
Algorithms 

Universal Hashing 



Review: Resolving Collisions 

● How can we solve the problem of collisions? 

● Open addressing 

■ To insert: if slot is full, try another slot, and 

another, until an open slot is found (probing) 

■ To search, follow same sequence of probes as 

would be used when inserting the element 

● Chaining 

■ Keep linked list of elements in slots 

■ Upon collision, just add new element to list 



Review: Chaining 

● Chaining puts elements that hash to the same 

slot in a linked list: 
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Review: Analysis Of Hash Tables 

● Simple uniform hashing: each key in table is 

equally likely to be hashed to any slot 

● Load factor  = n/m = average # keys per slot 

■ Average cost of unsuccessful search = O(1+α) 
■ Successful search: O(1+ α/2) = O(1+ α) 
■ If n is proportional to m, α = O(1) 

● So the cost of searching = O(1) if we size our 

table appropriately 



Review: Choosing A Hash Function 

● Choosing the hash function well is crucial 

■ Bad hash function puts all elements in same slot 

■ A good hash function: 

○ Should distribute keys uniformly into slots 

○ Should not depend on patterns in the data 

● We discussed three methods: 

■ Division method 

■ Multiplication method 

■ Universal hashing 



Review: The Division Method 

● h(k) = k mod m 

■ In words: hash k into a table with m slots using the 

slot given by the remainder of k divided by m  

● Elements with adjacent keys hashed to 

different slots: good 

● If keys bear relation to m: bad 

● Upshot: pick table size m = prime number not 

too close to a power of 2 (or 10) 



Review: The Multiplication Method 

● For a constant A, 0 < A < 1: 

● h(k) =  m (kA - kA)  
 

● Upshot: 

■ Choose m = 2P 

■ Choose A not too close to 0 or 1 

■ Knuth: Good choice for A = (5  - 1)/2 

Fractional part of kA 



Review: Universal Hashing 

● When attempting to foil an malicious 

adversary, randomize the algorithm 

● Universal hashing: pick a hash function 

randomly when the algorithm begins  

(not upon every insert!) 

■ Guarantees good performance on average, no 

matter what keys adversary chooses 

■ Need a family of hash functions to choose from 



Universal Hashing 

● Let  be a (finite) collection of hash functions  

■ …that map a given universe U of keys… 

■ …into the range {0, 1, …, m - 1}. 

●  is said to be universal if: 

■ for each pair of distinct keys x, y  U, 

the number of hash functions h    
for which h(x) = h(y) is ||/m  

■ In other words: 

○ With a random hash function from , the chance of a 

collision between x and y is exactly 1/m     (x  y)  



Universal Hashing 

● Theorem 12.3: 

■ Choose h from a universal family of hash functions 

■ Hash n keys into a table of m slots, n  m 

■ Then the expected number of collisions involving a 

particular key x is less than 1 

■ Proof: 

○ For each pair of keys y, z, let cyx = 1 if y and z collide, 0 otherwise 

○ E[cyz] = 1/m (by definition) 

○ Let Cx be total number of collisions involving key x 

○   

 
○ Since n  m, we have E[Cx] < 1 
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A Universal Hash Function 

● Choose table size m to be prime 

● Decompose key x into r+1 bytes, so that  

x = {x0, x1, …, xr} 

■ Only requirement is that max value of byte < m 

■ Let a = {a0, a1, …, ar} denote a sequence of r+1 

elements chosen randomly from {0, 1, …, m - 1} 

■ Define corresponding hash function ha  : 
 

 

■ With this definition,  has mr+1 members 
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A Universal Hash Function 

●  is a universal collection of hash functions 

(Theorem 12.4) 

● How to use: 

■ Pick r based on m and the range of keys in U 

■ Pick a hash function by (randomly) picking the a’s 

■ Use that hash function on all keys 



Augmenting Data Structures 

● This course is supposed to be about design and 

analysis of algorithms 

● So far, we’ve only looked at one design 
technique (What is it?) 

 



Augmenting Data Structures 

● This course is supposed to be about design and 

analysis of algorithms 

● So far, we’ve only looked at one design 
technique: divide and conquer 

● Next up: augmenting data structures 

■ Or, “One good thief is worth ten good scholars” 



Dynamic Order Statistics 

● We’ve seen algorithms for finding the ith 

element of an unordered set in O(n) time 

● Next, a structure to support finding the ith 

element of a dynamic set in O(lg n) time 

■ What operations do dynamic sets usually support? 

■ What structure works well for these?  

■ How could we use this structure for order statistics? 

■ How might we augment it to support efficient 

extraction of order statistics? 



Order Statistic Trees 

● OS Trees augment red-black trees:  

■ Associate a size field with each node in the tree 

■ x->size records the size of subtree rooted at x, 

including x itself: 
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Selection On OS Trees 
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How can we use this property  

to select the ith element of the set? 



OS-Select 

OS-Select(x, i) 

{ 

    r = x->left->size + 1; 

    if (i == r) 

        return x; 

    else if (i < r) 

        return OS-Select(x->left, i); 

    else    

        return OS-Select(x->right, i-r); 

} 


