
Algorithms 



Administrative 

● Reminder: homework 3 due today 

● Reminder: Exam 1 Wednesday, Feb 13 

■ 1 8.5x11 crib sheet allowed 

○ Both sides, mechanical reproduction okay 

○ You will turn it in with the exam 

 



Review Of Topics 

● Asymptotic notation 

● Solving recurrences 

● Sorting algorithms 

■ Insertion sort 

■ Merge sort 

■ Heap sort 

■ Quick sort 

■ Counting sort 

■ Radix sort 

● Medians/order statistics 

■ Randomized algorithm 

■ Worst-case algorithm 

● Structures for dynamic 

sets 

■ Priority queues 

■  BST basics 



Review: Induction 

● Suppose  

■ S(k) is true for fixed constant k  

○ Often k = 0 

■ S(n)  S(n+1) for all n >= k 

● Then S(n) is true for all n >= k 



Proof By Induction 

● Claim:S(n) is true for all n >= k 

● Basis: 

■ Show formula is true when n = k 

● Inductive hypothesis: 

■ Assume formula is true for an arbitrary n 

● Step: 

■ Show that formula is then true for n+1 



Induction Example:  

Gaussian Closed Form 

● Prove 1 + 2 + 3 + … + n = n(n+1) / 2 

■ Basis: 

○ If n = 0, then 0 = 0(0+1) / 2 

■ Inductive hypothesis: 

○ Assume 1 + 2 + 3 + … + n = n(n+1) / 2 

■ Step (show true for n+1): 

1 + 2 + … + n + n+1 = (1 + 2 + …+ n) + (n+1) 
= n(n+1)/2 + n+1 = [n(n+1) + 2(n+1)]/2  

= (n+1)(n+2)/2 = (n+1)(n+1 + 1) / 2 



Induction Example: 

Geometric Closed Form 

● Prove a0 + a1 + … + an = (an+1 - 1)/(a - 1) for 

all a  1 

■ Basis: show that a0 = (a0+1 - 1)/(a - 1)  

a0 = 1 = (a1 - 1)/(a - 1) 

■ Inductive hypothesis:  

○ Assume a0 + a1 + … + an = (an+1 - 1)/(a - 1)  

■ Step (show true for n+1): 

a0 + a1 + … + an+1 = a0 + a1 + … + an + an+1 

= (an+1 - 1)/(a - 1) + an+1 = (an+1+1 - 1)/(a - 1) 



Review: Asymptotic Performance 

● Asymptotic performance: How does algorithm 

behave as the problem size gets very large? 

○ Running time 

○ Memory/storage requirements 

■ Use the RAM model: 

○ All memory equally expensive to access 

○ No concurrent operations 

○ All reasonable instructions take unit time 

 Except, of course, function calls 

○ Constant word size 



Review: Running Time 

● Number of primitive steps that are executed 

■ Except for time of executing a function call most 

statements roughly require the same amount of 

time 

■ We can be more exact if need be 

● Worst case vs. average case 

 



Review: Asymptotic Notation 

● Upper Bound Notation:  

■ f(n) is O(g(n)) if there exist positive constants c 

and n0 such that f(n)  c  g(n) for all n  n0 

■ Formally, O(g(n)) = { f(n):  positive constants c 

and n0 such that f(n)  c  g(n)  n  n0 

● Big O fact: 

■ A polynomial of degree k is O(nk) 



Review: Asymptotic Notation 

● Asymptotic lower bound: 

■ f(n) is (g(n)) if  positive constants c and n0 such 

that  0  cg(n)  f(n)   n  n0 

● Asymptotic tight bound: 

■ f(n) is (g(n)) if  positive constants c1, c2, and n0 

such that  c1 g(n)  f(n)  c2 g(n)  n  n0 

■ f(n) = (g(n))  if and only if   

f(n) = O(g(n))  AND  f(n) = (g(n)) 



Review:  

Other Asymptotic Notations 

● A function f(n) is o(g(n)) if  positive 

constants c and n0 such that  

 f(n) < c g(n)  n  n0 

● A function f(n) is (g(n)) if  positive 

constants c and n0 such that  

 c g(n) < f(n)  n  n0 

● Intuitively,  

■ o() is like <  

■ O() is like  

 

■ () is like >  

■ () is like  

 

■ () is like = 



Review: Merge Sort 

MergeSort(A, left, right) { 

 if (left < right) { 

  mid = floor((left + right) / 2); 

  MergeSort(A, left, mid); 

  MergeSort(A, mid+1, right); 

  Merge(A, left, mid, right); 

 } 

} 

// Merge() takes two sorted subarrays of A and 

// merges them into a single sorted subarray of A. 

// Code for this is in the book.  It requires O(n)  

// time, and *does* require allocating O(n) space  



Review: Analysis of Merge Sort 

Statement   Effort 

 

 

 

 

● So T(n) =  (1) when n = 1, and               

 2T(n/2) + (n) when n > 1 

● This expression is a recurrence 

MergeSort(A, left, right) { T(n) 
   if (left < right) { (1) 
      mid = floor((left + right) / 2);    (1) 
      MergeSort(A, left, mid);    T(n/2) 
      MergeSort(A, mid+1, right);    T(n/2) 
      Merge(A, left, mid, right);    (n) 
   } 
} 



Review: Solving Recurrences 

● Substitution method 

● Iteration method 

● Master method 



Review: Solving Recurrences 

● The substitution method  

■ A.k.a. the “making a good guess method” 

■ Guess the form of the answer, then use induction to 

find the constants and show that solution works 

■ Example: merge sort 

○ T(n) = 2T(n/2) + cn 

○ We guess that the answer is O(n lg n)  

○ Prove it by induction 

■ Can similarly show T(n) = Ω(n lg n), thus Θ(n lg n) 



Review: Solving Recurrences 

● The “iteration method” 

■ Expand the recurrence  

■ Work some algebra to express as a summation 

■ Evaluate the summation 

● We showed several examples including complex ones: 

 


















1

1

)(
ncn

b

n
aT

nc

nT



Review: The Master Theorem 

● Given: a divide and conquer algorithm 

■ An algorithm that divides the problem of size n 

into a subproblems, each of size n/b 

■ Let the cost of each stage (i.e., the work to divide 

the problem + combine solved subproblems) be 

described by the function f(n) 

● Then, the Master Theorem gives us a 

cookbook for the algorithm’s running time: 



Review: The Master Theorem 

● if  T(n) = aT(n/b) + f(n) then 

 

  

 

 

 

 

 























































1

0

largefor )()/(

      AND )(

)(

)(

)(

log)(

log

log

log

log

log

c

nncfbnaf

nnf

nnf

nOnf

nf

nn

n

nT

a

a

a

a

a

b

b

b

b

b









Review: Heaps 

● A heap is a “complete” binary tree, usually 
represented as an array: 

 

 

 

 

 

 

16 

4 10 

14 7 9 3 

2 8 1 

16 14 10 8 7 9 3 2 4 1 A = 



Review: Heaps 

● To represent a heap as an array:  

Parent(i) { return i/2; } 
Left(i) { return 2*i; } 

right(i) { return 2*i + 1; } 



Review: The Heap Property 

● Heaps also satisfy the heap property: 

 A[Parent(i)]  A[i]  for all nodes i > 1 

■ In other words, the value of a node is at most the 

value of its parent 

■ The largest value is thus stored at the root (A[1]) 

● Because the heap is a binary tree, the height of 

any node is at most (lg n) 



Review: Heapify() 

● Heapify(): maintain the heap property 

■ Given: a node i in the heap with children l and r 

■ Given: two subtrees rooted at l and r, assumed to 

be heaps 

■ Action: let the value of the parent node “float 
down” so subtree at i satisfies the heap property  

○ If A[i] < A[l] or A[i] < A[r], swap A[i] with the largest 

of A[l] and A[r] 

○ Recurse on that subtree 

■ Running time: O(h), h = height of heap = O(lg n) 



Review: BuildHeap() 

● We can build a heap in a bottom-up manner by 

running Heapify() on successive subarrays 

■ Fact: for array of length n, all elements in range  

A[n/2 + 1 .. n] are heaps (Why?) 

■ So:  

○ Walk backwards through the array from n/2 to 1, calling 

Heapify() on each node. 

○ Order of processing guarantees that the children of node 

i are heaps when i is processed 



Review: BuildHeap() 

// given an unsorted array A, make A a heap 

BuildHeap(A) 

{ 

 heap_size(A) = length(A); 

 for (i = length[A]/2  downto 1) 
  Heapify(A, i); 

} 



Review: Priority Queues 

● Heapsort is a nice algorithm, but in practice 

Quicksort (coming up) usually wins 

● But the heap data structure is incredibly useful 

for implementing priority queues 

■ A data structure for maintaining a set S of 

elements, each with an associated value or key 

■ Supports the operations Insert(), 

Maximum(), and ExtractMax() 

■ What might a priority queue be useful for? 

 



Review: Priority Queue Operations 

● Insert(S, x) inserts the element x into set S 

● Maximum(S) returns the element of S with 

the maximum key 

● ExtractMax(S) removes and returns the 

element of S with the maximum key 

 



Review: 

Implementing Priority Queues 
HeapInsert(A, key)    // what’s running time? 
{ 

    heap_size[A] ++; 

    i = heap_size[A]; 

    while (i > 1  AND  A[Parent(i)] < key) 

    { 

        A[i] = A[Parent(i)]; 

        i = Parent(i); 

    } 

    A[i] = key; 

} 

 



Review: 

Implementing Priority Queues 
HeapExtractMax(A) 

{ 

    if (heap_size[A] < 1) { error; } 

    max = A[1]; 

    A[1] = A[heap_size[A]] 

    heap_size[A] --; 

    Heapify(A, 1); 

    return max; 

} 



Review: Quicksort 

● Another divide-and-conquer algorithm 

■ The array A[p..r] is partitioned into two non-

empty subarrays A[p..q] and A[q+1..r]  

○ Invariant: All elements in A[p..q] are less than all 

elements in A[q+1..r] 

■ The subarrays are recursively sorted by calls to 

quicksort 

■ Unlike merge sort, no combining step: two 

subarrays form an already-sorted array 



Review: Quicksort Code 

Quicksort(A, p, r) 

{ 

    if (p < r) 

    { 

        q = Partition(A, p, r); 

        Quicksort(A, p, q); 

        Quicksort(A, q+1, r); 

    } 

} 



Review: Partition 

● Clearly, all the action takes place in the 

partition() function 

■ Rearranges the subarray in place 

■ End result:  

○ Two subarrays 

○ All values in first subarray  all values in second 

■ Returns the index of the “pivot” element 
separating the two subarrays 

 



Review: Partition In Words 

● Partition(A, p, r): 

■ Select an element to act as the “pivot” (which?) 

■ Grow two regions, A[p..i] and A[j..r] 

○ All elements in A[p..i] <= pivot 

○ All elements in A[j..r] >= pivot 

■ Increment i until A[i] >= pivot  

■ Decrement j until A[j] <= pivot 

■ Swap A[i] and A[j] 

■ Repeat until i >= j  

■ Return j 

Note: slightly different from 

old book’s partition(), 

very different from new book 



Review: Analyzing Quicksort 

● What will be the worst case for the algorithm? 

■ Partition is always unbalanced 

● What will be the best case for the algorithm? 

■ Partition is balanced 

● Which is more likely? 

■ The latter, by far, except... 

● Will any particular input elicit the worst case? 

■ Yes: Already-sorted input 



Review: Analyzing Quicksort 

● In the worst case: 

T(1) = (1) 

T(n) = T(n - 1) + (n) 

● Works out to 

 T(n) = (n2) 

 



Review: Analyzing Quicksort 

● In the best case: 

T(n) = 2T(n/2) + (n) 

● What does this work out to? 

T(n) = (n lg n)  



Review: Analyzing Quicksort 

(Average Case) 

● Intuitively, the O(n) cost of a bad split  

(or 2 or 3 bad splits) can be absorbed  

into the O(n) cost of each good split 

● Thus running time of alternating bad and good 

splits is still O(n lg n), with slightly higher 

constants 

● We can be more rigorous… 

 



Analyzing Quicksort: Average Case 

● So partition generates splits  

 (0:n-1,  1:n-2,  2:n-3, … ,  n-2:1,  n-1:0)  

each with probability 1/n 

● If T(n) is the expected running time, 

 

 

● What is each term under the summation for? 

● What is the (n) term for?  

        





1

0

1
1 n

k

nknTkT
n

nT



Analyzing Quicksort: Average Case 

● So partition generates splits  

 (0:n-1,  1:n-2,  2:n-3, … ,  n-2:1,  n-1:0)  

each with probability 1/n 

● If T(n) is the expected running time, 

 

 

■ What are terms under the summation for? the (n)?  

● Massive proof that you should look over  

        





1

0

1
1 n

k

nknTkT
n

nT



Sorting Summary 

● Insertion sort: 

■ Easy to code 

■ Fast on small inputs (less than ~50 elements) 

■ Fast on nearly-sorted inputs 

■ O(n2) worst case 

■ O(n2) average (equally-likely inputs) case 

■ O(n2) reverse-sorted case 



Sorting Summary 

● Merge sort: 

■ Divide-and-conquer: 

○ Split array in half 

○ Recursively sort subarrays 

○ Linear-time merge step 

■ O(n lg n) worst case 

■ Doesn’t sort in place 



Sorting Summary 

● Heap sort: 

■ Uses the very useful heap data structure 

○ Complete binary tree 

○ Heap property: parent key > children’s keys 

■ O(n lg n) worst case 

■ Sorts in place 

■ Fair amount of shuffling memory around 



Sorting Summary 

● Quick sort: 

■ Divide-and-conquer: 

○ Partition array into two subarrays, recursively sort 

○ All of first subarray < all of second subarray 

○ No merge step needed! 

■ O(n lg n) average case 

■ Fast in practice 

■ O(n2) worst case 

○ Naïve implementation: worst case on sorted input 

○ Address this with randomized quicksort 

 



Review: Comparison Sorts 

● Comparison sorts: O(n lg n) at best 

■ Model sort with decision tree 

■ Path down tree = execution trace of algorithm 

■ Leaves of tree = possible permutations of input 

■ Tree must have n! leaves, so O(n lg n) height 



Review: Counting Sort  

● Counting sort:  

■ Assumption: input is in the range 1..k 

■ Basic idea:  

○ Count number of elements k  each element i 

○ Use that number to place i in position k of sorted array  

■ No comparisons! Runs in time O(n + k) 

■ Stable sort 

■ Does not sort in place: 

○ O(n) array to hold sorted output 

○ O(k) array for scratch storage 



Review: Counting Sort 

1  CountingSort(A, B, k) 

2   for i=1 to k 

3    C[i]= 0; 

4   for j=1 to n 

5    C[A[j]] += 1; 

6   for i=2 to k 

7    C[i] = C[i] + C[i-1]; 

8   for j=n downto 1 

9    B[C[A[j]]] = A[j]; 

10    C[A[j]] -= 1; 



Review: Radix Sort 

● Radix sort: 

■ Assumption: input has d digits ranging from 0 to k 

■ Basic idea:  

○ Sort elements by digit starting with least significant 

○ Use a stable sort (like counting sort) for each stage 

■ Each pass over n numbers with d digits takes time 

O(n+k), so total time O(dn+dk) 

○ When d is constant and k=O(n), takes O(n) time 

■ Fast!  Stable! Simple! 

■ Doesn’t sort in place 



Review: Bucket Sort 

● Bucket sort 

■ Assumption: input is n reals from [0, 1) 

■ Basic idea:  

○ Create n linked lists (buckets) to divide interval [0,1) 

into subintervals of size 1/n 

○ Add each input element to appropriate bucket and sort 

buckets with insertion sort 

■ Uniform input distribution  O(1) bucket size 

○ Therefore the expected total time is O(n) 

■ These ideas will return when we study hash tables 



Review: Order Statistics 

● The ith order statistic in a set of n elements is 

the ith smallest element 

● The minimum is thus the 1st order statistic  

● The maximum is (duh) the nth order statistic 

● The median is the n/2 order statistic 

■ If n is even, there are 2 medians 

● Could calculate order statistics by sorting 

■ Time: O(n lg n) w/ comparison sort 

■ We can do better 



Review: The Selection Problem 

● The selection problem: find the ith smallest 

element of a set  

● Two algorithms: 

■ A practical randomized algorithm with O(n) 

expected running time 

■ A cool algorithm of theoretical interest only with 

O(n) worst-case running time 



Review: Randomized Selection 

● Key idea: use partition() from quicksort 

■ But, only need to examine one subarray 

■ This savings shows up in running time: O(n) 

 A[q]  A[q] 

q p r 



Review: Randomized Selection 

RandomizedSelect(A, p, r, i) 

    if (p == r) then return A[p]; 

    q = RandomizedPartition(A, p, r) 

    k = q - p + 1; 

    if (i == k) then return A[q];   // not in book 

    if (i < k) then 

        return RandomizedSelect(A, p, q-1, i); 

    else 

        return RandomizedSelect(A, q+1, r, i-k); 

     

 A[q]  A[q] 

k 

q p r 



Review: Randomized Selection 

● Average case 

■ For upper bound, assume ith element always falls 

in larger side of partition: 

 

 

 

 

 

■ We then showed that T(n) = O(n) by substitution 

      

   















1

2/

1

0

2

1,max
1

n

nk

n

k

nkT
n

nknkT
n

nT



Review:  

Worst-Case Linear-Time Selection 

● Randomized algorithm works well in practice 

● What follows is a worst-case linear time 

algorithm, really of theoretical interest only 

● Basic idea:  

■ Generate a good partitioning element 

■ Call this element x 



Review: 

Worst-Case Linear-Time Selection 

● The algorithm in words: 

1.  Divide n elements into groups of 5 

2.  Find median of each group (How?  How long?) 

3.  Use Select() recursively to find median x of the n/5 
 medians 

4.  Partition the n elements around x.  Let k = rank(x) 

5.  if (i == k) then return x 

  if (i < k) then use Select() recursively to find ith smallest 

  element in first partition 

 else (i > k) use Select() recursively to find (i-k)th smallest 

  element in last partition 



Review: 

Worst-Case Linear-Time Selection 

● (Sketch situation on the board) 

● How many of the 5-element medians are  x? 

■ At least 1/2 of the medians = n/5 / 2 = n/10 

● How many elements are  x? 

■ At least 3 n/10  elements 

● For large n,    3 n/10   n/4  (How large?) 

● So at least n/4 elements  x 

● Similarly: at least n/4 elements  x 



Review: 

Worst-Case Linear-Time Selection 

● Thus after partitioning around x, step 5 will 

call Select() on at most 3n/4 elements 

● The recurrence is therefore:  

      
     

  
enough big is  if

20

)(2019

)(435

435

435)(

ccn

ncncn

ncn

ncncn

nnTnT

nnTnTnT










??? 

??? 

??? 

??? 

??? 

 n/5    n/5 

Substitute T(n) = cn 

Combine fractions  

Express in desired form 

What we set out to prove 



Review: Binary Search Trees 

● Binary Search Trees (BSTs) are an important 

data structure for dynamic sets 

● In addition to satellite data, elements have: 

■ key: an identifying field inducing a total ordering 

■ left: pointer to a left child (may be NULL) 

■ right: pointer to a right child (may be NULL) 

■ p: pointer to a parent node (NULL for root) 



Review: Binary Search Trees 

● BST property:  

 key[left(x)]  key[x]  key[right(x)] 

● Example: 

F 

B H 

K D A 



Review: Inorder Tree Walk 

● An inorder walk prints the set in sorted order: 

TreeWalk(x) 

    TreeWalk(left[x]); 

    print(x); 

    TreeWalk(right[x]); 

■ Easy to show by induction on the BST property 

■ Preorder tree walk: print root, then left, then right 

■ Postorder tree walk: print left, then right, then root 


