Algorithms

Skip Lists

Introduction to Hashing

Review: Red-Black Trees

- Red-black trees:
- Binary search trees augmented with node color
- Operations designed to guarantee that the height

$$
h=\mathrm{O}(\lg n)
$$

- We described the properties of red-black trees
- We proved that these guarantee $h=\mathrm{O}(\lg n)$
- We described operations on red-black trees
- Only tricky operations: insert, delete
- Use rotation to restructure tree

Review: Skip Lists

- A relatively recent data structure
- "A probabilistic alternative to balanced trees"
- A randomized algorithm with benefits of r-b trees
- $\mathbf{O}(\lg n)$ expected time for Search, Insert
- O(1) time for Min, Max, Succ, Pred
- Much easier to code than r-b trees
- Fast!

Review: Linked Lists

- Think about a linked list as a structure for dynamic sets. What is the running time of:
- Min() and Max () ?

■ Successor()?
■ Delete()?

- How can we make this $O(1)$?

■ Predecessor()?
$\left.\begin{array}{l}\text { - } \operatorname{Search()?} \\ \text { - Insert()? }\end{array}\right\}$
Goal: make these O(lg n) time
in a linked-list setting
Idea: keep several levels of linked lists, with high-level lists skipping some low-level items

Skip Lists

- The basic idea:
level 3
level 2 level 1

- Keep a doubly-linked list of elements
- Min, max, successor, predecessor: $\mathrm{O}(1)$ time
- Delete is $\mathrm{O}(1)$ time, Insert is $\mathrm{O}(1)+$ Search time
- During insert, add each level- i element to level $i+1$ with probability p (e.g., $p=1 / 2$ or $p=1 / 4$)

Skip List Search

- To search for an element with a given key:
- Find location in top list
- Top list has $\mathrm{O}(1)$ elements with high probability
- Location in this list defines a range of items in next list
- Drop down a level and recurse
- O(1) time per level on average
- $\mathrm{O}(\lg n)$ levels with high probability
- Total time: $\mathrm{O}(\lg n)$

Skip List Insert

- Skip list insert: analysis
- Do a search for that key
- Insert element in bottom-level list
- With probability p, recurse to insert in next level

■ Expected number of lists $=1+\mathrm{p}+\mathrm{p}^{2}+\ldots=$? ? ?

$$
=1 /(1-\mathrm{p})=\mathrm{O}(1) \text { if } p \text { is constant }
$$

- Total time $=$ Search $+\mathrm{O}(1)=\mathrm{O}(\lg n)$ expected
- Skip list delete: $\mathrm{O}(1)$

Skip Lists

- $\mathrm{O}(1)$ expected time for most operations
- $\mathrm{O}(\lg n)$ expected time for insert
- $\mathrm{O}\left(n^{2}\right)$ time worst case (Why?)
- But random, so no particular order of insertion evokes worst-case behavior
- $\mathrm{O}(n)$ expected storage requirements (Why?)
- Easy to code

Review: Hashing Tables

- Motivation: symbol tables
- A compiler uses a symbol table to relate symbols to associated data
- Symbols: variable names, procedure names, etc.
- Associated data: memory location, call graph, etc.
- For a symbol table (also called a dictionary), we care about search, insertion, and deletion
- We typically don't care about sorted order

Review: Hash Tables

- More formally:
- Given a table T and a record x, with key (= symbol) and satellite data, we need to support:
- Insert (T, x)
- Delete (T, x)
$-\operatorname{Search}(T, x)$
- We want these to be fast, but don't care about sorting the records
- The structure we will use is a hash table
- Supports all the above in $\mathrm{O}(1)$ expected time!

Hashing: Keys

- In the following discussions we will consider all keys to be (possibly large) natural numbers
- How can we convert floats to natural numbers for hashing purposes?
- How can we convert ASCII strings to natural numbers for hashing purposes?

Review: Direct Addressing

- Suppose:
- The range of keys is $0 . . m-1$
- Keys are distinct
- The idea:
- Set up an array T[0..m-1] in which
$\circ \mathrm{T}[i]=x \quad$ if $x \in T$ and $\operatorname{key}[x]=i$
\circ T $[i]=$ NULL otherwise
- This is called a direct-address table
- Operations take O(1) time!
- So what's the problem?

The Problem With Direct Addressing

- Direct addressing works well when the range m of keys is relatively small
- But what if the keys are 32-bit integers?
- Problem 1: direct-address table will have 2^{32} entries, more than 4 billion
- Problem 2: even if memory is not an issue, the time to initialize the elements to NULL may be
- Solution: map keys to smaller range $0 . . m-1$
- This mapping is called a hash function

