Algorithms

Red-Black Trees

Review: Binary Search Trees

- Binary Search Trees (BSTs) are an important data structure for dynamic sets
- In addition to satellite data, eleements have:
- key: an identifying field inducing a total ordering
- left: pointer to a left child (may be NULL)
- right: pointer to a right child (may be NULL)
- p : pointer to a parent node (NULL for root)

Review: Binary Search Trees

- BST property:
$\operatorname{key}[\operatorname{left}(x)] \leq \operatorname{key}[x] \leq \operatorname{key}[\operatorname{right}(x)]$
- Example:

Review: Inorder Tree Walk

- An inorder walk prints the set in sorted order: TreeWalk(x)

TreeWalk(left[x]);
print(x);
TreeWalk (right[x]);

- Easy to show by induction on the BST property
- Preorder tree walk: print root, then left, then right
- Postorder tree walk: print left, then right, then root

Review: BST Search

TreeSearch (x, k)

$$
\begin{aligned}
& \text { if }(x=N U L L \text { or } k=\text { key }[x]) \\
& \text { return } x ; \\
& \text { if }(k<k e y[x]) \\
& \text { return TreeSearch (left }[x], k) \text {; } \\
& \text { else }
\end{aligned}
$$

return TreeSearch (right[x], k);

Review: BST Search (Iterative)

IterativeTreeSearch (x, k)
while (x ! $=$ NULL and $k!=$ key[x])
if (k < key[x])
$\mathbf{x}=\operatorname{left}[\mathrm{x}] ;$
else

$$
\mathbf{x}=\operatorname{right}[\mathrm{x}] ;
$$

return x;

Review: BST Insert

- Adds an element x to the tree so that the binary search tree property continues to hold
- The basic algorithm
- Like the search procedure above
- Insert x in place of NULL
- Use a "trailing pointer" to keep track of where you came from (like inserting into singly linked list)
- Like search, takes time $\mathrm{O}(h), h=$ tree height

Review: Sorting With BSTs

- Basic algorithm:
- Insert elements of unsorted array from 1..n
- Do an inorder tree walk to print in sorted order
- Running time:

■ Best case: $\Omega(n \lg n)$ (it's a comparison sort)

- Worst case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Average case: $\mathrm{O}(n \lg n)$ (it's a quicksort!)

Review: Sorting With BSTs

- Average case analysis
- It's a form of quicksort!

```
for i=1 to n
    TreeInsert(A[i]);
InorderTreeWalk(root);
```


Review: More BST Operations

- Minimum:
- Find leftmost node in tree
- Successor:
- x has a right subtree: successor is minimum node in right subtree
- x has no right subtree: successor is first ancestor of x whose left child is also ancestor of x
- Intuition: As long as you move to the left up the tree, you're visiting smaller nodes.
- Predecessor: similar to successor

Review: More BST Operations

- Delete:
- x has no children:
- Remove x
- x has one child:
- Splice out x

- Swap x with successor
- Perform case 1 or 2 to delete it

Red-Black Trees

- Red-black trees:
- Binary search trees augmented with node color
- Operations designed to guarantee that the height

$$
h=\mathrm{O}(\lg n)
$$

- First: describe the properties of red-black trees
- Then: prove that these guarantee $h=\mathrm{O}(\lg n)$
- Finally: describe operations on red-black trees

Red-Black Properties

- The red-black properties:

1. Every node is either red or black
2. Every leaf (NULL pointer) is black

- Note: this means every "real" node has 2 children

3. If a node is red, both children are black

- Note: can't have 2 consecutive reds on a path

4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

Red-Black Trees

- Put example on board and verify properties:

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

- black-height: \# black nodes on path to leaf
- Label example with h and bh values

Height of Red-Black Trees

- What is the minimum black-height of a node with height h ?
- A: a height- h node has black-height $\geq h / 2$
- Theorem: A red-black tree with n internal nodes has height $h \leq 2 \lg (n+1)$
- How do you suppose we'll prove this?

RB Trees: Proving Height Bound

- Prove: n-node RB tree has height $h \leq 2 \lg (n+1)$
- Claim: A subtree rooted at a node x contains at least $2^{\mathrm{bh}(x)}-1$ internal nodes
- Proof by induction on height h
- Base step: x has height 0 (i.e., NULL leaf node)
- What is bh(x)?

RB Trees: Proving Height Bound

- Prove: n-node RB tree has height $h \leq 2 \lg (n+1)$
- Claim: A subtree rooted at a node x contains at least $2^{\text {bh }(x)}-1$ internal nodes
- Proof by induction on height h
- Base step: x has height 0 (i.e., NULL leaf node)
- What is $b h(x)$?
- A: 0
- So...subtree contains $2^{\text {bh }(x)}-1$
$=2^{0}-1$
$=0$ internal nodes (TRUE)

RB Trees: Proving Height Bound

- Inductive proof that subtree at node x contains at least $2^{\mathrm{bh}(x)}-1$ internal nodes

■ Inductive step: x has positive height and 2 children

- Each child has black-height of $\mathrm{bh}(x)$ or $\mathrm{bh}(x)-1$ (Why?)
- The height of a child $=($ height of $x)-1$
- So the subtrees rooted at each child contain at least $2^{\operatorname{bh}(x)-1}-1$ internal nodes
- Thus subtree at x contains

$$
\begin{aligned}
& \left(2^{\mathrm{bh}(x)-1}-1\right)+\left(2^{\mathrm{bh}(x)-1}-1\right)+1 \\
& =2 \cdot 2^{\operatorname{bh}(x)-1}-1=2^{\mathrm{bh}(x)}-1 \text { nodes }
\end{aligned}
$$

RB Trees: Proving Height Bound

- Thus at the root of the red-black tree:
$n \geq 2^{\text {bh(root })}-1$
$n \geq 2^{h / 2}-1$
$\lg (n+1) \geq h / 2$
$h \leq 2 \lg (n+1)$
(Why?)
(Why?)
(Why?)
(Why?)

Thus $h=\mathrm{O}(\lg n)$

RB Trees: Worst-Case Time

- So we've proved that a red-black tree has $\mathrm{O}(\lg n)$ height
- Corollary: These operations take $\mathrm{O}(\lg n)$ time:
- Minimum(), Maximum()
- Successor(), Predecessor()
- Search()
- Insert() and Delete():
- Will also take $\mathrm{O}(\lg n)$ time
- But will need special care since they modify tree

