
Algorithms

Red-Black Trees

Review: Binary Search Trees

● Binary Search Trees (BSTs) are an important

data structure for dynamic sets

● In addition to satellite data, eleements have:

■ key: an identifying field inducing a total ordering

■ left: pointer to a left child (may be NULL)

■ right: pointer to a right child (may be NULL)

■ p: pointer to a parent node (NULL for root)

Review: Binary Search Trees

● BST property:

 key[left(x)] key[x] key[right(x)]

● Example:

F

B H

K D A

Review: Inorder Tree Walk

● An inorder walk prints the set in sorted order:

TreeWalk(x)

 TreeWalk(left[x]);

 print(x);

 TreeWalk(right[x]);

■ Easy to show by induction on the BST property

■ Preorder tree walk: print root, then left, then right

■ Postorder tree walk: print left, then right, then root

Review: BST Search

 TreeSearch(x, k)

 if (x = NULL or k = key[x])

 return x;

 if (k < key[x])

 return TreeSearch(left[x], k);

 else

 return TreeSearch(right[x], k);

Review: BST Search (Iterative)

 IterativeTreeSearch(x, k)

 while (x != NULL and k != key[x])

 if (k < key[x])

 x = left[x];

 else

 x = right[x];

 return x;

Review: BST Insert

● Adds an element x to the tree so that the binary

search tree property continues to hold

● The basic algorithm

■ Like the search procedure above

■ Insert x in place of NULL

■ Use a “trailing pointer” to keep track of where you
came from (like inserting into singly linked list)

● Like search, takes time O(h), h = tree height

Review: Sorting With BSTs

● Basic algorithm:

■ Insert elements of unsorted array from 1..n

■ Do an inorder tree walk to print in sorted order

● Running time:

■ Best case: (n lg n) (it’s a comparison sort)
■ Worst case: O(n2)

■ Average case: O(n lg n) (it’s a quicksort!)

Review: Sorting With BSTs

● Average case analysis

■ It’s a form of quicksort!

for i=1 to n

 TreeInsert(A[i]);

InorderTreeWalk(root);

3 1 8 2 6 7 5

5 7

1 2 8 6 7 5

2 6 7 5

3

1 8

2 6

5 7

Review: More BST Operations

● Minimum:

■ Find leftmost node in tree

● Successor:

■ x has a right subtree: successor is minimum node

in right subtree

■ x has no right subtree: successor is first ancestor of

x whose left child is also ancestor of x

○ Intuition: As long as you move to the left up the tree,

you’re visiting smaller nodes.

● Predecessor: similar to successor

Review: More BST Operations

● Delete:

■ x has no children:

○ Remove x

■ x has one child:

○ Splice out x

■ x has two children:

○ Swap x with successor

○ Perform case 1 or 2 to delete it

F

B H

K D A

C
Example: delete K

or H or B

Red-Black Trees

● Red-black trees:

■ Binary search trees augmented with node color

■ Operations designed to guarantee that the height

h = O(lg n)

● First: describe the properties of red-black trees

● Then: prove that these guarantee h = O(lg n)

● Finally: describe operations on red-black trees

Red-Black Properties

● The red-black properties:

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

○ Note: this means every “real” node has 2 children

3. If a node is red, both children are black

○ Note: can’t have 2 consecutive reds on a path

4. Every path from node to descendent leaf contains

the same number of black nodes

5. The root is always black

Red-Black Trees

● Put example on board and verify properties:

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf contains

the same number of black nodes

5. The root is always black

● black-height: # black nodes on path to leaf

■ Label example with h and bh values

Height of Red-Black Trees

● What is the minimum black-height of a node

with height h?

● A: a height-h node has black-height h/2

● Theorem: A red-black tree with n internal

nodes has height h 2 lg(n + 1)

● How do you suppose we’ll prove this?

RB Trees: Proving Height Bound

● Prove: n-node RB tree has height h 2 lg(n+1)

● Claim: A subtree rooted at a node x contains

at least 2bh(x) - 1 internal nodes

■ Proof by induction on height h

■ Base step: x has height 0 (i.e., NULL leaf node)

○ What is bh(x)?

RB Trees: Proving Height Bound

● Prove: n-node RB tree has height h 2 lg(n+1)

● Claim: A subtree rooted at a node x contains

at least 2bh(x) - 1 internal nodes

■ Proof by induction on height h

■ Base step: x has height 0 (i.e., NULL leaf node)

○ What is bh(x)?

○ A: 0

○ So…subtree contains 2bh(x) - 1

= 20 - 1

= 0 internal nodes (TRUE)

RB Trees: Proving Height Bound

● Inductive proof that subtree at node x contains

at least 2bh(x) - 1 internal nodes

■ Inductive step: x has positive height and 2 children

○ Each child has black-height of bh(x) or bh(x)-1 (Why?)

○ The height of a child = (height of x) - 1

○ So the subtrees rooted at each child contain at least

2bh(x) - 1 - 1 internal nodes

○ Thus subtree at x contains

(2bh(x) - 1 - 1) + (2bh(x) - 1 - 1) + 1

= 2•2bh(x)-1 - 1 = 2bh(x) - 1 nodes

RB Trees: Proving Height Bound

● Thus at the root of the red-black tree:

n 2bh(root) - 1 (Why?)

n 2h/2 - 1 (Why?)

lg(n+1) h/2 (Why?)

h 2 lg(n + 1) (Why?)

Thus h = O(lg n)

RB Trees: Worst-Case Time

● So we’ve proved that a red-black tree has

O(lg n) height

● Corollary: These operations take O(lg n) time:

■ Minimum(), Maximum()

■ Successor(), Predecessor()

■ Search()

● Insert() and Delete():

■ Will also take O(lg n) time

■ But will need special care since they modify tree

