
Algorithms

Universal Hashing

Review: Resolving Collisions

● How can we solve the problem of collisions?

● Open addressing

■ To insert: if slot is full, try another slot, and

another, until an open slot is found (probing)

■ To search, follow same sequence of probes as

would be used when inserting the element

● Chaining

■ Keep linked list of elements in slots

■ Upon collision, just add new element to list

Review: Chaining

● Chaining puts elements that hash to the same

slot in a linked list:

——

——

——
——
——

——
T

k4

k2
k3

k1

k5

U

(universe of keys)

K

(actual

keys)

k6
k8

k7

k1 k4
——

k5 k2

k3

k8 k6
——

——

k7
——

Review: Analysis Of Hash Tables

● Simple uniform hashing: each key in table is

equally likely to be hashed to any slot

● Load factor  = n/m = average # keys per slot

■ Average cost of unsuccessful search = O(1+α)
■ Successful search: O(1+ α/2) = O(1+ α)
■ If n is proportional to m, α = O(1)

● So the cost of searching = O(1) if we size our

table appropriately

Review: Choosing A Hash Function

● Choosing the hash function well is crucial

■ Bad hash function puts all elements in same slot

■ A good hash function:

○ Should distribute keys uniformly into slots

○ Should not depend on patterns in the data

● We discussed three methods:

■ Division method

■ Multiplication method

■ Universal hashing

Review: The Division Method

● h(k) = k mod m

■ In words: hash k into a table with m slots using the

slot given by the remainder of k divided by m

● Elements with adjacent keys hashed to

different slots: good

● If keys bear relation to m: bad

● Upshot: pick table size m = prime number not

too close to a power of 2 (or 10)

Review: The Multiplication Method

● For a constant A, 0 < A < 1:

● h(k) =  m (kA - kA) 

● Upshot:

■ Choose m = 2P

■ Choose A not too close to 0 or 1

■ Knuth: Good choice for A = (5 - 1)/2

Fractional part of kA

Review: Universal Hashing

● When attempting to foil an malicious

adversary, randomize the algorithm

● Universal hashing: pick a hash function

randomly when the algorithm begins

(not upon every insert!)

■ Guarantees good performance on average, no

matter what keys adversary chooses

■ Need a family of hash functions to choose from

Universal Hashing

● Let  be a (finite) collection of hash functions

■ …that map a given universe U of keys…

■ …into the range {0, 1, …, m - 1}.

●  is said to be universal if:

■ for each pair of distinct keys x, y  U,

the number of hash functions h  
for which h(x) = h(y) is ||/m

■ In other words:

○ With a random hash function from , the chance of a

collision between x and y is exactly 1/m (x  y)

Universal Hashing

● Theorem 12.3:

■ Choose h from a universal family of hash functions

■ Hash n keys into a table of m slots, n  m

■ Then the expected number of collisions involving a

particular key x is less than 1

■ Proof:

○ For each pair of keys y, z, let cyx = 1 if y and z collide, 0 otherwise

○ E[cyz] = 1/m (by definition)

○ Let Cx be total number of collisions involving key x

○

○ Since n  m, we have E[Cx] < 1

m

n
cC

xy
Ty

xyx

1
][E][E


 




A Universal Hash Function

● Choose table size m to be prime

● Decompose key x into r+1 bytes, so that

x = {x0, x1, …, xr}

■ Only requirement is that max value of byte < m

■ Let a = {a0, a1, …, ar} denote a sequence of r+1

elements chosen randomly from {0, 1, …, m - 1}

■ Define corresponding hash function ha  :

■ With this definition,  has mr+1 members

  



r

i

iia mxaxh
0

mod

A Universal Hash Function

●  is a universal collection of hash functions

(Theorem 12.4)

● How to use:

■ Pick r based on m and the range of keys in U

■ Pick a hash function by (randomly) picking the a’s

■ Use that hash function on all keys

Augmenting Data Structures

● This course is supposed to be about design and

analysis of algorithms

● So far, we’ve only looked at one design
technique (What is it?)

Augmenting Data Structures

● This course is supposed to be about design and

analysis of algorithms

● So far, we’ve only looked at one design
technique: divide and conquer

● Next up: augmenting data structures

■ Or, “One good thief is worth ten good scholars”

Dynamic Order Statistics

● We’ve seen algorithms for finding the ith

element of an unordered set in O(n) time

● Next, a structure to support finding the ith

element of a dynamic set in O(lg n) time

■ What operations do dynamic sets usually support?

■ What structure works well for these?

■ How could we use this structure for order statistics?

■ How might we augment it to support efficient

extraction of order statistics?

Order Statistic Trees

● OS Trees augment red-black trees:

■ Associate a size field with each node in the tree

■ x->size records the size of subtree rooted at x,

including x itself:
M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

Selection On OS Trees

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

How can we use this property

to select the ith element of the set?

OS-Select

OS-Select(x, i)

{

 r = x->left->size + 1;

 if (i == r)

 return x;

 else if (i < r)

 return OS-Select(x->left, i);

 else

 return OS-Select(x->right, i-r);

}

