
Algorithms

Skip Lists

Introduction to Hashing

Review: Red-Black Trees

● Red-black trees:

■ Binary search trees augmented with node color

■ Operations designed to guarantee that the height

h = O(lg n)

● We described the properties of red-black trees

● We proved that these guarantee h = O(lg n)

● We described operations on red-black trees

■ Only tricky operations: insert, delete

■ Use rotation to restructure tree

Review: Skip Lists

● A relatively recent data structure

■ “A probabilistic alternative to balanced trees”

■ A randomized algorithm with benefits of r-b trees

○ O(lg n) expected time for Search, Insert

○ O(1) time for Min, Max, Succ, Pred

■ Much easier to code than r-b trees

■ Fast!

ftp://ftp.cs.umd.edu/pub/skipLists/skiplists.pdf

Review: Linked Lists

● Think about a linked list as a structure for

dynamic sets. What is the running time of:

■ Min() and Max()?

■ Successor()?

■ Delete()?

○ How can we make this O(1)?

■ Predecessor()?

■ Search()?

■ Insert()?

Goal: make these O(lg n) time

in a linked-list setting

These all take O(1) time

in a doubly linked list.

Can you think of a way
to do these in O(1) time

in a red-black tree?

A: threaded red-black

tree w/ doubly linked list

connecting nodes in
sorted order

Idea: keep several levels of linked lists, with

high-level lists skipping some low-level items

Skip Lists

● The basic idea:

● Keep a doubly-linked list of elements

■ Min, max, successor, predecessor: O(1) time

■ Delete is O(1) time, Insert is O(1)+Search time

● During insert, add each level-i element to level

i+1 with probability p (e.g., p = 1/2 or p = 1/4)

level 1

3 9 12 18 29 35 37

level 2

level 3

Skip List Search

● To search for an element with a given key:

■ Find location in top list

○ Top list has O(1) elements with high probability

○ Location in this list defines a range of items in next list

■ Drop down a level and recurse

● O(1) time per level on average

● O(lg n) levels with high probability

● Total time: O(lg n)

Skip List Insert

● Skip list insert: analysis

■ Do a search for that key

■ Insert element in bottom-level list

■ With probability p, recurse to insert in next level

■ Expected number of lists = 1+ p + p2 + … = ???

 = 1/(1-p) = O(1) if p is constant

■ Total time = Search + O(1) = O(lg n) expected

● Skip list delete: O(1)

Skip Lists

● O(1) expected time for most operations

● O(lg n) expected time for insert

● O(n2) time worst case (Why?)

■ But random, so no particular order of insertion

evokes worst-case behavior

● O(n) expected storage requirements (Why?)

● Easy to code

Review: Hashing Tables

● Motivation: symbol tables

■ A compiler uses a symbol table to relate symbols

to associated data

○ Symbols: variable names, procedure names, etc.

○ Associated data: memory location, call graph, etc.

■ For a symbol table (also called a dictionary), we

care about search, insertion, and deletion

■ We typically don’t care about sorted order

Review: Hash Tables

● More formally:

■ Given a table T and a record x, with key (=

symbol) and satellite data, we need to support:

○ Insert (T, x)

○ Delete (T, x)

○ Search(T, x)

■ We want these to be fast, but don’t care about
sorting the records

● The structure we will use is a hash table

■ Supports all the above in O(1) expected time!

Hashing: Keys

● In the following discussions we will consider

all keys to be (possibly large) natural numbers

● How can we convert floats to natural numbers

for hashing purposes?

● How can we convert ASCII strings to natural

numbers for hashing purposes?

Review: Direct Addressing

● Suppose:

■ The range of keys is 0..m-1

■ Keys are distinct

● The idea:

■ Set up an array T[0..m-1] in which

○ T[i] = x if x T and key[x] = i

○ T[i] = NULL otherwise

■ This is called a direct-address table

○ Operations take O(1) time!

○ So what’s the problem?

The Problem With

Direct Addressing

● Direct addressing works well when the range

m of keys is relatively small

● But what if the keys are 32-bit integers?

■ Problem 1: direct-address table will have

232 entries, more than 4 billion

■ Problem 2: even if memory is not an issue, the

time to initialize the elements to NULL may be

● Solution: map keys to smaller range 0..m-1

● This mapping is called a hash function

