Algorithms

Skip Lists

Administration

- Hand back homework 3
- Hand back exam 1
- Go over exam

Review: Red-Black Trees

- Red-black trees:
- Binary search trees augmented with node color
- Operations designed to guarantee that the height

$$
h=\mathrm{O}(\lg n)
$$

- We described the properties of red-black trees
- We proved that these guarantee $h=\mathrm{O}(\lg n)$
- Next: describe operations on red-black trees

Review: Red-Black Properties

- The red-black properties:

1. Every node is either red or black
2. Every leaf (NULL pointer) is black

- Note: this means every "real" node has 2 children

3. If a node is red, both children are black

- Note: can't have 2 consecutive reds on a path

4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

Review: RB Trees: Rotation

- Our basic operation for changing tree structure is called rotation:

- Preserves BST key ordering
- $\mathrm{O}(1)$ time...just changes some pointers

Review: Red-Black Trees: Insertion

- Insertion: the basic idea
- Insert x into tree, color x red
- Only r-b property 3 might be violated (if $\mathrm{p}[x]$ red)
- If so, move violation up tree until a place is found where it can be fixed
- Total time will be $\mathrm{O}(\lg n)$

```
rbInsert(x)
    treeInsert(x) ;
    \(x->c o l o r=R E D ;\)
    // Move violation of \#3 up tree, maintaining \#4 as invariant:
    while (x!=root \(\& \& x->p->c o l o r==R E D)\)
    if ( \(x->p==x->p->p->l e f t)\)
    \(y=x->p->p->r i g h t ;\)
    if ( y ->color \(==\) RED)
        x->p->color = BLACK;
        \(y^{->c o l o r ~}=\) BLACK ;
        \(x->p->p->c o l o r=R E D ;\)
        \(\mathbf{x}=x->p->p ;\)
    Case 1
    else //y->color \(==B L A C K\)
        if ( \(x==x->p->r i g h t)\)
            \(\mathbf{x}=\mathbf{x - > p}\);
            leftRotate (x) ;
        x->p->color \(=\) BLACK;
        \(x->p->p->c o l o r=R E D ;\)
        rightRotate (x->p->p);
    else \(/ / x->p==x->p->p->r i g h t\)
        (same as above, but with
        "right" \& "left" exchanged)
```

```
rbInsert(x)
    treeInsert(x);
    \(x->c o l o r=R E D ;\)
    // Move violation of \#3 up tree, maintaining \#4 as invariant:
    while (x!=root \(\& \& x->p->c o l o r==R E D)\)
    if ( \(x->p==x->p->p->l e f t)\)
    \(y=x->p->p->r i g h t ;\)
    if ( y ->color \(==\) RED)
        x->p->color = BLACK;
        \(y->c o l o r=B L A C K ;\)
        \(x->p->p->c o l o r=R E D ;\)
        \(\mathbf{x}=x->p->p ;\)
    Case 1: uncle is RED
    else //y->color \(==B L A C K\)
        if ( \(x==x->p->r i g h t)\)
            \(\mathbf{x}=\mathbf{x}->p\);
            leftRotate (x) ;
        x->p->color \(=\) BLACK;
        \(x->p->p->c o l o r=R E D ;\)
        rightRotate ( \(x->p->p\) ) ;
    else \(/ / x->p==x->p->p->r i g h t\)
        (same as above, but with
        "right" \& "left" exchanged)
```


Review: RB Insert: Case 1

$$
\begin{aligned}
& \text { if (} \mathrm{y} \text {->color }==\text { RED) } \\
& \text { x->p->color = BLACK; } \\
& y^{->c o l o r ~}=\text { BLACK; } \\
& \text { x->p->p->color = RED; } \\
& x=x->p->p ;
\end{aligned}
$$

Change colors of some nodes, preserving \#4: all downward paths have equal b.h. The while loop now continues with x 's grandparent as the new x

Review: RB Insert: Case 2

```
if (x == x->p->right)
        \(\mathbf{x}=\mathrm{x}->\mathrm{p}\);
        leftRotate(x);
// continue with case 3 code
```


- Case 2:
- "Uncle" is black
- Node x is a right child
- Transform to case 3 via a

Transform case 2 into case 3 (x is left child) with a left rotation This preserves property 4: all downward paths contain same number of black nodes

Review: RB Insert: Case 3

$$
\begin{aligned}
& \text { x->p->color = BLACK; } \\
& \text { x->p->p->color = RED; } \\
& \text { rightRotate (} x->p->p \text {) ; }
\end{aligned}
$$

- Case 3:
- "Uncle" is black
- Node x is a left child
- Change colors; rotate right

Perform some color changes and do a right rotation Again, preserves property 4: all downward paths contain same number of black nodes

Red-Black Trees

- Red-black trees do what they do very well
- What do you think is the worst thing about redblack trees?
- A: coding them up

Skip Lists

- A relatively recent data structure
- "A probabilistic alternative to balanced trees"
- A randomized algorithm with benefits of $\mathrm{r}-\mathrm{b}$ trees
- $\mathbf{O}(\lg n)$ expected time for Search, Insert
- O(1) time for Min, Max, Succ, Pred
- Much easier to code than r-b trees
- Fast!

Linked Lists

- Think about a linked list as a structure for dynamic sets. What is the running time of:
- Min() and Max()?

■ Successor () ?
■ Delete()?

- How can we make this $O(1)$?

So these all take $O(1)$ time in a linked list.
Can you think of a way to do these in O(1) time in a red-black tree?

■ Predecessor()?
Goal: make these O(lg n) time
■ Insert ()? \int in a linked-list setting

