
Algorithms 

Skip Lists 



Administration 

● Hand back homework 3 

● Hand back exam 1 

● Go over exam 



Review: Red-Black Trees 

● Red-black trees: 

■ Binary search trees augmented with node color  

■ Operations designed to guarantee that the height 

h = O(lg n) 

● We described the properties of red-black trees 

● We proved that these guarantee h = O(lg n) 

● Next: describe operations on red-black trees 



Review: Red-Black Properties 

● The red-black properties: 

1.  Every node is either red or black 

2.  Every leaf (NULL pointer) is black 

○ Note: this means every “real” node has 2 children 

3.  If a node is red, both children are black 

○ Note: can’t have 2 consecutive reds on a path 

4.  Every path from node to descendent leaf contains 

the same number of black nodes 

5. The root is always black 



Review: RB Trees: Rotation 

● Our basic operation for changing tree structure 

is called rotation: 

 

 

 

 

● Preserves BST key ordering 

● O(1) time…just changes some pointers 
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rightRotate(y) 

leftRotate(x) 



Review: Red-Black Trees: Insertion 

● Insertion: the basic idea 

■ Insert x into tree, color x red 

■ Only r-b property 3 might be violated (if p[x] red) 

○ If so, move violation up tree until a place is found where 

it can be fixed 

■ Total time will be O(lg n) 

 



rbInsert(x) 

  treeInsert(x); 

  x->color = RED; 

  // Move violation of #3 up tree, maintaining #4 as invariant: 

  while (x!=root && x->p->color == RED) 

  if (x->p == x->p->p->left) 

      y = x->p->p->right; 

      if (y->color == RED) 

          x->p->color = BLACK; 

          y->color = BLACK; 

          x->p->p->color = RED; 

          x = x->p->p; 

      else   // y->color == BLACK 

          if (x == x->p->right) 

              x = x->p; 

              leftRotate(x); 

          x->p->color = BLACK; 

          x->p->p->color = RED; 

          rightRotate(x->p->p); 

  else    // x->p == x->p->p->right 

      (same as above, but with 

       “right” & “left” exchanged) 

Case 1 

Case 2 

Case 3 



rbInsert(x) 

  treeInsert(x); 

  x->color = RED; 

  // Move violation of #3 up tree, maintaining #4 as invariant: 

  while (x!=root && x->p->color == RED) 

  if (x->p == x->p->p->left) 

      y = x->p->p->right; 

      if (y->color == RED) 

          x->p->color = BLACK; 

          y->color = BLACK; 

          x->p->p->color = RED; 

          x = x->p->p; 

      else   // y->color == BLACK 

          if (x == x->p->right) 

              x = x->p; 

              leftRotate(x); 

          x->p->color = BLACK; 

          x->p->p->color = RED; 

          rightRotate(x->p->p); 

  else    // x->p == x->p->p->right 

      (same as above, but with 

       “right” & “left” exchanged) 

Case 1: uncle is RED 

Case 2 

Case 3 



Review: RB Insert: Case 1 

if (y->color == RED) 

    x->p->color = BLACK; 

    y->color = BLACK; 

    x->p->p->color = RED; 

    x = x->p->p; 

● Case 1: “uncle” is red 

● In figures below, all ’s are 
equal-black-height subtrees 
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Change colors of some nodes, preserving #4: all downward paths have equal b.h. 

The while loop now continues with x’s grandparent as the new x 

case 1 
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Review: RB Insert: Case 2 

if (x == x->p->right) 

    x = x->p; 

    leftRotate(x); 

// continue with case 3 code 

● Case 2: 

■ “Uncle” is black 

■ Node x is a right child 

● Transform to case 3 via a 

left-rotation 
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case 2 
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Transform case 2 into case 3 (x is left child) with a left rotation 

This preserves property 4: all downward paths contain same number of black nodes 



Review: RB Insert: Case 3 

x->p->color = BLACK; 

x->p->p->color = RED; 

rightRotate(x->p->p); 

● Case 3: 

■ “Uncle” is black 

■ Node x is a left child 

● Change colors; rotate right 
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case 3 
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Perform some color changes and do a right rotation 

Again, preserves property 4: all downward paths contain same number of black nodes 



Red-Black Trees 

● Red-black trees do what they do very well 

● What do you think is the worst thing about red-

black trees? 

● A: coding them up 



Skip Lists 

● A relatively recent data structure 

■ “A probabilistic alternative to balanced trees” 

■ A randomized algorithm with benefits of r-b trees 

○ O(lg n) expected time for Search, Insert 

○ O(1) time for Min, Max, Succ, Pred 

■ Much easier to code than r-b trees 

■ Fast! 

 

ftp://ftp.cs.umd.edu/pub/skipLists/skiplists.pdf


Linked Lists 

● Think about a linked list as a structure for 

dynamic sets.  What is the running time of: 

■ Min() and Max()? 

■ Successor()? 

■ Delete()? 

○ How can we make this O(1)? 

■ Predecessor()? 

■ Search()? 

■ Insert()? 

Goal: make these O(lg n) time  
in a linked-list setting 

So these all take O(1) 
time in a linked list.   
Can you think of a way 
to do these in O(1) time 
in a red-black tree? 


