
Algorithms 

Red-Black Trees 



Review: Red-Black Trees 

● Red-black trees: 

■ Binary search trees augmented with node color  

■ Operations designed to guarantee that the height 

h = O(lg n) 

● We described the properties of red-black trees 

● We proved that these guarantee h = O(lg n) 

● Next: describe operations on red-black trees 



Review: Red-Black Properties 

● The red-black properties: 

1.  Every node is either red or black 

2.  Every leaf (NULL pointer) is black 

○ Note: this means every “real” node has 2 children 

3.  If a node is red, both children are black 

○ Note: can’t have 2 consecutive reds on a path 

4.  Every path from node to descendent leaf contains 

the same number of black nodes 

5. The root is always black 



Review: Black-Height 

● black-height: # black nodes on path to leaf 

● What is the minimum black-height of a node 

with height h? 

● A: a height-h node has black-height  h/2 

● Theorem: A red-black tree with n internal 

nodes has height h  2 lg(n + 1) 

■ Proved by (what else?) induction 

 

 



Review: Proving Height Bound 

● Thus at the root of the red-black tree: 

n   2bh(root) - 1     

n   2h/2 - 1  

lg(n+1)  h/2  

h  2 lg(n + 1)  

 

Thus h = O(lg n)    



RB Trees: Worst-Case Time 

● So we’ve proved that a red-black tree has  

O(lg n) height 

● Corollary: These operations take O(lg n) time:  

■ Minimum(), Maximum() 

■ Successor(), Predecessor() 

■ Search() 

● Insert() and Delete(): 

■ Will also take O(lg n) time 

■ But will need special care since they modify tree 

 



Red-Black Trees: An Example 

● Color this tree:  
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Red-black properties: 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 



● Insert 8 

■ Where does it go? 

Red-Black Trees:  

The Problem With Insertion 
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1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 



● Insert 8 

■ Where does it go? 

■ What color  

should it be? 

Red-Black Trees:  

The Problem With Insertion 
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1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 



● Insert 8 

■ Where does it go? 

■ What color  

should it be? 

Red-Black Trees:  

The Problem With Insertion 
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1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 



Red-Black Trees: 

The Problem With Insertion 

● Insert 11 

■ Where does it go? 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 
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Red-Black Trees: 

The Problem With Insertion 

● Insert 11 

■ Where does it go? 

■ What color? 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 
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Red-Black Trees: 

The Problem With Insertion 

● Insert 11 

■ Where does it go? 

■ What color? 

○ Can’t be red! (#3) 
 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 
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Red-Black Trees: 

The Problem With Insertion 

● Insert 11 

■ Where does it go? 

■ What color? 

○ Can’t be red! (#3) 
○ Can’t be black! (#4) 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 
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Red-Black Trees: 

The Problem With Insertion 

● Insert 11 

■ Where does it go? 

■ What color? 

○ Solution:  

recolor the tree 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 
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Red-Black Trees: 

The Problem With Insertion 

● Insert 10 

■ Where does it go? 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 
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Red-Black Trees: 

The Problem With Insertion 

● Insert 10 

■ Where does it go? 

■ What color? 

1. Every node is either red or black 

2. Every leaf (NULL pointer) is black 

3. If a node is red, both children are black 

4.  Every path from node to descendent leaf 

 contains the same number of black nodes 

5.  The root is always black 
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Red-Black Trees: 

The Problem With Insertion 

● Insert 10 

■ Where does it go? 

■ What color? 

○ A: no color! Tree  

is too imbalanced 

○ Must change tree structure 

to allow recoloring 

■ Goal: restructure tree in  

O(lg n) time 
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RB Trees: Rotation 

● Our basic operation for changing tree structure 

is called rotation: 

 

 

 

 

● Does rotation preserve inorder key ordering? 

● What would the code for rightRotate() 

actually do? 

y 

x C 

A B 

x 

A y 

B C 

rightRotate(y) 

leftRotate(x) 



rightRotate(y) 

RB Trees: Rotation 

 

 

 

● Answer: A lot of pointer manipulation 

■ x keeps its left child 

■ y keeps its right child 

■ x’s right child becomes y’s left child 

■ x’s and y’s parents change 

● What is the running time? 

y 

x C 

A B 

x 

A y 

B C 



Rotation Example 

● Rotate left about 9: 
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Rotation Example 

● Rotate left about 9: 

5 12 

7 

9 

11 8 



Red-Black Trees: Insertion 

● Insertion: the basic idea 

■ Insert x into tree, color x red 

■ Only r-b property 3 might be violated (if p[x] red) 

○ If so, move violation up tree until a place is found where 

it can be fixed 

■ Total time will be O(lg n) 

 



rbInsert(x) 

  treeInsert(x); 

  x->color = RED; 

  // Move violation of #3 up tree, maintaining #4 as invariant: 

  while (x!=root && x->p->color == RED) 

  if (x->p == x->p->p->left) 

      y = x->p->p->right; 

      if (y->color == RED) 

          x->p->color = BLACK; 

          y->color = BLACK; 

          x->p->p->color = RED; 

          x = x->p->p; 

      else   // y->color == BLACK 

          if (x == x->p->right) 

              x = x->p; 

              leftRotate(x); 

          x->p->color = BLACK; 

          x->p->p->color = RED; 

          rightRotate(x->p->p); 

  else    // x->p == x->p->p->right 

      (same as above, but with 

       “right” & “left” exchanged) 

Case 1 

Case 2 

Case 3 



rbInsert(x) 

  treeInsert(x); 

  x->color = RED; 

  // Move violation of #3 up tree, maintaining #4 as invariant: 

  while (x!=root && x->p->color == RED) 

  if (x->p == x->p->p->left) 

      y = x->p->p->right; 

      if (y->color == RED) 

          x->p->color = BLACK; 

          y->color = BLACK; 

          x->p->p->color = RED; 

          x = x->p->p; 

      else   // y->color == BLACK 

          if (x == x->p->right) 

              x = x->p; 

              leftRotate(x); 

          x->p->color = BLACK; 

          x->p->p->color = RED; 

          rightRotate(x->p->p); 

  else    // x->p == x->p->p->right 

      (same as above, but with 

       “right” & “left” exchanged) 

Case 1: uncle is RED 

Case 2 

Case 3 



RB Insert: Case 1 

if (y->color == RED) 

    x->p->color = BLACK; 

    y->color = BLACK; 

    x->p->p->color = RED; 

    x = x->p->p; 

● Case 1: “uncle” is red 

● In figures below, all ’s are 
equal-black-height subtrees 

C 

A D 

 B 

  

  

C 

A D 

 B 

  

  x 

y 

new x 

Change colors of some nodes, preserving #4: all downward paths have equal b.h. 

The while loop now continues with x’s grandparent as the new x 

case 1 



B 

  

x 

RB Insert: Case 1 

if (y->color == RED) 

    x->p->color = BLACK; 

    y->color = BLACK; 

    x->p->p->color = RED; 

    x = x->p->p; 

● Case 1: “uncle” is red 

● In figures below, all ’s are 
equal-black-height subtrees 

C 

A D 

   

C 

A D 

  

y 

new x 

Same action whether x is a left or a right child 

B 

  

x  

case 1 



B 

  

x 

RB Insert: Case 2 

if (x == x->p->right) 

    x = x->p; 

    leftRotate(x); 

// continue with case 3 code 

● Case 2: 

■ “Uncle” is black 

■ Node x is a right child 

● Transform to case 3 via a 

left-rotation 

C 

A  
C 

B y 

A 

  

x  

case 2 

 

y  

Transform case 2 into case 3 (x is left child) with a left rotation 

This preserves property 4: all downward paths contain same number of black nodes 



RB Insert: Case 3 

x->p->color = BLACK; 

x->p->p->color = RED; 

rightRotate(x->p->p); 

● Case 3: 

■ “Uncle” is black 

■ Node x is a left child 

● Change colors; rotate right 

B 

A x 

 

case 3 
C 

B 

A 

  

x  

y  C 

   

Perform some color changes and do a right rotation 

Again, preserves property 4: all downward paths contain same number of black nodes 



RB Insert: Cases 4-6 

● Cases 1-3 hold if x’s parent is a left child 

● If x’s parent is a right child, cases 4-6 are 

symmetric (swap left for right) 



Red-Black Trees: Deletion 

● And you thought insertion was tricky…  
● We will not cover RB delete in class 

■ You should read section 14.4 on your own 

■ Read for the overall picture, not the details 

 



The End 

● Coming up:  

■ Skip lists 

■ Hash tables 


