Algorithms

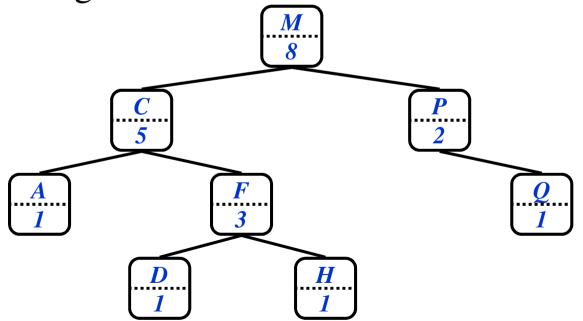
Augmenting Data Structures: Interval Trees

Review: Dynamic Order Statistics

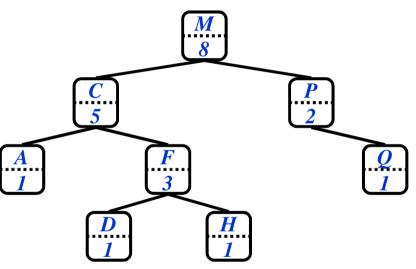
- We've seen algorithms for finding the *i*th element of an unordered set in O(*n*) time
- *OS-Trees*: a structure to support finding the *i*th element of a dynamic set in O(lg *n*) time
 - Support standard dynamic set operations
 (Insert(), Delete(), Min(), Max(),
 Succ(), Pred())
 - Also support these order statistic operations: void OS-Select(root, i); int OS-Rank(x);

Review: Order Statistic Trees

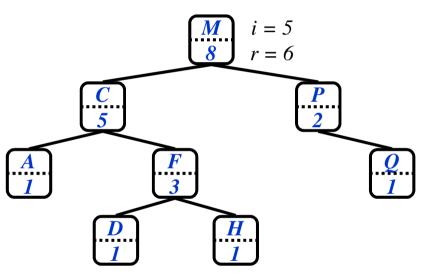
- OS Trees augment red-black trees:
 - Associate a *size* field with each node in the tree
 - x->size records the size of subtree rooted at x, including x itself:



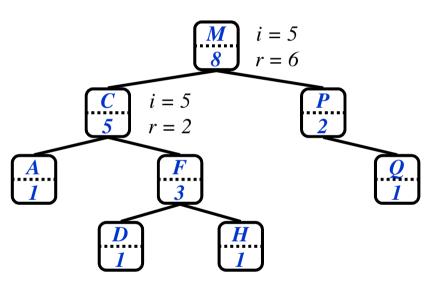
```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```



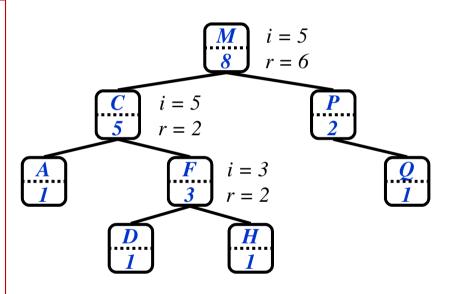
```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```



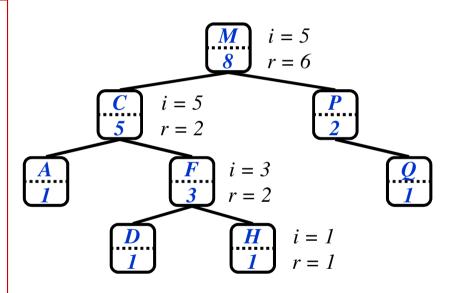
```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```



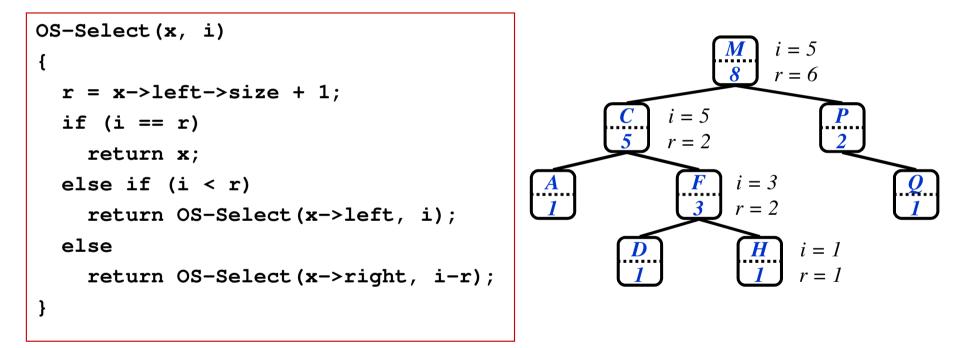
```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```



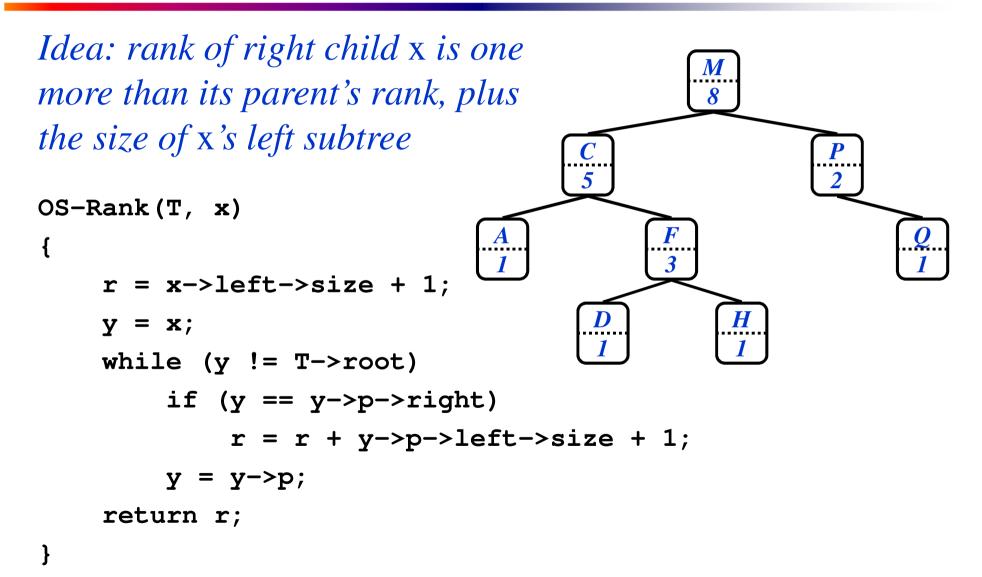
```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```

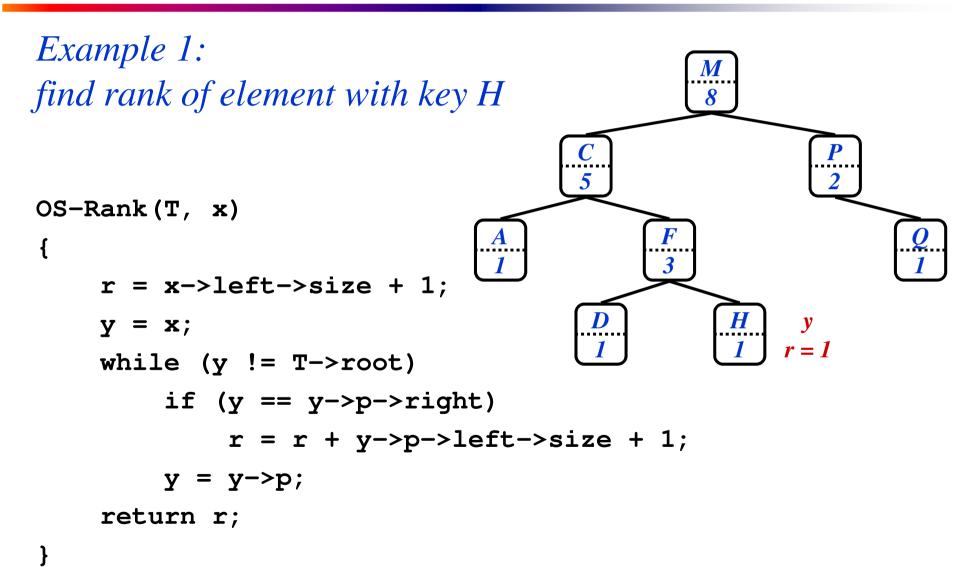


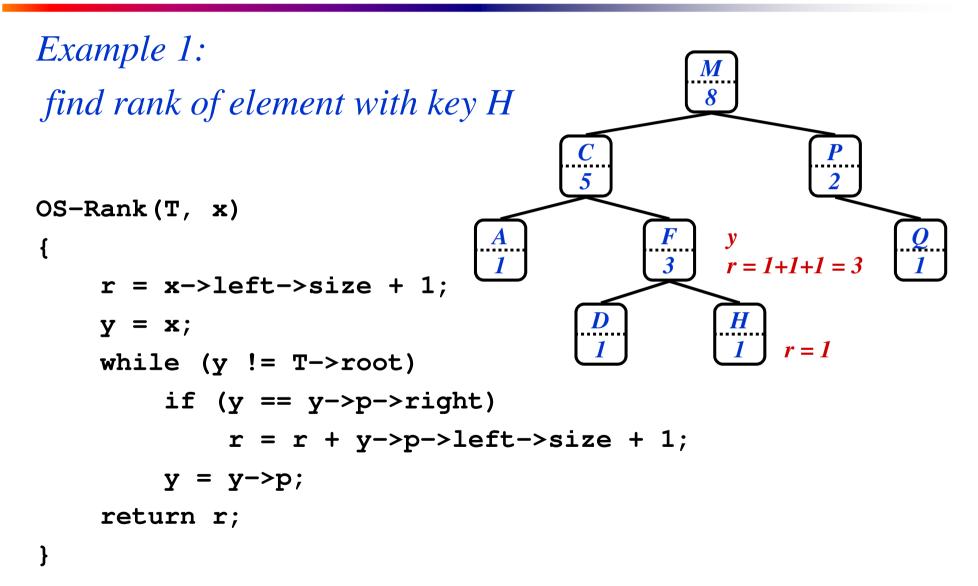
• Example: show OS-Select(*root*, 5):

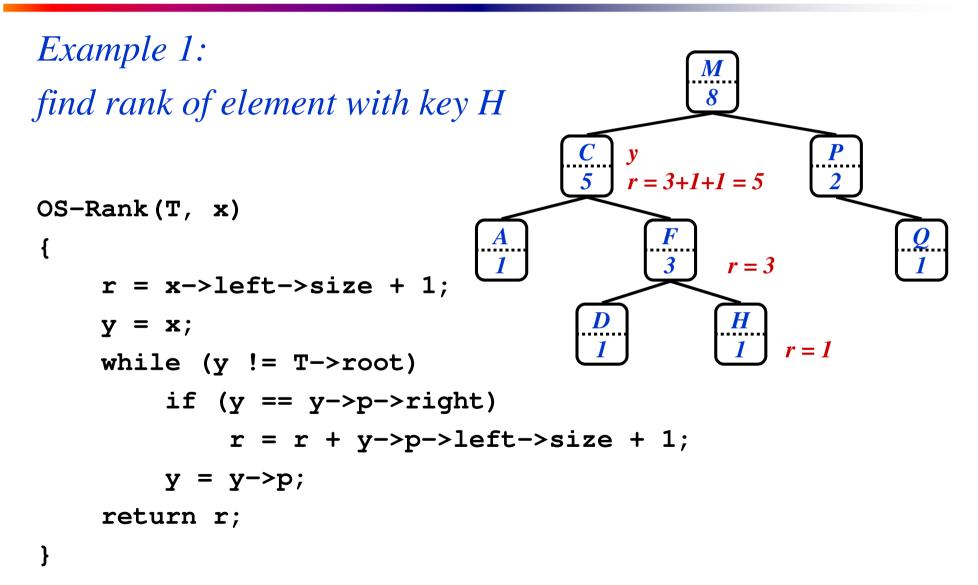


Note: use a sentinel NIL element at the leaves with size = 0 to simplify code, avoid testing for NULL

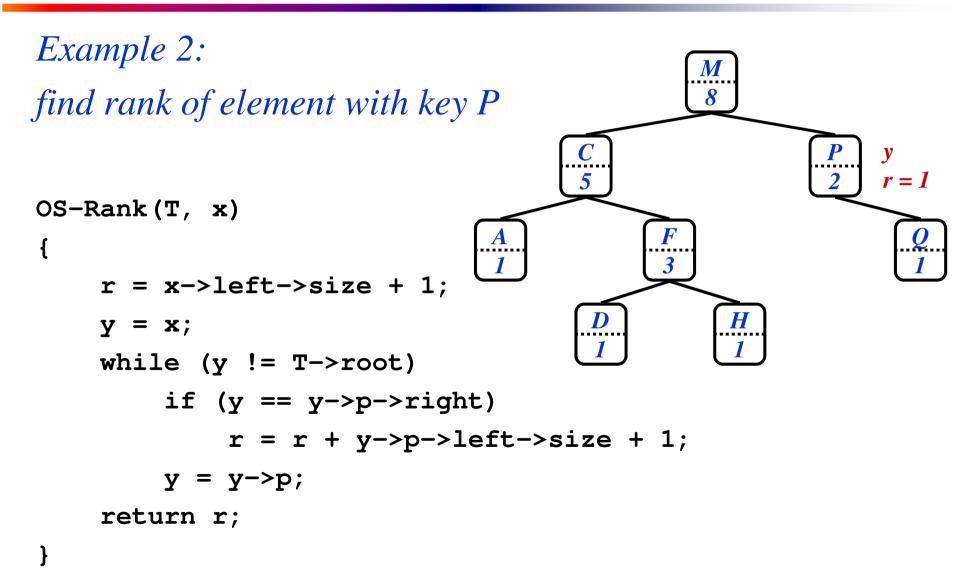


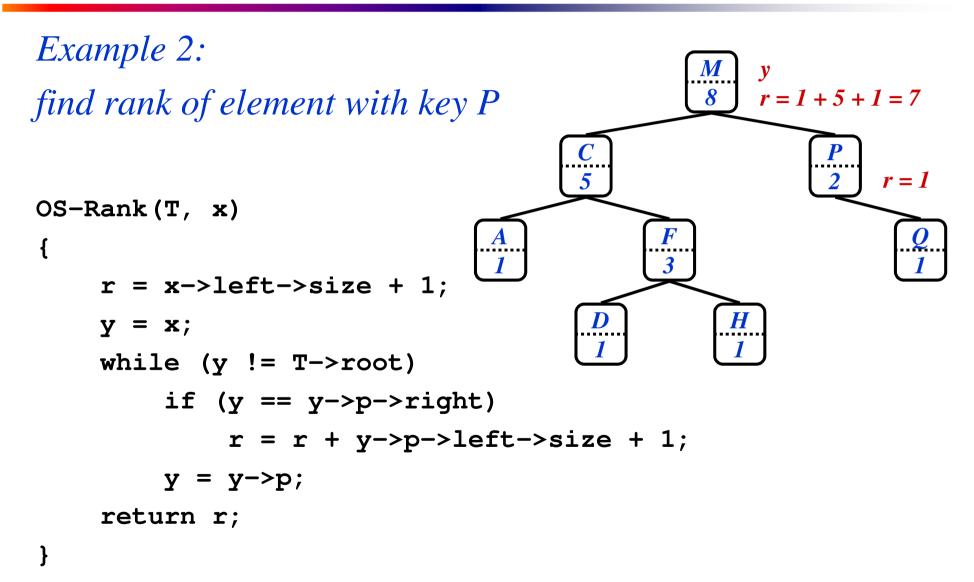








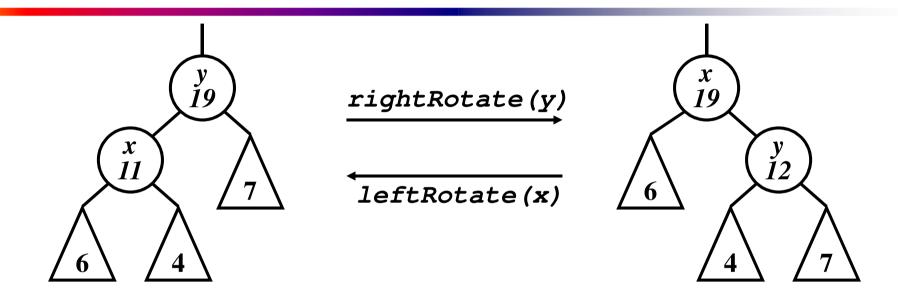




Review: Maintaining Subtree Sizes

- So by keeping subtree sizes, order statistic operations can be done in O(lg n) time
- Next: maintain sizes during Insert() and Delete() operations
 - Insert(): Increment size fields of nodes traversed during search down the tree
 - Delete(): Decrement sizes along a path from the deleted node to the root
 - Both: Update sizes correctly during rotations

Reivew: Maintaining Subtree Sizes



- Note that rotation invalidates only *x* and *y*
- Can recalculate their sizes in constant time
- Thm 15.1: can compute any property in O(lg n) time that depends only on node, left child, and right child

Review: Methodology For Augmenting Data Structures

- Choose underlying data structure
- Determine additional information to maintain
- Verify that information can be maintained for operations that modify the structure
- Develop new operations

- The problem: maintain a set of intervals
 - E.g., time intervals for a scheduling program: 7 • 10 • $i = [7,10]; i \rightarrow low = 7; i \rightarrow high = 10$

$$5 \longleftarrow 11$$
 $17 \longleftarrow 19$
 $4 \longleftarrow 8$ $15 \longleftarrow 18$ $21 \longleftarrow 23$

- The problem: maintain a set of intervals
 - E.g., time intervals for a scheduling program: 7 • 10 • $i = [7,10]; i \rightarrow low = 7; i \rightarrow high = 10$

5 → 11 **17 →** 19

 $4 \bullet \bullet 8 \qquad 15 \bullet \bullet 18 \quad 21 \bullet \bullet 23$

- Query: find an interval in the set that overlaps a given query interval
 - $\circ \ [14,16] \rightarrow [15,18]$
 - [16,19] → [15,18] or [17,19]
 - \circ [12,14] → NULL

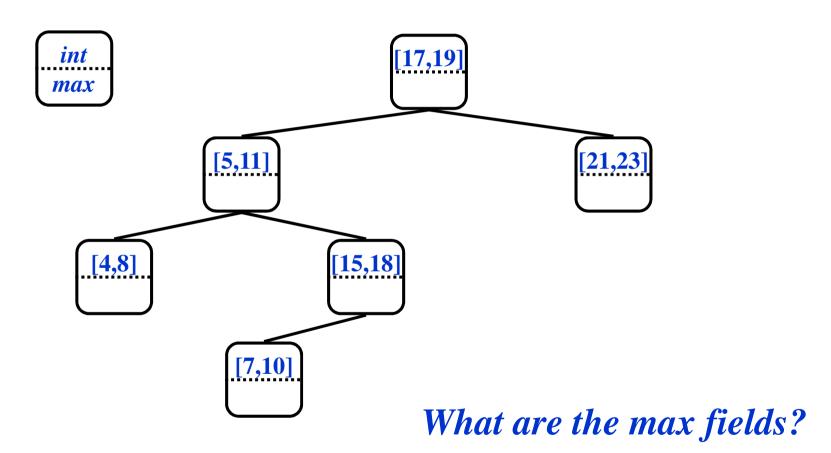
- Following the methodology:
 - Pick underlying data structure
 - Decide what additional information to store
 - Figure out how to maintain the information
 - Develop the desired new operations

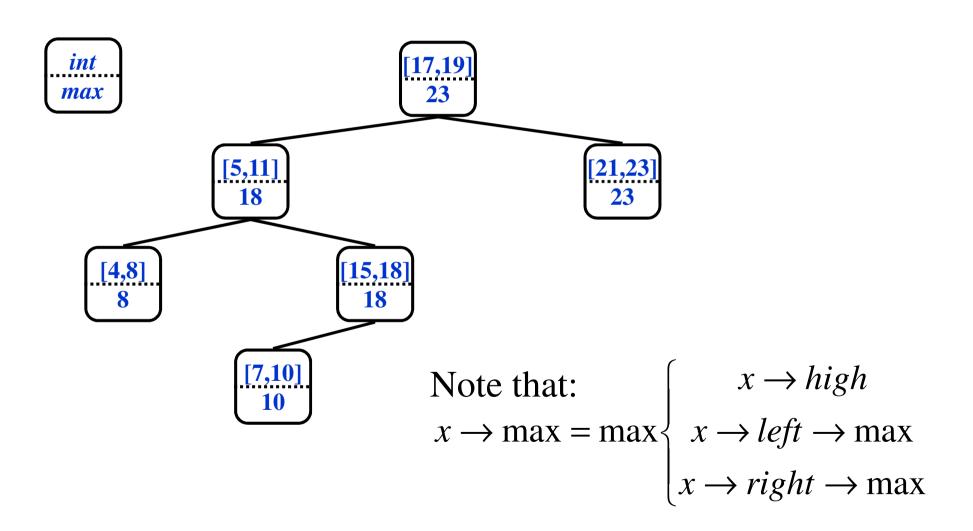
- Following the methodology:
 - Pick underlying data structure

• Red-black trees will store intervals, keyed on $i \rightarrow low$

- Decide what additional information to store
- Figure out how to maintain the information
- Develop the desired new operations

- Following the methodology:
 - Pick underlying data structure
 - Red-black trees will store intervals, keyed on $i \rightarrow low$
 - Decide what additional information to store
 - We will store *max*, the maximum endpoint in the subtree rooted at *i*
 - Figure out how to maintain the information
 - Develop the desired new operations





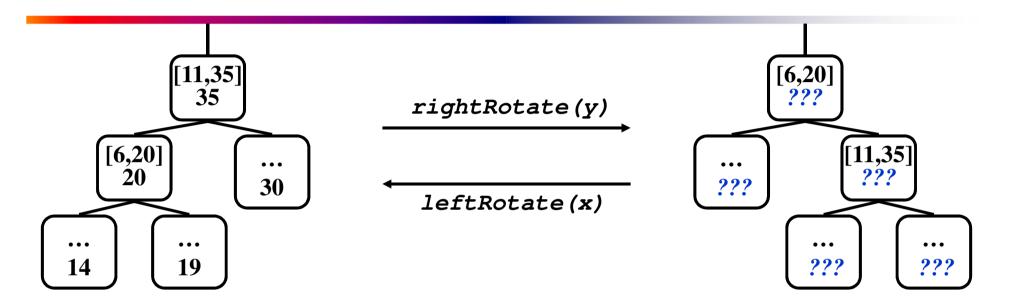
- Following the methodology:
 - Pick underlying data structure

• Red-black trees will store intervals, keyed on $i \rightarrow low$

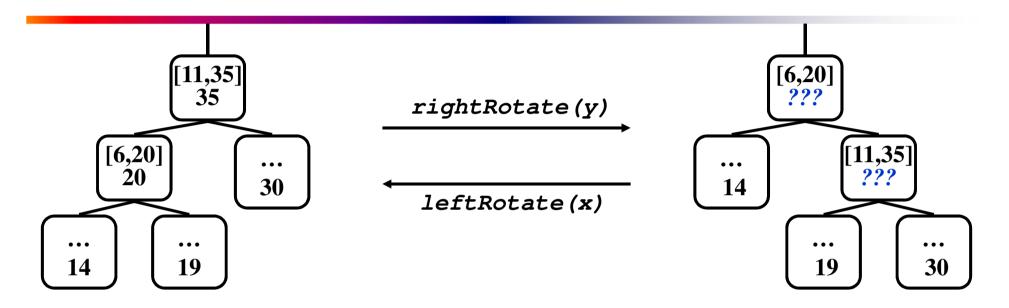
- Decide what additional information to store
 - \circ Store the maximum endpoint in the subtree rooted at *i*
- Figure out how to maintain the information
 How would we maintain max field for a BST?

• What's different?

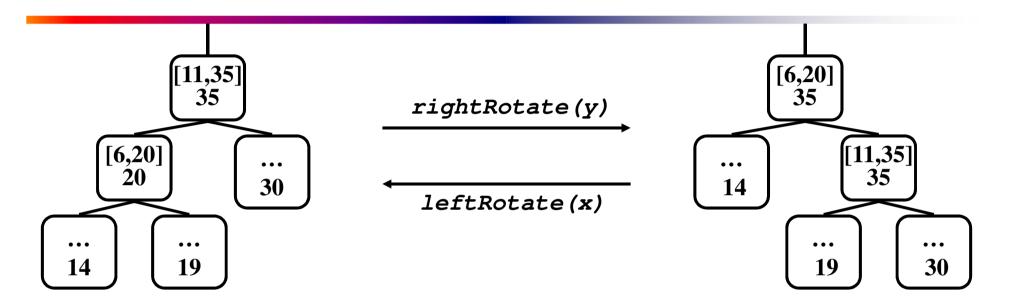
Develop the desired new operations



• What are the new max values for the subtrees?



- What are the new max values for the subtrees?
- A: Unchanged
- What are the new max values for x and y?



- What are the new max values for the subtrees?
- A: Unchanged
- What are the new max values for x and y?
- A: root value unchanged, recompute other

- Following the methodology:
 - Pick underlying data structure

• Red-black trees will store intervals, keyed on $i \rightarrow low$

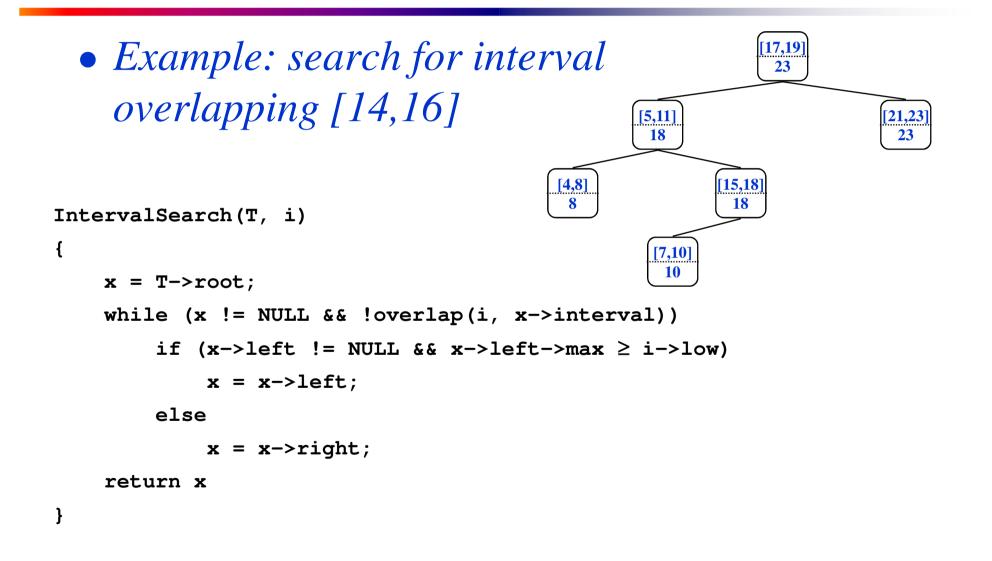
- Decide what additional information to store
 - \circ Store the maximum endpoint in the subtree rooted at *i*
- Figure out how to maintain the information
 Insert: update max on way down, during rotations
 Delete: similar
- Develop the desired new operations

Searching Interval Trees

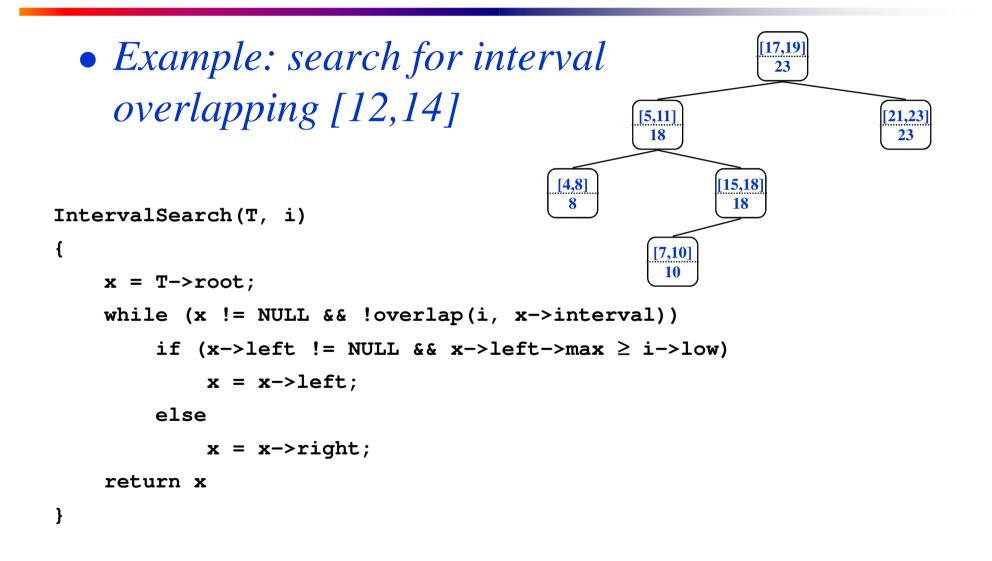
```
IntervalSearch(T, i)
{
    x = T->root;
    while (x != NULL && !overlap(i, x->interval))
        if (x->left != NULL && x->left->max ≥ i->low)
            x = x->left;
        else
            x = x->right;
    return x
}
```

• What will be the running time?

IntervalSearch() Example



IntervalSearch() Example



Correctness of IntervalSearch()

- Key idea: need to check only 1 of node's 2 children
 - Case 1: search goes right
 - \circ Show that \exists overlap in right subtree, or no overlap at all
 - Case 2: search goes left
 - \circ Show that \exists overlap in left subtree, or no overlap at all

Correctness of IntervalSearch()

- Case 1: if search goes right, ∃ overlap in the right subtree or no overlap in either subtree
 - If \exists overlap in right subtree, we're done
 - Otherwise:
 - $x \rightarrow \text{left} = \text{NULL}$, or $x \rightarrow \text{left} \rightarrow \text{max} < x \rightarrow \text{low} (Why?)$

• Thus, no overlap in left subtree!

```
while (x != NULL && !overlap(i, x->interval))
    if (x->left != NULL && x->left->max ≥ i->low)
        x = x->left;
    else
        x = x->right;
    return x;
```

Correctness of IntervalSearch()

- Case 2: if search goes left, ∃ overlap in the left subtree or no overlap in either subtree
 - If \exists overlap in left subtree, we're done
 - Otherwise:
 - ∘ i →low ≤ x →left →max, by branch condition
 - $x \rightarrow left \rightarrow max = y \rightarrow high for some y in left subtree$
 - Since i and y don't overlap and i $\rightarrow low \le y \rightarrow high$, i $\rightarrow high < y \rightarrow low$
 - Since tree is sorted by low's, i \rightarrow high < any low in right subtree
 - Thus, no overlap in right subtree

```
while (x != NULL && !overlap(i, x->interval))
    if (x->left != NULL && x->left->max ≥ i->low)
        x = x->left;
    else
        x = x->right;
    return x;
```