
Algorithms

Skip Lists

Administration

● Hand back homework 3

● Hand back exam 1

● Go over exam

Review: Red-Black Trees

● Red-black trees:

■ Binary search trees augmented with node color

■ Operations designed to guarantee that the height

h = O(lg n)

● We described the properties of red-black trees

● We proved that these guarantee h = O(lg n)

● Next: describe operations on red-black trees

Review: Red-Black Properties

● The red-black properties:

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

○ Note: this means every “real” node has 2 children

3. If a node is red, both children are black

○ Note: can’t have 2 consecutive reds on a path

4. Every path from node to descendent leaf contains

the same number of black nodes

5. The root is always black

Review: RB Trees: Rotation

● Our basic operation for changing tree structure

is called rotation:

● Preserves BST key ordering

● O(1) time…just changes some pointers

y

x C

A B

x

A y

B C

rightRotate(y)

leftRotate(x)

Review: Red-Black Trees: Insertion

● Insertion: the basic idea

■ Insert x into tree, color x red

■ Only r-b property 3 might be violated (if p[x] red)

○ If so, move violation up tree until a place is found where

it can be fixed

■ Total time will be O(lg n)

rbInsert(x)

 treeInsert(x);

 x->color = RED;

 // Move violation of #3 up tree, maintaining #4 as invariant:

 while (x!=root && x->p->color == RED)

 if (x->p == x->p->p->left)

 y = x->p->p->right;

 if (y->color == RED)

 x->p->color = BLACK;

 y->color = BLACK;

 x->p->p->color = RED;

 x = x->p->p;

 else // y->color == BLACK

 if (x == x->p->right)

 x = x->p;

 leftRotate(x);

 x->p->color = BLACK;

 x->p->p->color = RED;

 rightRotate(x->p->p);

 else // x->p == x->p->p->right

 (same as above, but with

 “right” & “left” exchanged)

Case 1

Case 2

Case 3

rbInsert(x)

 treeInsert(x);

 x->color = RED;

 // Move violation of #3 up tree, maintaining #4 as invariant:

 while (x!=root && x->p->color == RED)

 if (x->p == x->p->p->left)

 y = x->p->p->right;

 if (y->color == RED)

 x->p->color = BLACK;

 y->color = BLACK;

 x->p->p->color = RED;

 x = x->p->p;

 else // y->color == BLACK

 if (x == x->p->right)

 x = x->p;

 leftRotate(x);

 x->p->color = BLACK;

 x->p->p->color = RED;

 rightRotate(x->p->p);

 else // x->p == x->p->p->right

 (same as above, but with

 “right” & “left” exchanged)

Case 1: uncle is RED

Case 2

Case 3

Review: RB Insert: Case 1

if (y->color == RED)

 x->p->color = BLACK;

 y->color = BLACK;

 x->p->p->color = RED;

 x = x->p->p;

● Case 1: “uncle” is red

● In figures below, all ’s are
equal-black-height subtrees

C

A D

 B

C

A D

 B

 x

y

new x

Change colors of some nodes, preserving #4: all downward paths have equal b.h.

The while loop now continues with x’s grandparent as the new x

case 1

B

x

Review: RB Insert: Case 2

if (x == x->p->right)

 x = x->p;

 leftRotate(x);

// continue with case 3 code

● Case 2:

■ “Uncle” is black

■ Node x is a right child

● Transform to case 3 via a

left-rotation

C

A
C

B y

A

x

case 2

y

Transform case 2 into case 3 (x is left child) with a left rotation

This preserves property 4: all downward paths contain same number of black nodes

Review: RB Insert: Case 3

x->p->color = BLACK;

x->p->p->color = RED;

rightRotate(x->p->p);

● Case 3:

■ “Uncle” is black

■ Node x is a left child

● Change colors; rotate right

B

A x

case 3
C

B

A

x

y C

Perform some color changes and do a right rotation

Again, preserves property 4: all downward paths contain same number of black nodes

Red-Black Trees

● Red-black trees do what they do very well

● What do you think is the worst thing about red-

black trees?

● A: coding them up

Skip Lists

● A relatively recent data structure

■ “A probabilistic alternative to balanced trees”

■ A randomized algorithm with benefits of r-b trees

○ O(lg n) expected time for Search, Insert

○ O(1) time for Min, Max, Succ, Pred

■ Much easier to code than r-b trees

■ Fast!

ftp://ftp.cs.umd.edu/pub/skipLists/skiplists.pdf

Linked Lists

● Think about a linked list as a structure for

dynamic sets. What is the running time of:

■ Min() and Max()?

■ Successor()?

■ Delete()?

○ How can we make this O(1)?

■ Predecessor()?

■ Search()?

■ Insert()?

Goal: make these O(lg n) time
in a linked-list setting

So these all take O(1)
time in a linked list.
Can you think of a way
to do these in O(1) time
in a red-black tree?

