Algorithms

Red-Black Trees

Review: Red-Black Trees

- Red-black trees:
- Binary search trees augmented with node color
- Operations designed to guarantee that the height

$$
h=\mathrm{O}(\lg n)
$$

- We described the properties of red-black trees
- We proved that these guarantee $h=\mathrm{O}(\lg n)$
- Next: describe operations on red-black trees

Review: Red-Black Properties

- The red-black properties:

1. Every node is either red or black
2. Every leaf (NULL pointer) is black

- Note: this means every "real" node has 2 children

3. If a node is red, both children are black

- Note: can't have 2 consecutive reds on a path

4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

Review: Black-Height

- black-height: \# black nodes on path to leaf
- What is the minimum black-height of a node with height h?
- A: a height- h node has black-height $\geq h / 2$
- Theorem: A red-black tree with n internal nodes has height $h \leq 2 \lg (n+1)$
- Proved by (what else?) induction

Review: Proving Height Bound

- Thus at the root of the red-black tree:
$n \geq 2^{\text {bh(root) }}-1$
$n \geq 2^{h / 2}-1$
$\lg (n+1) \geq h / 2$
$h \leq 2 \lg (n+1)$

Thus $h=\mathrm{O}(\lg n)$

RB Trees: Worst-Case Time

- So we've proved that a red-black tree has $\mathrm{O}(\lg n)$ height
- Corollary: These operations take $\mathrm{O}(\lg n)$ time:
- Minimum(), Maximum()
- Successor(), Predecessor()
- Search()
- Insert() and Delete():
- Will also take $\mathrm{O}(\lg n)$ time
- But will need special care since they modify tree

Red-Black Trees: An Example

- Color this tree:

Red-black properties:

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

Red-Black Trees: The Problem With Insertion

- Insert 8
- Where does it go?

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

Red-Black Trees: The Problem With Insertion

- Insert 8
- Where does it go?
- What color should it be?

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

Red-Black Trees: The Problem With Insertion

- Insert 8
- Where does it go?
- What color should it be?

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

Red-Black Trees: The Problem With Insertion

- Insert 11
- Where does it go?

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

Red-Black Trees: The Problem With Insertion

- Insert 11
- Where does it go?
- What color?

Red-Black Trees:
 The Problem With Insertion

- Insert 11
- Where does it go?
- What color?
- Can’t be red! (\#3)

Red-Black Trees:
 The Problem With Insertion

- Insert 11
- Where does it go?
- What color?
- Can't be red! (\#3)
- Can’t be black! (\#4)

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

Red-Black Trees:
 The Problem With Insertion

- Insert 11
- Where does it go?
- What color?
- Solution: recolor the tree

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

Red-Black Trees: The Problem With Insertion

- Insert 10
- Where does it go?

Red-Black Trees: The Problem With Insertion

- Insert 10
- Where does it go?
- What color?

Red-Black Trees:
 The Problem With Insertion

- Insert 10
- Where does it go?
- What color?
- A: no color! Tree is too imbalanced
- Must change tree structure to allow recoloring
- Goal: restructure tree in $\mathrm{O}(\lg n)$ time

RB Trees: Rotation

- Our basic operation for changing tree structure is called rotation:

- Does rotation preserve inorder key ordering?
- What would the code for rightRotate() actually do?

RB Trees: Rotation

- Answer: A lot of pointer manipulation
- x keeps its left child
- y keeps its right child
- x 's right child becomes y 's left child
- x 's and y 's parents change
- What is the running time?

Rotation Example

- Rotate left about 9:

Rotation Example

- Rotate left about 9:

Red-Black Trees: Insertion

- Insertion: the basic idea
- Insert x into tree, color x red
- Only r-b property 3 might be violated (if $\mathrm{p}[x]$ red)
- If so, move violation up tree until a place is found where it can be fixed
- Total time will be $\mathrm{O}(\lg n)$

```
rbInsert(x)
    treeInsert(x) ;
    \(x->c o l o r=R E D ;\)
    // Move violation of \#3 up tree, maintaining \#4 as invariant:
    while (x!=root \(\& \& x->p->c o l o r==R E D)\)
    if ( \(x->p==x->p->p->l e f t)\)
    \(y=x->p->p->r i g h t ;\)
    if ( y ->color \(==\) RED)
        x->p->color = BLACK;
        \(y^{->c o l o r ~}=\) BLACK ;
        \(x->p->p->c o l o r=R E D ;\)
        \(\mathbf{x}=x->p->p ;\)
    Case 1
    else //y->color \(==B L A C K\)
        if ( \(x==x->p->r i g h t)\)
            \(\mathbf{x}=\mathbf{x - > p}\);
            leftRotate (x) ;
        x->p->color \(=\) BLACK;
        \(x->p->p->c o l o r=R E D ;\)
        rightRotate (x->p->p);
    else \(/ / x->p==x->p->p->r i g h t\)
        (same as above, but with
        "right" \& "left" exchanged)
```

```
rbInsert(x)
    treeInsert(x);
    \(x->c o l o r=R E D ;\)
    // Move violation of \#3 up tree, maintaining \#4 as invariant:
    while (x!=root \(\& \& x->p->c o l o r==R E D)\)
    if ( \(x->p==x->p->p->l e f t)\)
    \(y=x->p->p->r i g h t ;\)
    if ( y ->color \(==\) RED)
        x->p->color = BLACK;
        \(y->c o l o r=B L A C K ;\)
        \(x->p->p->c o l o r=R E D ;\)
        \(\mathbf{x}=x->p->p ;\)
    Case 1: uncle is RED
    else //y->color \(==B L A C K\)
        if ( \(x==x->p->r i g h t)\)
            \(\mathbf{x}=\mathbf{x}->p\);
            leftRotate (x) ;
        x->p->color \(=\) BLACK;
        \(x->p->p->c o l o r=R E D ;\)
        rightRotate ( \(x->p->p\) ) ;
    else \(/ / x->p==x->p->p->r i g h t\)
        (same as above, but with
        "right" \& "left" exchanged)
```


RB Insert: Case 1

$$
\text { if } \begin{aligned}
& (y->c o l o r==R E D) \\
& x->p->c o l o r=B L A C K \\
& y->c o l o r=B L A C K \\
& x->p->p->c o l o r=R E D ; \\
& x=x->p->p ;
\end{aligned}
$$

- Case 1: "uncle" is red
- In figures below, all Δ 's are equal-black-height subtrees

Change colors of some nodes, preserving \#4: all downward paths have equal b.h. The while loop now continues with x 's grandparent as the new x

RB Insert: Case 1

$$
\text { if } \begin{aligned}
&(y->c o l o r ~==~ R E D) ~ \\
& \text { x->p->color }=\text { BLACK; } \\
& y->c o l o r ~=~ B L A C K ; ~ \\
& \text { x->p->p->color }=\text { RED ; } \\
& \text { x }=x->p->p ;
\end{aligned}
$$

- Case 1: "uncle" is red
- In figures below, all Δ 's are equal-black-height subtrees

RB Insert: Case 2

```
if ( \(x==x->p->r i g h t)\)
        \(\mathbf{x}=\mathrm{x}->\mathrm{p}\);
        leftRotate(x);
// continue with case 3 code
```


- Case 2:
- "Uncle" is black
- Node x is a right child
- Transform to case 3 via a

Transform case 2 into case 3 (x is left child) with a left rotation This preserves property 4: all downward paths contain same number of black nodes

RB Insert: Case 3

$$
\begin{aligned}
& \text { x->p->color = BLACK; } \\
& \text { x->p->p->color = RED; } \\
& \text { rightRotate (} x->p->p \text {) ; }
\end{aligned}
$$

- Case 3:
- "Uncle" is black
- Node x is a left child
- Change colors; rotate right

Perform some color changes and do a right rotation Again, preserves property 4: all downward paths contain same number of black nodes

RB Insert: Cases 4-6

- Cases 1-3 hold if x 's parent is a left child
- If x 's parent is a right child, cases 4-6 are symmetric (swap left for right)

Red-Black Trees: Deletion

- And you thought insertion was tricky...
- We will not cover RB delete in class
- You should read section 14.4 on your own
- Read for the overall picture, not the details

The End

- Coming up:
- Skip lists
- Hash tables

