
 Algorithms

Hash Tables

Review: Skip Lists

● The basic idea:

● Keep a doubly-linked list of elements

■ Min, max, successor, predecessor: O(1) time

■ Delete is O(1) time, Insert is O(1)+Search time

● During insert, add each level-i element to level

i+1 with probability p (e.g., p = 1/2 or p = 1/4)

level 1

3 9 12 18 29 35 37

level 2

level 3

Summary: Skip Lists

● O(1) expected time for most operations

● O(lg n) expected time for insert

● O(n2) time worst case

■ But random, so no particular order of insertion

evokes worst-case behavior

● O(n) expected storage requirements

● Easy to code

Review: Hash Tables

● Hash table:

■ Given a table T and a record x, with key (=

symbol) and satellite data, we need to support:

○ Insert (T, x)

○ Delete (T, x)

○ Search(T, x)

■ We want these to be fast, but don’t care about
sorting the records

■ In this discussion we consider all keys to be

(possibly large) natural numbers

Review: Direct Addressing

● Suppose:

■ The range of keys is 0..m-1

■ Keys are distinct

● The idea:

■ Set up an array T[0..m-1] in which

○ T[i] = x if x T and key[x] = i

○ T[i] = NULL otherwise

■ This is called a direct-address table

○ Operations take O(1) time!

Review: The Problem With

Direct Addressing

● Direct addressing works well when the range

m of keys is relatively small

● But what if the keys are 32-bit integers?

■ Problem 1: direct-address table will have

232 entries, more than 4 billion

■ Problem 2: even if memory is not an issue, the

time to initialize the elements to NULL may be

● Solution: map keys to smaller range 0..m-1

● This mapping is called a hash function

Hash Functions

● Next problem: collision

T

0

m - 1

h(k1)

h(k4)

h(k2) = h(k5)

h(k3)

k4

k2 k3

k1

k5

U

(universe of keys)

K

(actual

keys)

Resolving Collisions

● How can we solve the problem of collisions?

● Solution 1: chaining

● Solution 2: open addressing

Open Addressing

● Basic idea (details in Section 12.4):

■ To insert: if slot is full, try another slot, …, until an
open slot is found (probing)

■ To search, follow same sequence of probes as

would be used when inserting the element

○ If reach element with correct key, return it

○ If reach a NULL pointer, element is not in table

● Good for fixed sets (adding but no deletion)

■ Example: spell checking

● Table needn’t be much bigger than n

Chaining

● Chaining puts elements that hash to the same

slot in a linked list:

——

——

——
——
——

——
T

k4

k2
k3

k1

k5

U

(universe of keys)

K

(actual

keys)

k6
k8

k7

k1 k4
——

k5 k2

k3

k8 k6
——

——

k7
——

Chaining

● How do we insert an element?

——

——

——
——
——

——
T

k4

k2
k3

k1

k5

U

(universe of keys)

K

(actual

keys)

k6
k8

k7

k1 k4
——

k5 k2

k3

k8 k6
——

——

k7
——

Chaining

——

——

——
——
——

——
T

k4

k2
k3

k1

k5

U

(universe of keys)

K

(actual

keys)

k6
k8

k7

k1 k4
——

k5 k2

k3

k8 k6
——

——

k7
——

● How do we delete an element?

■ Do we need a doubly-linked list for efficient delete?

Chaining

● How do we search for a element with a

given key?

——

——

——
——
——

——
T

k4

k2
k3

k1

k5

U

(universe of keys)

K

(actual

keys)

k6
k8

k7

k1 k4
——

k5 k2

k3

k8 k6
——

——

k7
——

Analysis of Chaining

● Assume simple uniform hashing: each key in

table is equally likely to be hashed to any slot

● Given n keys and m slots in the table: the

load factor  = n/m = average # keys per slot

● What will be the average cost of an

unsuccessful search for a key?

Analysis of Chaining

● Assume simple uniform hashing: each key in

table is equally likely to be hashed to any slot

● Given n keys and m slots in the table, the

load factor  = n/m = average # keys per slot

● What will be the average cost of an

unsuccessful search for a key? A: O(1+)

Analysis of Chaining

● Assume simple uniform hashing: each key in

table is equally likely to be hashed to any slot

● Given n keys and m slots in the table, the

load factor  = n/m = average # keys per slot

● What will be the average cost of an

unsuccessful search for a key? A: O(1+)

● What will be the average cost of a successful

search?

Analysis of Chaining

● Assume simple uniform hashing: each key in

table is equally likely to be hashed to any slot

● Given n keys and m slots in the table, the

load factor  = n/m = average # keys per slot

● What will be the average cost of an

unsuccessful search for a key? A: O(1+)

● What will be the average cost of a successful

search? A: O(1 + /2) = O(1 + )

Analysis of Chaining Continued

● So the cost of searching = O(1 + )

● If the number of keys n is proportional to the

number of slots in the table, what is ?

● A:  = O(1)

■ In other words, we can make the expected cost of

searching constant if we make  constant

Choosing A Hash Function

● Clearly choosing the hash function well is

crucial

■ What will a worst-case hash function do?

■ What will be the time to search in this case?

● What are desirable features of the hash

function?

■ Should distribute keys uniformly into slots

■ Should not depend on patterns in the data

Hash Functions:

The Division Method

● h(k) = k mod m

■ In words: hash k into a table with m slots using the

slot given by the remainder of k divided by m

● What happens to elements with adjacent

values of k?

● What happens if m is a power of 2 (say 2P)?

● What if m is a power of 10?

● Upshot: pick table size m = prime number not

too close to a power of 2 (or 10)

Hash Functions:

The Multiplication Method

● For a constant A, 0 < A < 1:

● h(k) =  m (kA - kA) 

What does this term represent?

Hash Functions:

The Multiplication Method

● For a constant A, 0 < A < 1:

● h(k) =  m (kA - kA) 

● Choose m = 2P

● Choose A not too close to 0 or 1

● Knuth: Good choice for A = (5 - 1)/2

Fractional part of kA

Hash Functions:

Worst Case Scenario

● Scenario:

■ You are given an assignment to implement hashing

■ You will self-grade in pairs, testing and grading

your partner’s implementation

■ In a blatant violation of the honor code, your

partner:

○ Analyzes your hash function

○ Picks a sequence of “worst-case” keys, causing your
implementation to take O(n) time to search

● What’s an honest CS student to do?

Hash Functions:

Universal Hashing

● As before, when attempting to foil an

malicious adversary: randomize the algorithm

● Universal hashing: pick a hash function

randomly in a way that is independent of the

keys that are actually going to be stored

■ Guarantees good performance on average, no

matter what keys adversary chooses

