
 Algorithms 

Hash Tables 



Review: Skip Lists 

● The basic idea: 

 

 

● Keep a doubly-linked list of elements 

■ Min, max, successor, predecessor: O(1) time 

■ Delete is O(1) time, Insert is O(1)+Search time 

● During insert, add each level-i element to level 

i+1 with probability p (e.g., p = 1/2 or p = 1/4) 
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Summary: Skip Lists 

● O(1) expected time for most operations 

● O(lg n) expected time for insert 

● O(n2) time worst case  

■ But random, so no particular order of insertion 

evokes worst-case behavior 

● O(n) expected storage requirements 

● Easy to code 

 



Review: Hash Tables 

● Hash table: 

■ Given a table T and a record x, with key (= 

symbol) and satellite data, we need to support: 

○ Insert (T, x) 

○ Delete (T, x) 

○ Search(T, x) 

■ We want these to be fast, but don’t care about 
sorting the records 

■ In this discussion we consider all keys to be 

(possibly large) natural numbers 



Review: Direct Addressing 

● Suppose: 

■ The range of keys is 0..m-1  

■ Keys are distinct 

● The idea: 

■ Set up an array T[0..m-1] in which  

○ T[i] = x  if x T  and key[x] = i 

○ T[i] = NULL otherwise 

■ This is called a direct-address table 

○ Operations take O(1) time! 



Review: The Problem With  

Direct Addressing 

● Direct addressing works well when the range 

m of keys is relatively small 

● But what if the keys are 32-bit integers? 

■ Problem 1: direct-address table will have  

232 entries,  more than 4 billion 

■ Problem 2: even if memory is not an issue, the 

time to initialize the elements to NULL  may be 

● Solution: map keys to smaller range 0..m-1 

● This mapping is called a hash function  



Hash Functions 

● Next problem: collision 
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Resolving Collisions 

● How can we solve the problem of collisions? 

● Solution 1: chaining 

● Solution 2: open addressing 



Open Addressing 

● Basic idea (details in Section 12.4):  

■ To insert: if slot is full, try another slot, …, until an 
open slot is found (probing) 

■ To search, follow same sequence of probes as 

would be used when inserting the element 

○ If reach element with correct key, return it 

○ If reach a NULL pointer, element is not in table 

● Good for fixed sets (adding but no deletion) 

■ Example: spell checking 

● Table needn’t be much bigger than n 



Chaining 

● Chaining puts elements that hash to the same 

slot in a linked list: 
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Chaining 

● How do we insert an element? 
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● How do we delete an element? 

■ Do we need a doubly-linked list for efficient delete? 



Chaining 

● How do we search for a element with a  

given key? 
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Analysis of Chaining 

● Assume simple uniform hashing: each key in 

table is equally likely to be hashed to any slot 

● Given n keys and m slots in the table: the  

load factor  = n/m = average # keys per slot 

● What will be the average cost of an  

unsuccessful search for a key? 
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Analysis of Chaining 

● Assume simple uniform hashing: each key in 

table is equally likely to be hashed to any slot 

● Given n keys and m slots in the table, the  

load factor  = n/m = average # keys per slot 

● What will be the average cost of an  

unsuccessful search for a key?     A: O(1+) 

● What will be the average cost of a successful 

search?    A: O(1 + /2) = O(1 + ) 



Analysis of Chaining Continued 

● So the cost of searching = O(1 + ) 

● If the number of keys n is proportional to the 

number of slots in the table, what is ? 

●  A:  = O(1) 

■ In other words, we can make the expected cost of 

searching constant if we make  constant 



Choosing A Hash Function 

● Clearly choosing the hash function well is 

crucial 

■ What will a worst-case hash function do? 

■ What will be the time to search in this case? 

● What are desirable features of the hash 

function? 

■ Should distribute keys uniformly into slots 

■ Should not depend on patterns in the data 



Hash Functions: 

The Division Method 

● h(k) = k mod m 

■ In words: hash k into a table with m slots using the 

slot given by the remainder of k divided by m  

● What happens to elements with adjacent  

values of k? 

● What happens if m is a power of 2 (say 2P)? 

● What if m is a power of 10? 

● Upshot: pick table size m = prime number not 

too close to a power of 2 (or 10) 



Hash Functions: 

The Multiplication Method 

● For a constant A, 0 < A < 1: 

● h(k) =  m (kA - kA)  

What does this term represent? 



Hash Functions: 

The Multiplication Method 

● For a constant A, 0 < A < 1: 

● h(k) =  m (kA - kA)  
 

 

● Choose m = 2P 

● Choose A not too close to 0 or 1 

● Knuth: Good choice for A = (5  - 1)/2 

Fractional part of kA 



Hash Functions:  

Worst Case Scenario 

● Scenario: 

■ You are given an assignment to implement hashing 

■ You will self-grade in pairs, testing and grading 

your partner’s implementation 

■ In a blatant violation of the honor code, your 

partner: 

○ Analyzes your hash function 

○ Picks a sequence of “worst-case” keys, causing your 
implementation to take O(n) time to search 

● What’s an honest CS student to do? 



Hash Functions:  

Universal Hashing 

● As before, when attempting to foil an 

malicious adversary: randomize the algorithm 

● Universal hashing: pick a hash function 

randomly in a way that is independent of the 

keys that are actually going to be stored 

■ Guarantees good performance on average, no 

matter what keys adversary chooses 

 


