
Algorithms 

Red-Black Trees 



Review: Binary Search Trees 

● Binary Search Trees (BSTs) are an important 

data structure for dynamic sets 

● In addition to satellite data, eleements have: 

■ key: an identifying field inducing a total ordering 

■ left: pointer to a left child (may be NULL) 

■ right: pointer to a right child (may be NULL) 

■ p: pointer to a parent node (NULL for root) 



Review: Binary Search Trees 

● BST property:  

 key[left(x)]  key[x]  key[right(x)] 

● Example: 

F 

B H 

K D A 



Review: Inorder Tree Walk 

● An inorder walk prints the set in sorted order: 

TreeWalk(x) 

    TreeWalk(left[x]); 

    print(x); 

    TreeWalk(right[x]); 

■ Easy to show by induction on the BST property 

■ Preorder tree walk: print root, then left, then right 

■ Postorder tree walk: print left, then right, then root 



Review: BST Search 

    TreeSearch(x, k) 

        if (x = NULL  or  k = key[x]) 

            return x; 

        if (k < key[x])  

            return TreeSearch(left[x], k); 

        else 

            return TreeSearch(right[x], k); 

 



Review: BST Search (Iterative) 

    IterativeTreeSearch(x, k) 

        while (x != NULL  and  k != key[x])  

            if (k < key[x]) 

                x = left[x]; 

            else 

                x = right[x]; 

        return x; 



Review: BST Insert 

● Adds an element x to the tree so that the binary 

search tree property continues to hold 

● The basic algorithm 

■ Like the search procedure above 

■ Insert x in place of NULL 

■ Use a “trailing pointer” to keep track of where you 
came from (like inserting into singly linked list) 

● Like search, takes time O(h), h = tree height 



Review: Sorting With BSTs 

● Basic algorithm: 

■ Insert elements of unsorted array from 1..n 

■ Do an inorder tree walk to print in sorted order 

● Running time:  

■ Best case: (n lg n)  (it’s a comparison sort) 
■ Worst case: O(n2) 

■ Average case: O(n lg n)  (it’s a quicksort!) 



Review: Sorting With BSTs 

● Average case analysis 

■ It’s a form of quicksort! 

for i=1 to n 

    TreeInsert(A[i]); 

InorderTreeWalk(root); 
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Review: More BST Operations 

● Minimum:  

■ Find leftmost node in tree 

● Successor:  

■ x has a right subtree: successor is minimum node 

in right subtree 

■ x has no right subtree: successor is first ancestor of 

x whose left child is also ancestor of x 

○ Intuition: As long as you move to the left up the tree, 

you’re visiting smaller nodes.   

● Predecessor: similar to successor 



Review: More BST Operations 

● Delete:  

■ x has no children:  

○ Remove x 

■ x has one child:  

○ Splice out x 

■ x has two children:  

○ Swap x with successor 

○ Perform case 1 or 2 to delete it 

 

F 

B H 

K D A 

C 
Example: delete K 

or H or B 



Red-Black Trees 

● Red-black trees: 

■ Binary search trees augmented with node color  

■ Operations designed to guarantee that the height 

h = O(lg n) 

● First: describe the properties of red-black trees 

● Then: prove that these guarantee h = O(lg n) 

● Finally: describe operations on red-black trees 



Red-Black Properties 

● The red-black properties: 

1.  Every node is either red or black 

2.  Every leaf (NULL pointer) is black 

○ Note: this means every “real” node has 2 children 

3.  If a node is red, both children are black 

○ Note: can’t have 2 consecutive reds on a path 

4.  Every path from node to descendent leaf contains 

the same number of black nodes 

5. The root is always black 



Red-Black Trees 

● Put example on board and verify properties: 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf contains 

the same number of black nodes 

5.  The root is always black 

● black-height: # black nodes on path to leaf 

■ Label example with h and bh values 



Height of Red-Black Trees 

● What is the minimum black-height of a node 

with height h? 

● A: a height-h node has black-height  h/2 

● Theorem: A red-black tree with n internal 

nodes has height h  2 lg(n + 1) 

● How do you suppose we’ll prove this? 

 

 



RB Trees: Proving Height Bound 

● Prove: n-node RB tree has height h  2 lg(n+1) 

●  Claim: A subtree rooted at a node x contains 

at least 2bh(x) - 1 internal nodes 

■ Proof by induction on height h  

■ Base step: x has height 0 (i.e., NULL leaf node) 

○ What is bh(x)? 



RB Trees: Proving Height Bound 

● Prove: n-node RB tree has height h  2 lg(n+1) 

●  Claim: A subtree rooted at a node x contains 

at least 2bh(x) - 1 internal nodes 

■ Proof by induction on height h  

■ Base step: x has height 0 (i.e., NULL leaf node) 

○ What is bh(x)? 

○ A: 0 

○ So…subtree contains 2bh(x) - 1  

= 20 - 1  

= 0 internal nodes   (TRUE) 



RB Trees: Proving Height Bound 

● Inductive proof that subtree at node x contains 

at least 2bh(x) - 1 internal nodes 

■ Inductive step: x has positive height and 2 children 

○ Each child has black-height of bh(x) or bh(x)-1  (Why?) 

○ The height of a child = (height of x) - 1 

○ So the subtrees rooted at each child contain at least  

2bh(x) - 1 - 1 internal nodes 

○ Thus subtree at x contains  

(2bh(x) - 1 - 1) + (2bh(x) - 1 - 1) + 1 

= 2•2bh(x)-1 - 1 = 2bh(x) - 1 nodes   

 



RB Trees: Proving Height Bound 

● Thus at the root of the red-black tree: 

n   2bh(root) - 1    (Why?) 

n   2h/2 - 1    (Why?) 

lg(n+1)  h/2    (Why?) 

h  2 lg(n + 1)    (Why?) 

 

Thus h = O(lg n)    



RB Trees: Worst-Case Time 

● So we’ve proved that a red-black tree has  

O(lg n) height 

● Corollary: These operations take O(lg n) time:  

■ Minimum(), Maximum() 

■ Successor(), Predecessor() 

■ Search() 

● Insert() and Delete(): 

■ Will also take O(lg n) time 

■ But will need special care since they modify tree 

 


