
Algorithms 

Dynamic Order Statistics 



Review: Choosing A Hash Function 

● Choosing the hash function well is crucial 

■ Bad hash function puts all elements in same slot 

■ A good hash function: 

○ Should distribute keys uniformly into slots 

○ Should not depend on patterns in the data 

● We discussed three methods: 

■ Division method 

■ Multiplication method 

■ Universal hashing 



Review: Universal Hashing 

● When attempting to foil an malicious 

adversary, randomize the algorithm 

● Universal hashing: pick a hash function 

randomly when the algorithm begins  

(not upon every insert!) 

■ Guarantees good performance on average, no 

matter what keys adversary chooses 

■ Need a family of hash functions to choose from 



Review: Universal Hashing 

● A family of hash functions  is said to be 

universal if: 

■ With a random hash function from , the chance of 

a collision between x and y is exactly 1/m     (x  y)  

● We can use this to get good expected performance: 

■ Choose h from a universal family of hash functions 

■ Hash n keys into a table of m slots, n  m 

■ Then the expected number of collisions involving 

a particular key x is less than 1 



Review: A Universal Hash Function 

● Choose table size m to be prime 

● Decompose key x into r+1 bytes, so that  

x = {x0, x1, …, xr} 

■ Only requirement is that max value of byte < m 

■ Let a = {a0, a1, …, ar} denote a sequence of r+1 

elements chosen randomly from {0, 1, …, m - 1} 

■ Define corresponding hash function ha  : 
 

 

■ With this definition,  has mr+1 members 
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Review: A Universal Hash Function 

●  is a universal collection of hash functions 

(Theorem 12.4) 

● How to use: 

■ Pick r based on m and the range of keys in U 

■ Pick a hash function by (randomly) picking the a’s 

■ Use that hash function on all keys 



Review: Order Statistic Trees 

● OS Trees augment red-black trees:  

■ Associate a size field with each node in the tree 

■ x->size records the size of subtree rooted at x, 

including x itself: 
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Selection On OS Trees 
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How can we use this property  

to select the ith element of the set? 



OS-Select 

OS-Select(x, i) 

{ 

    r = x->left->size + 1; 

    if (i == r) 

        return x; 

    else if (i < r) 

        return OS-Select(x->left, i); 

    else    

        return OS-Select(x->right, i-r); 

} 



OS-Select Example 

● Example: show OS-Select(root, 5): 
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OS-Select(x, i) 
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  r = x->left->size + 1; 

  if (i == r) 
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    return OS-Select(x->left, i); 
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OS-Select Example 

● Example: show OS-Select(root, 5): 
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OS-Select(x, i) 

{ 

  r = x->left->size + 1; 

  if (i == r) 

    return x; 

  else if (i < r) 

    return OS-Select(x->left, i); 

  else    

    return OS-Select(x->right, i-r); 

} 

i = 5 

r = 6 



OS-Select Example 
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OS-Select Example 
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OS-Select Example 

● Example: show OS-Select(root, 5): 
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OS-Select(x, i) 
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  r = x->left->size + 1; 

  if (i == r) 

    return x; 

  else if (i < r) 

    return OS-Select(x->left, i); 

  else    

    return OS-Select(x->right, i-r); 
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OS-Select: A Subtlety 

OS-Select(x, i) 

{ 

    r = x->left->size + 1; 

    if (i == r) 

        return x; 

    else if (i < r) 

        return OS-Select(x->left, i); 

    else    

        return OS-Select(x->right, i-r); 

} 

● What happens at the leaves? 

● How can we deal elegantly with this? 

Oops… 



OS-Select 

OS-Select(x, i) 

{ 

    r = x->left->size + 1; 

    if (i == r) 

        return x; 

    else if (i < r) 

        return OS-Select(x->left, i); 

    else    

        return OS-Select(x->right, i-r); 

} 

● What will be the running time? 



Determining The  

Rank Of An Element 
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What is the rank of this element? 



Determining The  

Rank Of An Element 
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Of this one?  Why? 



Determining The  

Rank Of An Element 
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Of the root?  What’s the pattern here? 



Determining The  

Rank Of An Element 
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What about the rank of this element? 



Determining The  

Rank Of An Element 
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This one?  What’s the pattern here? 



OS-Rank 

OS-Rank(T, x) 

{ 

    r = x->left->size + 1; 

    y = x; 

    while (y != T->root) 

        if (y == y->p->right) 

            r = r + y->p->left->size + 1; 

        y = y->p; 

    return r; 

} 

● What will be the running time? 



OS-Trees: Maintaining Sizes 

● So we’ve shown that with subtree sizes, order 
statistic operations can be done in O(lg n) time 

● Next step: maintain sizes during Insert() and 

Delete() operations 

■ How would we adjust the size fields during 

insertion on a plain binary search tree? 
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OS-Trees: Maintaining Sizes 

● So we’ve shown that with subtree sizes, order 
statistic operations can be done in O(lg n) time 

● Next step: maintain sizes during Insert() and 

Delete() operations 

■ How would we adjust the size fields during 

insertion on a plain binary search tree? 

■ A: increment sizes of nodes traversed during search 

■ Why won’t this work on red-black trees? 



Maintaining Size Through Rotation 

● Salient point: rotation invalidates only x and y 

● Can recalculate their sizes in constant time 

■ Why? 
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Augmenting Data Structures: 

Methodology 

● Choose underlying data structure 

■ E.g., red-black trees 

● Determine additional information to maintain 

■ E.g., subtree sizes 

● Verify that information can be maintained for 

operations that modify the structure 

■ E.g., Insert(), Delete()    (don’t forget rotations!) 
● Develop new operations 

■ E.g., OS-Rank(), OS-Select() 


