
Algorithms

Red-Black Trees

Review: Red-Black Trees

● Red-black trees:

■ Binary search trees augmented with node color

■ Operations designed to guarantee that the height

h = O(lg n)

● We described the properties of red-black trees

● We proved that these guarantee h = O(lg n)

● Next: describe operations on red-black trees

Review: Red-Black Properties

● The red-black properties:

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

○ Note: this means every “real” node has 2 children

3. If a node is red, both children are black

○ Note: can’t have 2 consecutive reds on a path

4. Every path from node to descendent leaf contains

the same number of black nodes

5. The root is always black

Review: Black-Height

● black-height: # black nodes on path to leaf

● What is the minimum black-height of a node

with height h?

● A: a height-h node has black-height  h/2

● Theorem: A red-black tree with n internal

nodes has height h  2 lg(n + 1)

■ Proved by (what else?) induction

Review: Proving Height Bound

● Thus at the root of the red-black tree:

n  2bh(root) - 1

n  2h/2 - 1

lg(n+1)  h/2

h  2 lg(n + 1)

Thus h = O(lg n)

RB Trees: Worst-Case Time

● So we’ve proved that a red-black tree has

O(lg n) height

● Corollary: These operations take O(lg n) time:

■ Minimum(), Maximum()

■ Successor(), Predecessor()

■ Search()

● Insert() and Delete():

■ Will also take O(lg n) time

■ But will need special care since they modify tree

Red-Black Trees: An Example

● Color this tree:

7

5 9

12 12

5 9

7

Red-black properties:

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

● Insert 8

■ Where does it go?

Red-Black Trees:

The Problem With Insertion

12

5 9

7

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

● Insert 8

■ Where does it go?

■ What color

should it be?

Red-Black Trees:

The Problem With Insertion

12

5 9

7

8

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

● Insert 8

■ Where does it go?

■ What color

should it be?

Red-Black Trees:

The Problem With Insertion

12

5 9

7

8

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

Red-Black Trees:

The Problem With Insertion

● Insert 11

■ Where does it go?

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

12

5 9

7

8

Red-Black Trees:

The Problem With Insertion

● Insert 11

■ Where does it go?

■ What color?

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:

The Problem With Insertion

● Insert 11

■ Where does it go?

■ What color?

○ Can’t be red! (#3)

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:

The Problem With Insertion

● Insert 11

■ Where does it go?

■ What color?

○ Can’t be red! (#3)
○ Can’t be black! (#4)

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:

The Problem With Insertion

● Insert 11

■ Where does it go?

■ What color?

○ Solution:

recolor the tree

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:

The Problem With Insertion

● Insert 10

■ Where does it go?

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

Red-Black Trees:

The Problem With Insertion

● Insert 10

■ Where does it go?

■ What color?

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

3. If a node is red, both children are black

4. Every path from node to descendent leaf

 contains the same number of black nodes

5. The root is always black

12

5 9

7

8

11

10

Red-Black Trees:

The Problem With Insertion

● Insert 10

■ Where does it go?

■ What color?

○ A: no color! Tree

is too imbalanced

○ Must change tree structure

to allow recoloring

■ Goal: restructure tree in

O(lg n) time

12

5 9

7

8

11

10

RB Trees: Rotation

● Our basic operation for changing tree structure

is called rotation:

● Does rotation preserve inorder key ordering?

● What would the code for rightRotate()

actually do?

y

x C

A B

x

A y

B C

rightRotate(y)

leftRotate(x)

rightRotate(y)

RB Trees: Rotation

● Answer: A lot of pointer manipulation

■ x keeps its left child

■ y keeps its right child

■ x’s right child becomes y’s left child

■ x’s and y’s parents change

● What is the running time?

y

x C

A B

x

A y

B C

Rotation Example

● Rotate left about 9:

12

5 9

7

8

11

Rotation Example

● Rotate left about 9:

5 12

7

9

11 8

Red-Black Trees: Insertion

● Insertion: the basic idea

■ Insert x into tree, color x red

■ Only r-b property 3 might be violated (if p[x] red)

○ If so, move violation up tree until a place is found where

it can be fixed

■ Total time will be O(lg n)

rbInsert(x)

 treeInsert(x);

 x->color = RED;

 // Move violation of #3 up tree, maintaining #4 as invariant:

 while (x!=root && x->p->color == RED)

 if (x->p == x->p->p->left)

 y = x->p->p->right;

 if (y->color == RED)

 x->p->color = BLACK;

 y->color = BLACK;

 x->p->p->color = RED;

 x = x->p->p;

 else // y->color == BLACK

 if (x == x->p->right)

 x = x->p;

 leftRotate(x);

 x->p->color = BLACK;

 x->p->p->color = RED;

 rightRotate(x->p->p);

 else // x->p == x->p->p->right

 (same as above, but with

 “right” & “left” exchanged)

Case 1

Case 2

Case 3

rbInsert(x)

 treeInsert(x);

 x->color = RED;

 // Move violation of #3 up tree, maintaining #4 as invariant:

 while (x!=root && x->p->color == RED)

 if (x->p == x->p->p->left)

 y = x->p->p->right;

 if (y->color == RED)

 x->p->color = BLACK;

 y->color = BLACK;

 x->p->p->color = RED;

 x = x->p->p;

 else // y->color == BLACK

 if (x == x->p->right)

 x = x->p;

 leftRotate(x);

 x->p->color = BLACK;

 x->p->p->color = RED;

 rightRotate(x->p->p);

 else // x->p == x->p->p->right

 (same as above, but with

 “right” & “left” exchanged)

Case 1: uncle is RED

Case 2

Case 3

RB Insert: Case 1

if (y->color == RED)

 x->p->color = BLACK;

 y->color = BLACK;

 x->p->p->color = RED;

 x = x->p->p;

● Case 1: “uncle” is red

● In figures below, all ’s are
equal-black-height subtrees

C

A D

 B

 

 

C

A D

 B

 

  x

y

new x

Change colors of some nodes, preserving #4: all downward paths have equal b.h.

The while loop now continues with x’s grandparent as the new x

case 1

B

 

x

RB Insert: Case 1

if (y->color == RED)

 x->p->color = BLACK;

 y->color = BLACK;

 x->p->p->color = RED;

 x = x->p->p;

● Case 1: “uncle” is red

● In figures below, all ’s are
equal-black-height subtrees

C

A D

  

C

A D

 

y

new x

Same action whether x is a left or a right child

B

 

x 

case 1

B

 

x

RB Insert: Case 2

if (x == x->p->right)

 x = x->p;

 leftRotate(x);

// continue with case 3 code

● Case 2:

■ “Uncle” is black

■ Node x is a right child

● Transform to case 3 via a

left-rotation

C

A 
C

B y

A

 

x 

case 2



y 

Transform case 2 into case 3 (x is left child) with a left rotation

This preserves property 4: all downward paths contain same number of black nodes

RB Insert: Case 3

x->p->color = BLACK;

x->p->p->color = RED;

rightRotate(x->p->p);

● Case 3:

■ “Uncle” is black

■ Node x is a left child

● Change colors; rotate right

B

A x



case 3
C

B

A

 

x 

y  C

  

Perform some color changes and do a right rotation

Again, preserves property 4: all downward paths contain same number of black nodes

RB Insert: Cases 4-6

● Cases 1-3 hold if x’s parent is a left child

● If x’s parent is a right child, cases 4-6 are

symmetric (swap left for right)

Red-Black Trees: Deletion

● And you thought insertion was tricky…
● We will not cover RB delete in class

■ You should read section 14.4 on your own

■ Read for the overall picture, not the details

The End

● Coming up:

■ Skip lists

■ Hash tables

