
Algorithms

Dynamic Order Statistics

Review: Choosing A Hash Function

● Choosing the hash function well is crucial

■ Bad hash function puts all elements in same slot

■ A good hash function:

○ Should distribute keys uniformly into slots

○ Should not depend on patterns in the data

● We discussed three methods:

■ Division method

■ Multiplication method

■ Universal hashing

Review: Universal Hashing

● When attempting to foil an malicious

adversary, randomize the algorithm

● Universal hashing: pick a hash function

randomly when the algorithm begins

(not upon every insert!)

■ Guarantees good performance on average, no

matter what keys adversary chooses

■ Need a family of hash functions to choose from

Review: Universal Hashing

● A family of hash functions is said to be

universal if:

■ With a random hash function from , the chance of

a collision between x and y is exactly 1/m (x y)

● We can use this to get good expected performance:

■ Choose h from a universal family of hash functions

■ Hash n keys into a table of m slots, n m

■ Then the expected number of collisions involving

a particular key x is less than 1

Review: A Universal Hash Function

● Choose table size m to be prime

● Decompose key x into r+1 bytes, so that

x = {x0, x1, …, xr}

■ Only requirement is that max value of byte < m

■ Let a = {a0, a1, …, ar} denote a sequence of r+1

elements chosen randomly from {0, 1, …, m - 1}

■ Define corresponding hash function ha :

■ With this definition, has mr+1 members

r

i

iia mxaxh
0

mod

Review: A Universal Hash Function

● is a universal collection of hash functions

(Theorem 12.4)

● How to use:

■ Pick r based on m and the range of keys in U

■ Pick a hash function by (randomly) picking the a’s

■ Use that hash function on all keys

Review: Order Statistic Trees

● OS Trees augment red-black trees:

■ Associate a size field with each node in the tree

■ x->size records the size of subtree rooted at x,

including x itself:
M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

Selection On OS Trees

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

How can we use this property

to select the ith element of the set?

OS-Select

OS-Select(x, i)

{

 r = x->left->size + 1;

 if (i == r)

 return x;

 else if (i < r)

 return OS-Select(x->left, i);

 else

 return OS-Select(x->right, i-r);

}

OS-Select Example

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

 r = x->left->size + 1;

 if (i == r)

 return x;

 else if (i < r)

 return OS-Select(x->left, i);

 else

 return OS-Select(x->right, i-r);

}

OS-Select Example

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

 r = x->left->size + 1;

 if (i == r)

 return x;

 else if (i < r)

 return OS-Select(x->left, i);

 else

 return OS-Select(x->right, i-r);

}

i = 5

r = 6

OS-Select Example

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

 r = x->left->size + 1;

 if (i == r)

 return x;

 else if (i < r)

 return OS-Select(x->left, i);

 else

 return OS-Select(x->right, i-r);

}

i = 5

r = 6

i = 5

r = 2

OS-Select Example

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

 r = x->left->size + 1;

 if (i == r)

 return x;

 else if (i < r)

 return OS-Select(x->left, i);

 else

 return OS-Select(x->right, i-r);

}

i = 5

r = 6

i = 5

r = 2

i = 3

r = 2

OS-Select Example

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

 r = x->left->size + 1;

 if (i == r)

 return x;

 else if (i < r)

 return OS-Select(x->left, i);

 else

 return OS-Select(x->right, i-r);

}

i = 5

r = 6

i = 5

r = 2

i = 3

r = 2

i = 1

r = 1

OS-Select: A Subtlety

OS-Select(x, i)

{

 r = x->left->size + 1;

 if (i == r)

 return x;

 else if (i < r)

 return OS-Select(x->left, i);

 else

 return OS-Select(x->right, i-r);

}

● What happens at the leaves?

● How can we deal elegantly with this?

Oops…

OS-Select

OS-Select(x, i)

{

 r = x->left->size + 1;

 if (i == r)

 return x;

 else if (i < r)

 return OS-Select(x->left, i);

 else

 return OS-Select(x->right, i-r);

}

● What will be the running time?

Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

What is the rank of this element?

Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

Of this one? Why?

Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

Of the root? What’s the pattern here?

Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

What about the rank of this element?

Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

This one? What’s the pattern here?

OS-Rank

OS-Rank(T, x)

{

 r = x->left->size + 1;

 y = x;

 while (y != T->root)

 if (y == y->p->right)

 r = r + y->p->left->size + 1;

 y = y->p;

 return r;

}

● What will be the running time?

OS-Trees: Maintaining Sizes

● So we’ve shown that with subtree sizes, order
statistic operations can be done in O(lg n) time

● Next step: maintain sizes during Insert() and

Delete() operations

■ How would we adjust the size fields during

insertion on a plain binary search tree?

OS-Trees: Maintaining Sizes

● So we’ve shown that with subtree sizes, order
statistic operations can be done in O(lg n) time

● Next step: maintain sizes during Insert() and

Delete() operations

■ How would we adjust the size fields during

insertion on a plain binary search tree?

■ A: increment sizes of nodes traversed during search

OS-Trees: Maintaining Sizes

● So we’ve shown that with subtree sizes, order
statistic operations can be done in O(lg n) time

● Next step: maintain sizes during Insert() and

Delete() operations

■ How would we adjust the size fields during

insertion on a plain binary search tree?

■ A: increment sizes of nodes traversed during search

■ Why won’t this work on red-black trees?

Maintaining Size Through Rotation

● Salient point: rotation invalidates only x and y

● Can recalculate their sizes in constant time

■ Why?

y
19

x
11

x
19

y
12

rightRotate(y)

leftRotate(x)

6 4

7 6

4 7

Augmenting Data Structures:

Methodology

● Choose underlying data structure

■ E.g., red-black trees

● Determine additional information to maintain

■ E.g., subtree sizes

● Verify that information can be maintained for

operations that modify the structure

■ E.g., Insert(), Delete() (don’t forget rotations!)
● Develop new operations

■ E.g., OS-Rank(), OS-Select()

