Algorithms

Red-Black Trees

Review: Binary Search Trees

- *Binary Search Trees* (BSTs) are an important data structure for dynamic sets
- In addition to satellite data, eleements have:
 - *key*: an identifying field inducing a total ordering
 - left: pointer to a left child (may be NULL)
 - *right*: pointer to a right child (may be NULL)
 - *p*: pointer to a parent node (NULL for root)

Review: Binary Search Trees

- BST property: key[left(x)] ≤ key[x] ≤ key[right(x)]
- Example:

Review: Inorder Tree Walk

- An *inorder walk* prints the set in sorted order: TreeWalk(x) TreeWalk(left[x]); print(x); TreeWalk(right[x]);
 - Easy to show by induction on the BST property
 - *Preorder tree walk*: print root, then left, then right
 - *Postorder tree walk*: print left, then right, then root

Review: BST Search

TreeSearch(x, k)

if (x = NULL or k = key[x])

return x;

if
$$(k < key[x])$$

return TreeSearch(left[x], k);
else

return TreeSearch(right[x], k);

Review: BST Search (Iterative)

IterativeTreeSearch(x, k)
while (x != NULL and k != key[x])
if (k < key[x])
x = left[x];
else
x = right[x];
return x;</pre>

Review: BST Insert

- Adds an element x to the tree so that the binary search tree property continues to hold
- The basic algorithm
 - Like the search procedure above
 - Insert x in place of NULL
 - Use a "trailing pointer" to keep track of where you came from (like inserting into singly linked list)
- Like search, takes time O(h), h = tree height

Review: Sorting With BSTs

- Basic algorithm:
 - Insert elements of unsorted array from 1..*n*
 - Do an inorder tree walk to print in sorted order
- Running time:
 - Best case: $\Omega(n \lg n)$ (it's a comparison sort)
 - Worst case: O(n²)
 - Average case: $O(n \lg n)$ (it's a quicksort!)

Review: Sorting With BSTs

Average case analysis
It's a form of quicksort!

for i=1 to n
 TreeInsert(A[i]);
InorderTreeWalk(root);

Review: More BST Operations

• Minimum:

- Find leftmost node in tree
- Successor:
 - x has a right subtree: successor is minimum node in right subtree
 - x has no right subtree: successor is first ancestor of x whose left child is also ancestor of x
 - Intuition: As long as you move to the left up the tree, you're visiting smaller nodes.
- Predecessor: similar to successor

Review: More BST Operations

• Perform case 1 or 2 to delete it

Red-Black Trees

- *Red-black trees*:
 - Binary search trees augmented with node color
 - Operations designed to guarantee that the height $h = O(\lg n)$
- First: describe the properties of red-black trees
- Then: prove that these guarantee $h = O(\lg n)$
- Finally: describe operations on red-black trees

Red-Black Properties

- The *red-black properties*:
 - 1. Every node is either red or black
 - 2. Every leaf (NULL pointer) is black
 - Note: this means every "real" node has 2 children
 - 3. If a node is red, both children are black

• Note: can't have 2 consecutive reds on a path

- 4. Every path from node to descendent leaf contains the same number of black nodes
- 5. The root is always black

Red-Black Trees

- Put example on board and verify properties:
 - 1. Every node is either red or black
 - 2. Every leaf (NULL pointer) is black
 - 3. If a node is red, both children are black
 - 4. Every path from node to descendent leaf contains the same number of black nodes
 - 5. The root is always black
- *black-height:* # black nodes on path to leaf
 - Label example with *h* and bh values

Height of Red-Black Trees

- What is the minimum black-height of a node with height h?
- A: a height-*h* node has black-height $\ge h/2$
- Theorem: A red-black tree with *n* internal nodes has height $h \le 2 \lg(n + 1)$
- *How do you suppose we'll prove this?*

- Prove: *n*-node RB tree has height $h \le 2 \lg(n+1)$
- Claim: A subtree rooted at a node x contains at least 2^{bh(x)} - 1 internal nodes
 - Proof by induction on height h
 - Base step: x has height 0 (i.e., NULL leaf node)
 What is bh(x)?

- Prove: *n*-node RB tree has height $h \le 2 \lg(n+1)$
- Claim: A subtree rooted at a node *x* contains at least 2^{bh(x)} - 1 internal nodes
 - Proof by induction on height h
 - Base step: x has height 0 (i.e., NULL leaf node)
 What is bh(x)?
 - A: 0
 - So...subtree contains $2^{bh(x)}$ 1
 - $= 2^0 1$
 - = 0 internal nodes (TRUE)

- Inductive proof that subtree at node *x* contains at least 2^{bh(x)} - 1 internal nodes
 - Inductive step: x has positive height and 2 children
 - Each child has black-height of bh(x) or bh(x)-1 (*Why?*)
 - The height of a child = (height of x) 1
 - So the subtrees rooted at each child contain at least $2^{bh(x)-1} 1$ internal nodes

• Thus subtree at x contains

$$(2^{bh(x)-1} - 1) + (2^{bh(x)-1} - 1) + 1$$

 $= 2 \cdot 2^{bh(x)-1} - 1 = 2^{bh(x)} - 1$ nodes

- Thus at the root of the red-black tree:
 - $n \ge 2^{bh(root)} 1$ (Why?)

 $n \ge 2^{h/2} 1$ (Why?)

 $\lg(n+1) \ge h/2$ (Why?)

 $h \le 2 \lg(n+1)$ (Why?)

Thus $h = O(\lg n)$

RB Trees: Worst-Case Time

- So we've proved that a red-black tree has O(lg *n*) height
- Corollary: These operations take O(lg n) time:
 - Minimum(), Maximum()
 - Successor(), Predecessor()

Search()

- Insert() and Delete():
 - Will also take $O(\lg n)$ time
 - But will need special care since they modify tree