Algorithms

Universal Hashing

Review: Resolving Collisions

- *How can we solve the problem of collisions?*
- Open addressing
 - To insert: if slot is full, try another slot, and another, until an open slot is found (*probing*)
 - To search, follow same sequence of probes as would be used when inserting the element
- Chaining
 - Keep linked list of elements in slots
 - Upon collision, just add new element to list

Review: Chaining

• Chaining puts elements that hash to the same slot in a linked list:

Review: Analysis Of Hash Tables

- *Simple uniform hashing*: each key in table is equally likely to be hashed to any slot
- *Load factor* $\alpha = n/m =$ average # keys per slot
 - Average cost of unsuccessful search = $O(1+\alpha)$
 - Successful search: $O(1 + \alpha/2) = O(1 + \alpha)$
 - If *n* is proportional to *m*, $\alpha = O(1)$
- So the cost of searching = O(1) if we size our table appropriately

Review: Choosing A Hash Function

- Choosing the hash function well is crucial
 - Bad hash function puts all elements in same slot
 - A good hash function:
 - Should distribute keys uniformly into slots
 - Should not depend on patterns in the data
- We discussed three methods:
 - Division method
 - Multiplication method
 - Universal hashing

Review: The Division Method

- $h(k) = k \mod m$
 - In words: hash k into a table with m slots using the slot given by the remainder of k divided by m
- Elements with adjacent keys hashed to different slots: good
- If keys bear relation to *m*: bad
- Upshot: pick table size *m* = prime number not too close to a power of 2 (or 10)

Review: The Multiplication Method

- For a constant A, 0 < A < 1:
- $h(k) = \lfloor m (kA \lfloor kA \rfloor) \rfloor$ Fractional part of kA
- Upshot:
 - Choose $m = 2^P$
 - Choose *A* not too close to 0 or 1
 - Knuth: Good choice for $A = (\sqrt{5} 1)/2$

Review: Universal Hashing

- When attempting to foil an malicious adversary, randomize the algorithm
- *Universal hashing*: pick a hash function randomly when the algorithm begins (*not* upon every insert!)
 - Guarantees good performance on average, no matter what keys adversary chooses
 - Need a family of hash functions to choose from

Universal Hashing

- Let ς be a (finite) collection of hash functions
 - ... that map a given universe U of keys...
 - ... into the range $\{0, 1, ..., m 1\}$.
- ς is said to be *universal* if:
 - for each pair of distinct keys $x, y \in U$, the number of hash functions $h \in \varsigma$ for which h(x) = h(y) is $|\varsigma|/m$
 - In other words:
 - With a random hash function from ζ , the chance of a collision between *x* and *y* is exactly 1/m ($x \neq y$)

Universal Hashing

• Theorem 12.3:

- Choose *h* from a universal family of hash functions
- Hash *n* keys into a table of *m* slots, $n \le m$
- Then the expected number of collisions involving a particular key x is less than 1

Proof:

• For each pair of keys y, z, let $c_{yx} = 1$ if y and z collide, 0 otherwise

• $E[c_{yz}] = 1/m$ (by definition)

• Let C_x be total number of collisions involving key x

$$\circ \mathbf{E}[C_x] = \sum_{\substack{y \in T \\ y \neq x}} \mathbf{E}[c_{xy}] = \frac{n-1}{m}$$

• Since $n \le m$, we have $E[C_x] < 1$

A Universal Hash Function

- Choose table size *m* to be prime
- Decompose key x into r+1 bytes, so that $x = \{x_0, x_1, \dots, x_r\}$
 - Only requirement is that max value of byte < m
 - Let $a = \{a_0, a_1, ..., a_r\}$ denote a sequence of r+1elements chosen randomly from $\{0, 1, ..., m-1\}$
 - Define corresponding hash function $h_a \in \varsigma$.

$$h_a(x) = \sum_{i=0}^r a_i x_i \mod m$$

• With this definition, ς has m^{r+1} members

A Universal Hash Function

- *ς* is a universal collection of hash functions
 (Theorem 12.4)
- How to use:
 - Pick r based on m and the range of keys in U
 - Pick a hash function by (randomly) picking the *a*'s
 - Use that hash function on all keys

Augmenting Data Structures

- This course is supposed to be about design and analysis of algorithms
- So far, we've only looked at one design technique (*What is it?*)

Augmenting Data Structures

- This course is supposed to be about design and analysis of algorithms
- So far, we've only looked at one design technique: *divide and conquer*
- Next up: augmenting data structures
 - Or, "One good thief is worth ten good scholars"

Dynamic Order Statistics

- We've seen algorithms for finding the *i*th element of an unordered set in O(*n*) time
- Next, a structure to support finding the *i*th element of a dynamic set in O(lg *n*) time
 - What operations do dynamic sets usually support?
 - What structure works well for these?
 - *How could we use this structure for order statistics?*
 - How might we augment it to support efficient extraction of order statistics?

Order Statistic Trees

- OS Trees augment red-black trees:
 - Associate a *size* field with each node in the tree
 - x->size records the size of subtree rooted at x, including x itself:

Selection On OS Trees

How can we use this property to select the ith element of the set?

OS-Select

```
OS-Select(x, i)
{
    r = x - left - size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
```

}