for an arbitrary n
- Step:
- Show that formula is then true for $\mathrm{n}+1$

Induction Example: Gaussian Closed Form

- Prove $1+2+3+\ldots+\mathrm{n}=\mathrm{n}(\mathrm{n}+1) / 2$
- Basis:
- If $\mathrm{n}=0$, then $0=0(0+1) / 2$
- Inductive hypothesis:
- Assume $1+2+3+\ldots+n=n(n+1) / 2$
- Step (show true for $\mathrm{n}+1$):

$$
\begin{aligned}
& 1+2+\ldots+\mathrm{n}+\mathrm{n}+1=(1+2+\ldots+\mathrm{n})+(\mathrm{n}+1) \\
& =\mathrm{n}(\mathrm{n}+1) / 2+\mathrm{n}+1=[\mathrm{n}(\mathrm{n}+1)+2(\mathrm{n}+1)] / 2 \\
& =(\mathrm{n}+1)(\mathrm{n}+2) / 2=(\mathrm{n}+1)(\mathrm{n}+1+1) / 2
\end{aligned}
$$

Induction Example: Geometric Closed Form

- Prove $a^{0}+a^{1}+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1)$ for all $\mathrm{a} \neq 1$
- Basis: show that $\mathrm{a}^{0}=\left(\mathrm{a}^{0+1}-1\right) /(\mathrm{a}-1)$

$$
\mathrm{a}^{0}=1=\left(\mathrm{a}^{1}-1\right) /(a-1)
$$

- Inductive hypothesis:
- Assume $a^{0}+a^{1}+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1)$
- Step (show true for $\mathrm{n}+1$):

$$
\begin{aligned}
& a^{0}+a^{1}+\ldots+a^{n+1}=a^{0}+a^{1}+\ldots+a^{n}+a^{n+1} \\
& =\left(a^{n+1}-1\right) /(a-1)+a^{n+1}=\left(a^{n+1+1}-1\right) /(a-1)
\end{aligned}
$$

Review: Asymptotic Performance

- Asymptotic performance: How does algorithm behave as the problem size gets very large?
- Running time
- Memory/storage requirements
- Use the RAM model:
- All memory equally expensive to access
- No concurrent operations
- All reasonable instructions take unit time
- Except, of course, function calls
- Constant word size

Review: Running Time

- Number of primitive steps that are executed
- Except for time of executing a function call most statements roughly require the same amount of time
- We can be more exact if need be
- Worst case vs. average case

Review: Asymptotic Notation

- Upper Bound Notation:
$\square \mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist positive constants c and n_{0} such that $\mathrm{f}(\mathrm{n}) \leq c \cdot \mathrm{~g}(\mathrm{n})$ for all $\mathrm{n} \geq n_{0}$
- Formally, $\mathrm{O}(\mathrm{g}(\mathrm{n}))=\{\mathrm{f}(\mathrm{n}): \exists$ positive constants c and n_{0} such that $\mathrm{f}(\mathrm{n}) \leq c \cdot \mathrm{~g}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}$
- Big O fact:
- A polynomial of degree k is $\mathrm{O}\left(n^{k}\right)$

Review: Asymptotic Notation

- Asymptotic lower bound:
- $\mathrm{f}(\mathrm{n})$ is $\Omega(g(n))$ if \exists positive constants c and n_{0} such that $0 \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \quad \forall \mathrm{n} \geq n_{0}$
- Asymptotic tight bound:
- $\mathrm{f}(\mathrm{n})$ is $\Theta(g(n))$ if \exists positive constants c_{1}, c_{2}, and n_{0} such that $\quad c_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq c_{2} \mathrm{~g}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}$
- $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ if and only if $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ AND $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$

Review:

Other Asymptotic Notations

- A function $f(n)$ is $o(g(n))$ if \exists positive constants c and n_{0} such that

$$
\mathrm{f}(\mathrm{n})<c \mathrm{~g}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}
$$

- A function $\mathrm{f}(\mathrm{n})$ is $\omega(\mathrm{g}(\mathrm{n}))$ if \exists positive constants c and n_{0} such that

$$
c \mathrm{~g}(\mathrm{n})<\mathrm{f}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}
$$

- Intuitively,
- o() is like <
- $\omega()$ is like $>$
- $\Theta()$ is like $=$
- O() is like \leq
- $\Omega($) is like \geq

Review: Merge Sort

MergeSort(A, left, right) \{
if (left < right) \{
mid $=$ floor ((left + right) / 2) ;
MergeSort(A, left, mid);
MergeSort(A, mid+1, right) ;
Merge (A, left, mid, right) ;
\}
\}
// Merge() takes two sorted subarrays of A and
// merges them into a single sorted subarray of A.
// Code for this is in the book. It requires $O(n)$
// time, and *does* require allocating $O(n)$ space

Review: Analysis of Merge Sort

Statement

Effort
MergeSort(A, left, right) \{
if (left < right) \{
mid = floor ((left + right) / 2);
$T(n)$

MergeSort(A, left, mid);
MergeSort(A, mid+1, right);
$\Theta(1)$
$\Theta(1)$

Merge (A, left, mid, right);
\}
\}

- So $T(n)=\Theta(1)$ when $n=1$, and

$$
2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n}) \text { when } \mathrm{n}>1
$$

- This expression is a recurrence

Review: Solving Recurrences

- Substitution method
- Iteration method
- Master method

Review: Solving Recurrences

- The substitution method
- A.k.a. the "making a good guess method"
- Guess the form of the answer, then use induction to find the constants and show that solution works
- Example: merge sort
- $T(n)=2 T(n / 2)+c n$
- We guess that the answer is $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- Prove it by induction

■ Can similarly show $T(n)=\Omega(n \lg n)$, thus $\Theta(n \lg n)$

Review: Solving Recurrences

- The "iteration method"
- Expand the recurrence
- Work some algebra to express as a summation
- Evaluate the summation
- We showed several examples including complex ones:

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

Review: The Master Theorem

- Given: a divide and conquer algorithm
- An algorithm that divides the problem of size n into a subproblems, each of size n / b
- Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function $f(n)$
- Then, the Master Theorem gives us a cookbook for the algorithm's running time:

Review: The Master Theorem

- if $T(n)=a T(n / b)+f(n)$ then

Review: Heaps

- A heap is a "complete" binary tree, usually represented as an array:

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 16 & 14 & 10 & 8 & 7 & 9 & 3 & 2 & 4 & 1 \\
\hline
\end{array}
$$

Review: Heaps

- To represent a heap as an array: Parent(i) \{ return Li/2」; \} Left(i) \{ return 2*i; \} right(i) \{ return 2*i + 1; \}

Review: The Heap Property

- Heaps also satisfy the heap property:
$\mathrm{A}[\operatorname{Parent}(i)] \geq \mathrm{A}[i] \quad$ for all nodes $i>1$
- In other words, the value of a node is at most the value of its parent
- The largest value is thus stored at the root ($\mathrm{A}[1]$)
- Because the heap is a binary tree, the height of any node is at most $\Theta(\lg n)$

Review: Heapify()

- Heapify () : maintain the heap property
$■$ Given: a node i in the heap with children l and r
■ Given: two subtrees rooted at l and r, assumed to be heaps
- Action: let the value of the parent node "float down" so subtree at i satisfies the heap property
\circ If $\mathrm{A}[\mathrm{i}]<\mathrm{A}[1]$ or $\mathrm{A}[\mathrm{i}]<\mathrm{A}[\mathrm{r}]$, swap $\mathrm{A}[\mathrm{i}]$ with the largest of $\mathrm{A}[1]$ and $\mathrm{A}[\mathrm{r}]$
- Recurse on that subtree
- Running time: $\mathrm{O}(h), \mathrm{h}=$ height of heap $=\mathrm{O}(\lg n)$

Review: BuildHeap()

- We can build a heap in a bottom-up manner by running Heapify () on successive subarrays
- Fact: for array of length n, all elements in range $\mathrm{A}[\lfloor\mathrm{n} / 2\rfloor+1 . . \mathrm{n}]$ are heaps (Why?)
- So:
- Walk backwards through the array from $\mathrm{n} / 2$ to 1 , calling Heapify () on each node.
- Order of processing guarantees that the children of node i are heaps when i is processed

Review: BuildHeap()

// given an unsorted array A, make A a heap BuildHeap (A)
\{
heap_size(A) $=$ length (A);
for (i $=\lfloor$ length $[A] / 2\rfloor$ downto 1) Heapify (A, i);
\}

Review: Priority Queues

- Heapsort is a nice algorithm, but in practice Quicksort (coming up) usually wins
- But the heap data structure is incredibly useful for implementing priority queues
- A data structure for maintaining a set S of elements, each with an associated value or key
- Supports the operations Insert(), Maximum (), and ExtractMax ()
- What might a priority queue be useful for?

Review: Priority Queue Operations

- Insert(\mathbf{S}, \mathbf{x}) inserts the element x into set S
- Maximum(S) returns the element of S with the maximum key
- ExtractMax(S) removes and returns the element of S with the maximum key

Review:
 Implementing Priority Queues

HeapInsert(A, key) // what's running time?
\{
heap_size[A] ++;
i $=$ heap_size[A];
while (i > 1 AND A[Parent(i)] < key)
\{
A[i] $=A[P a r e n t(i)] ;$
i $=$ Parent(i);
\}
A[i] = key;
\}

Review:
 Implementing Priority Queues

HeapExtractMax (A)
\{
if (heap_size[A] < 1) \{ error; \}
max $=A[1]$;
A[1] = A[heap_size[A]]
heap_size[A] --;
Heapify (A, 1);
return max;
\}

Review: Quicksort

- Another divide-and-conquer algorithm
- The array $\mathrm{A}[\mathrm{p} . . \mathrm{r}]$ is partitioned into two nonempty subarrays $A[p . . q]$ and $A[q+1 . . r]$
\circ Invariant: All elements in $\mathrm{A}[\mathrm{p} . \mathrm{q}]$ are less than all elements in $\mathrm{A}[\mathrm{q}+1 . . \mathrm{r}]$
■ The subarrays are recursively sorted by calls to quicksort
- Unlike merge sort, no combining step: two subarrays form an already-sorted array

Review: Quicksort Code

Quicksort(A, P, r)
$\{$

$$
\begin{array}{ll}
\text { if } & (p<r) \\
\{ & \\
& q=\operatorname{Partition}(A, p, r) ; \\
& \text { Quicksort }(A, p, q) ; \\
& \text { Quicksort }(A, q+1, r) ;
\end{array}
$$

\}
\}

Review: Partition

- Clearly, all the action takes place in the partition() function
- Rearranges the subarray in place
- End result:
- Two subarrays
- All values in first subarray \leq all values in second
- Returns the index of the "pivot" element separating the two subarrays

Review: Partition In Words

- Partition(A, p, r):
- Select an element to act as the "pivot" (which?)
- Grow two regions, $\mathrm{A}[\mathrm{p} . \mathrm{i}]$ and $\mathrm{A}[\mathrm{j} . \mathrm{r}]$
- All elements in A[p..i] <= pivot
- All elements in $\mathrm{A}[\mathrm{j} . \mathrm{r}]>=$ pivot
$\longrightarrow ■$ Increment i until $A[i]>=$ pivot
- Decrement juntil A[j] <= pivot
- Swap A[i] and A[j]
- Repeat until $\mathrm{i}>=\mathrm{j}$
- Return j

Note: slightly different from old book's partition(), very different from new book

Review: Analyzing Quicksort

- What will be the worst case for the algorithm?
- Partition is always unbalanced
- What will be the best case for the algorithm?
- Partition is balanced
- Which is more likely?
- The latter, by far, except...
- Will any particular input elicit the worst case?
- Yes: Already-sorted input

Review: Analyzing Quicksort

- In the worst case:

$$
\begin{aligned}
& T(1)=\Theta(1) \\
& T(n)=T(n-1)+\Theta(n)
\end{aligned}
$$

- Works out to

$$
T(n)=\Theta\left(n^{2}\right)
$$

Review: Analyzing Quicksort

- In the best case:

$$
\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n})
$$

- What does this work out to?

$$
T(n)=\Theta(n \lg n)
$$

Review: Analyzing Quicksort (Average Case)

- Intuitively, the $\mathrm{O}(\mathrm{n})$ cost of a bad split (or 2 or 3 bad splits) can be absorbed into the $\mathrm{O}(\mathrm{n})$ cost of each good split
- Thus running time of alternating bad and good splits is still $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$, with slightly higher constants
- We can be more rigorous...

Analyzing Quicksort: Average Case

- So partition generates splits

$$
(0: n-1,1: n-2,2: n-3, \ldots, n-2: 1, n-1: 0)
$$

each with probability $1 / n$

- If $T(n)$ is the expected running time,

$$
T(n)=\frac{1}{n} \sum_{k=0}^{n-1}[T(k)+T(n-1-k)]+\Theta(n)
$$

- What is each term under the summation for?
- What is the $\Theta(n)$ term for?

Analyzing Quicksort: Average Case

- So partition generates splits

$$
(0: n-1,1: n-2,2: n-3, \ldots, n-2: 1, n-1: 0)
$$

each with probability $1 / n$

- If $T(n)$ is the expected running time,

$$
T(n)=\frac{1}{n} \sum_{k=0}^{n-1}[T(k)+T(n-1-k)]+\Theta(n)
$$

- What are terms under the summation for? the $\Theta(n)$?
- Massive proof that you should look over

Sorting Summary

- Insertion sort:
- Easy to code

■ Fast on small inputs (less than ~ 50 elements)
■ Fast on nearly-sorted inputs

- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ worst case
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ average (equally-likely inputs) case
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ reverse-sorted case

Sorting Summary

- Merge sort:
- Divide-and-conquer:
- Split array in half
- Recursively sort subarrays
- Linear-time merge step
- O(n $\lg \mathrm{n})$ worst case
- Doesn't sort in place

Sorting Summary

- Heap sort:
- Uses the very useful heap data structure
- Complete binary tree
- Heap property: parent key > children's keys
- O(n $\lg \mathrm{n})$ worst case
- Sorts in place
- Fair amount of shuffling memory around

Sorting Summary

- Quick sort:

■ Divide-and-conquer:

- Partition array into two subarrays, recursively sort
- All of first subarray < all of second subarray
- No merge step needed!
- $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ average case
- Fast in practice
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ worst case
- Naïve implementation: worst case on sorted input
- Address this with randomized quicksort

Review: Comparison Sorts

- Comparison sorts: $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ at best

■ Model sort with decision tree

- Path down tree $=$ execution trace of algorithm
- Leaves of tree = possible permutations of input

■ Tree must have n ! leaves, so $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ height

Review: Counting Sort

- Counting sort:
- Assumption: input is in the range $1 . . \mathrm{k}$
- Basic idea:
- Count number of elements $k \leq$ each element i
- Use that number to place i in position k of sorted array
- No comparisons! Runs in time $\mathrm{O}(\mathrm{n}+\mathrm{k})$
- Stable sort
- Does not sort in place:
$\circ \mathrm{O}(\mathrm{n})$ array to hold sorted output
$\circ \mathrm{O}(\mathrm{k})$ array for scratch storage

Review: Counting Sort

1	CountingSort (A, B, k)
2	for $i=1$ to k
3	$C[i]=0 ;$
4	for $j=1$ to n
5	$C[A[j]]+=1 ;$
6	for $i=2$ to k
7	$C[i]=C[i]+C[i-1] ;$
8	for $j=n$ downto 1
9	$B[C[A[j]]]=A[j] ;$
10	$C[A[j]]-=1 ;$

Review: Radix Sort

- Radix sort:

- Assumption: input has d digits ranging from 0 to k
- Basic idea:
- Sort elements by digit starting with least significant
- Use a stable sort (like counting sort) for each stage
- Each pass over n numbers with d digits takes time $\mathrm{O}(n+k)$, so total time $\mathrm{O}(d n+d k)$
- When d is constant and $k=\mathrm{O}(n)$, takes $\mathrm{O}(n)$ time

■ Fast! Stable! Simple!

- Doesn't sort in place

Review: Bucket Sort

- Bucket sort

- Assumption: input is n reals from $[0,1)$
- Basic idea:
- Create n linked lists (buckets) to divide interval $[0,1$) into subintervals of size $1 / n$
- Add each input element to appropriate bucket and sort buckets with insertion sort

■ Uniform input distribution $\rightarrow \mathrm{O}(1)$ bucket size

- Therefore the expected total time is $\mathrm{O}(\mathrm{n})$
- These ideas will return when we study hash tables

Review: Order Statistics

- The i th order statistic in a set of n elements is the i th smallest element
- The minimum is thus the 1 st order statistic
- The maximum is (duh) the nth order statistic
- The median is the $n / 2$ order statistic
- If n is even, there are 2 medians
- Could calculate order statistics by sorting
- Time: O(n lg n) w/ comparison sort
- We can do better

Review: The Selection Problem

- The selection problem: find the i th smallest element of a set
- Two algorithms:
- A practical randomized algorithm with $\mathrm{O}(\mathrm{n})$ expected running time
- A cool algorithm of theoretical interest only with $\mathrm{O}(\mathrm{n})$ worst-case running time

Review: Randomized Selection

- Key idea: use partition() from quicksort
- But, only need to examine one subarray
- This savings shows up in running time: $\mathrm{O}(\mathrm{n})$

Review: Randomized Selection

RandomizedSelect(A, $\mathrm{P}, \mathrm{r}, \mathrm{i})$

```
    if (p == r) then return A[p];
    q = RandomizedPartition(A, p, r)
    k = q - p + 1;
    if (i == k) then return A[q]; // not in book
    if (i < k) then
        return RandomizedSelect(A, p, q-1, i);
    else
```

 return RandomizedSelect(A, q+1, r, i-k);

Review: Randomized Selection

- Average case

■ For upper bound, assume i th element always falls in larger side of partition:

$$
T(n) \leq \frac{1}{n} \sum_{k=0}^{n-1} T(\max (k, n-k-1))+\Theta(n)
$$

$$
\leq \frac{2}{n} \sum_{k=n / 2}^{n-1} T(k)+\Theta(n)
$$

■ We then showed that $\mathrm{T}(n)=\mathrm{O}(n)$ by substitution

Review:

Worst-Case Linear-Time Selection

- Randomized algorithm works well in practice
- What follows is a worst-case linear time algorithm, really of theoretical interest only
- Basic idea:
- Generate a good partitioning element
- Call this element x

Review:

Worst-Case Linear-Time Selection

- The algorithm in words:

1. Divide n elements into groups of 5
2. Find median of each group (How? How long?)
3. Use $\operatorname{Select}()$ recursively to find median x of the $\lfloor n / 5\rfloor$ medians
4. Partition the n elements around x. Let $k=\operatorname{rank}(x)$
5. if $(i==k)$ then return x
if $(\mathrm{i}<\mathrm{k})$ then use Select() recursively to find i th smallest element in first partition
else (i $>\mathrm{k}$) use Select() recursively to find $(i-k)$ th smallest element in last partition

Review:

Worst-Case Linear-Time Selection

- (Sketch situation on the board)
- How many of the 5 -element medians are $\leq x$?
- At least $1 / 2$ of the medians $=\lfloor\lfloor\mathrm{n} / 5\rfloor / 2\rfloor=\lfloor\mathrm{n} / 10\rfloor$
- How many elements are $\leq x$?
- At least $3\lfloor\mathrm{n} / 10$ 」 elements
- For large $n, \quad 3\lfloor\mathrm{n} / 10\rfloor \geq \mathrm{n} / 4 \quad$ (How large?)
- So at least $n / 4$ elements $\leq x$
- Similarly: at least $n / 4$ elements $\geq x$

Review:

Worst-Case Linear-Time Selection

- Thus after partitioning around x, step 5 will call Select() on at most $3 n / 4$ elements
- The recurrence is therefore:

$$
\begin{array}{rlr}
T(n) & \leq T(\lfloor n / 5\rfloor)+T(3 n / 4)+\Theta(n) & \\
& \leq T(n / 5)+T(3 n / 4)+\Theta(n) & \lfloor n / 5\lrcorner \leq n / 5 \\
& \leq c n / 5+3 c n / 4+\Theta(n) & \text { Substitute } T(n)=c n \\
& =19 c n / 20+\Theta(n) & \text { Combine fractions } \\
& =c n-(c n / 20-\Theta(n)) & \text { Express in desired form } \\
& \leq c n \quad \text { if } c \text { is big enough } & \text { What we set out to prove }
\end{array}
$$

Review: Binary Search Trees

- Binary Search Trees (BSTs) are an important data structure for dynamic sets
- In addition to satellite data, elements have:
- key: an identifying field inducing a total ordering
- left: pointer to a left child (may be NULL)
- right: pointer to a right child (may be NULL)
- p : pointer to a parent node (NULL for root)

Review: Binary Search Trees

- BST property:
$\operatorname{key}[\operatorname{left}(x)] \leq \operatorname{key}[x] \leq \operatorname{key}[\operatorname{right}(x)]$
- Example:

Review: Inorder Tree Walk

- An inorder walk prints the set in sorted order: TreeWalk(x)

TreeWalk(left[x]);
print(x);
TreeWalk (right[x]);

- Easy to show by induction on the BST property
- Preorder tree walk: print root, then left, then right
- Postorder tree walk: print left, then right, then root

