Algorithms

Dynamic Order Statistics

Review: Choosing A Hash Function

- Choosing the hash function well is crucial

■ Bad hash function puts all elements in same slot

- A good hash function:
- Should distribute keys uniformly into slots
- Should not depend on patterns in the data
- We discussed three methods:
- Division method
- Multiplication method

■ Universal hashing

Review: Universal Hashing

- When attempting to foil an malicious adversary, randomize the algorithm
- Universal hashing: pick a hash function randomly when the algorithm begins (not upon every insert!)
- Guarantees good performance on average, no matter what keys adversary chooses
- Need a family of hash functions to choose from

Review: Universal Hashing

- A family of hash functions ς is said to be universal if:
- With a random hash function from ς, the chance of a collision between x and y is exactly $1 / m \quad(x \neq y)$
- We can use this to get good expected performance:
- Choose h from a universal family of hash functions

■ Hash n keys into a table of m slots, $n \leq m$
■ Then the expected number of collisions involving a particular key x is less than 1

Review: A Universal Hash Function

- Choose table size m to be prime
- Decompose key x into $r+1$ bytes, so that $x=\left\{x_{0}, x_{l}, \ldots, x_{r}\right\}$
- Only requirement is that max value of byte $<m$
- Let $a=\left\{a_{0}, a_{l}, \ldots, a_{r}\right\}$ denote a sequence of $r+1$ elements chosen randomly from $\{0,1, \ldots, m-1\}$
- Define corresponding hash function $h_{a} \in \varsigma$.

$$
h_{a}(x)=\sum_{i=0}^{r} a_{i} x_{i} \bmod m
$$

- With this definition, ς has m^{r+1} members

Review: A Universal Hash Function

- ς is a universal collection of hash functions
(Theorem 12.4)
- How to use:
- Pick r based on m and the range of keys in U
- Pick a hash function by (randomly) picking the a 's
- Use that hash function on all keys

Review: Order Statistic Trees

- OS Trees augment red-black trees:
- Associate a size field with each node in the tree
- $\mathbf{x - > s i z e}$ records the size of subtree rooted at \mathbf{x}, including \mathbf{x} itself:

Selection On OS Trees

How can we use this property to select the ith element of the set?

OS-Select

OS-Select(x, i)
\{
$r=x->l e f t->s i z e+1 ;$
if (i == r)
return x;
else if (i < r)
return OS-Select(x->left, i);
else
return OS-Select(x->right, i-r);
\}

OS-Select Example

- Example: show OS-Select(root, 5):

```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```


OS-Select Example

- Example: show OS-Select(root, 5):

```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```


OS-Select Example

- Example: show OS-Select(root, 5):

```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```


OS-Select Example

- Example: show OS-Select(root, 5):

```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```


OS-Select Example

- Example: show OS-Select(root, 5):

```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```


OS-Select: A Subtlety

OS-Select(x, i)
\{

- How can we deal elegantly with this?

OS-Select

OS-Select(x, i)
\{

$$
\begin{aligned}
& r=x->l e f t->s i z e+1 ; \\
& \text { if }(i==r) \\
& \quad \text { return } x \\
& \text { else if }(i<r) \\
& \quad \text { return OS-Select }(x->l e f t, i) ;
\end{aligned}
$$

else
return OS-Select(x->right, i-r);
\}

- What will be the running time?

Determining The Rank Of An Element

OS-Rank

OS-Rank (T, x)
\{

$$
\begin{aligned}
& r=x->l e f t->s i z e+1 ; \\
& y=x \text {; } \\
& \text { while (y ! = T->root) } \\
& \text { if (} y==y->p->r i g h t) \\
& r=r+y->p->l e f t->s i z e+1 ; \\
& y=y->p ; \\
& \text { return } r \text {; } \\
& \text { - What will be the running time? }
\end{aligned}
$$

\}

OS-Trees: Maintaining Sizes

- So we've shown that with subtree sizes, order statistic operations can be done in $\mathrm{O}(\lg \mathrm{n})$ time
- Next step: maintain sizes during Insert() and Delete() operations
- How would we adjust the size fields during insertion on a plain binary search tree?

OS-Trees: Maintaining Sizes

- So we've shown that with subtree sizes, order statistic operations can be done in $\mathrm{O}(\lg n)$ time
- Next step: maintain sizes during Insert() and Delete() operations
- How would we adjust the size fields during insertion on a plain binary search tree?
- A: increment sizes of nodes traversed during search

OS-Trees: Maintaining Sizes

- So we've shown that with subtree sizes, order statistic operations can be done in $\mathrm{O}(\lg n)$ time
- Next step: maintain sizes during Insert() and Delete() operations
- How would we adjust the size fields during insertion on a plain binary search tree?
- A: increment sizes of nodes traversed during search
- Why won't this work on red-black trees?

Maintaining Size Through Rotation

- Salient point: rotation invalidates only x and y
- Can recalculate their sizes in constant time
- Why?

Augmenting Data Structures: Methodology

- Choose underlying data structure
- E.g., red-black trees
- Determine additional information to maintain
- E.g., subtree sizes
- Verify that information can be maintained for operations that modify the structure
- E.g., Insert(), Delete() (don’t forget rotations!)
- Develop new operations
- E.g., OS-Rank(), OS-Select()

