
Algorithms

Augmenting Data Structures:

Interval Trees

Review: Dynamic Order Statistics

● We’ve seen algorithms for finding the ith

element of an unordered set in O(n) time

● OS-Trees: a structure to support finding the ith

element of a dynamic set in O(lg n) time

■ Support standard dynamic set operations

(Insert(), Delete(), Min(), Max(),

Succ(), Pred())

■ Also support these order statistic operations:

void OS-Select(root, i);

int OS-Rank(x);

Review: Order Statistic Trees

● OS Trees augment red-black trees:

■ Associate a size field with each node in the tree

■ x->size records the size of subtree rooted at x,

including x itself:
M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

Review: OS-Select

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else

return OS-Select(x->right, i-r);

}

Review: OS-Select

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else

return OS-Select(x->right, i-r);

}

i = 5

r = 6

Review: OS-Select

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else

return OS-Select(x->right, i-r);

}

i = 5

r = 6

i = 5

r = 2

Review: OS-Select

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else

return OS-Select(x->right, i-r);

}

i = 5

r = 6

i = 5

r = 2

i = 3

r = 2

Review: OS-Select

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else

return OS-Select(x->right, i-r);

}

i = 5

r = 6

i = 5

r = 2

i = 3

r = 2

i = 1

r = 1

Review: OS-Select

● Example: show OS-Select(root, 5):

Note: use a sentinel NIL element at the leaves with

size = 0 to simplify code, avoid testing for NULL

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else

return OS-Select(x->right, i-r);

}

i = 5

r = 6

i = 5

r = 2

i = 3

r = 2

i = 1

r = 1

Review: Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Idea: rank of right child x is one

more than its parent’s rank, plus

the size of x’s left subtree

Review: Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 1:

find rank of element with key H

y

r = 1

Review: Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 1:

find rank of element with key H

r = 1

y

r = 1+1+1 = 3

Review: Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 1:

find rank of element with key H

r = 1

r = 3

y

r = 3+1+1 = 5

Review: Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 1:

find rank of element with key H

r = 1

r = 3

r = 5

y

r = 5

Review: Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 2:

find rank of element with key P

y

r = 1

Review: Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 2:

find rank of element with key P

r = 1

y

r = 1 + 5 + 1 = 7

Review: Maintaining Subtree Sizes

● So by keeping subtree sizes, order statistic

operations can be done in O(lg n) time

● Next: maintain sizes during Insert() and

Delete() operations

■ Insert(): Increment size fields of nodes traversed

during search down the tree

■ Delete(): Decrement sizes along a path from the

deleted node to the root

■ Both: Update sizes correctly during rotations

Reivew: Maintaining Subtree Sizes

● Note that rotation invalidates only x and y

● Can recalculate their sizes in constant time

● Thm 15.1: can compute any property in O(lg n) time

that depends only on node, left child, and right child

y
19

x
11

x
19

y
12

rightRotate(y)

leftRotate(x)

6 4

7 6

4 7

Review: Methodology For

Augmenting Data Structures

● Choose underlying data structure

● Determine additional information to maintain

● Verify that information can be maintained for

operations that modify the structure

● Develop new operations

Interval Trees

● The problem: maintain a set of intervals

■ E.g., time intervals for a scheduling program:
107

115

84 1815 2321

17 19

i = [7,10]; i →low = 7; i→high = 10

Interval Trees

● The problem: maintain a set of intervals

■ E.g., time intervals for a scheduling program:

■ Query: find an interval in the set that overlaps a

given query interval

○ [14,16] → [15,18]

○ [16,19] → [15,18] or [17,19]

○ [12,14] → NULL

107

115

84 1815 2321

17 19

i = [7,10]; i →low = 7; i→high = 10

Interval Trees

● Following the methodology:

■ Pick underlying data structure

■ Decide what additional information to store

■ Figure out how to maintain the information

■ Develop the desired new operations

Interval Trees

● Following the methodology:

■ Pick underlying data structure

○ Red-black trees will store intervals, keyed on i→low

■ Decide what additional information to store

■ Figure out how to maintain the information

■ Develop the desired new operations

Interval Trees

● Following the methodology:

■ Pick underlying data structure

○ Red-black trees will store intervals, keyed on i→low

■ Decide what additional information to store

○ We will store max, the maximum endpoint in the

subtree rooted at i

■ Figure out how to maintain the information

■ Develop the desired new operations

Interval Trees

[17,19]

[5,11] [21,23]

[4,8] [15,18]

[7,10]

int

max

What are the max fields?

→→

→→

→

=→

max

maxmaxmax

rightx

leftx

highx

x

Interval Trees

[17,19]

23

[5,11]

18

[21,23]

23

[4,8]

8

[15,18]

18

[7,10]

10

int

max

Note that:

Interval Trees

● Following the methodology:

■ Pick underlying data structure

○ Red-black trees will store intervals, keyed on i→low

■ Decide what additional information to store

○ Store the maximum endpoint in the subtree rooted at i

■ Figure out how to maintain the information

○ How would we maintain max field for a BST?

○ What’s different?

■ Develop the desired new operations

Interval Trees

● What are the new max values for the subtrees?

[11,35]
35

[6,20]
20

[6,20]
???

[11,35]
???

rightRotate(y)

leftRotate(x)

…

14

…

19

…

30

…

???

…

???

…

???

Interval Trees

● What are the new max values for the subtrees?

● A: Unchanged

● What are the new max values for x and y?

[11,35]
35

[6,20]
20

[6,20]
???

[11,35]
???

rightRotate(y)

leftRotate(x)

…

14

…

19

…

30

…

14

…

19

…

30

Interval Trees

● What are the new max values for the subtrees?

● A: Unchanged

● What are the new max values for x and y?

● A: root value unchanged, recompute other

[11,35]
35

[6,20]
20

[6,20]
35

[11,35]
35

rightRotate(y)

leftRotate(x)

…

14

…

19

…

30

…

14

…

19

…

30

Interval Trees

● Following the methodology:

■ Pick underlying data structure

○ Red-black trees will store intervals, keyed on i→low

■ Decide what additional information to store

○ Store the maximum endpoint in the subtree rooted at i

■ Figure out how to maintain the information

○ Insert: update max on way down, during rotations

○ Delete: similar

■ Develop the desired new operations

Searching Interval Trees

IntervalSearch(T, i)

{

x = T->root;

while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x

}

● What will be the running time?

IntervalSearch() Example

● Example: search for interval

overlapping [14,16]

[17,19]

23

[5,11]

18

[21,23]

23

[4,8]

8

[15,18]

18

[7,10]

10

IntervalSearch(T, i)

{

x = T->root;

while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x

}

IntervalSearch() Example

● Example: search for interval

overlapping [12,14]

[17,19]

23

[5,11]

18

[21,23]

23

[4,8]

8

[15,18]

18

[7,10]

10

IntervalSearch(T, i)

{

x = T->root;

while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x

}

Correctness of IntervalSearch()

● Key idea: need to check only 1 of node’s 2

children

■ Case 1: search goes right

○ Show that ∃ overlap in right subtree, or no overlap at all

■ Case 2: search goes left

○ Show that ∃ overlap in left subtree, or no overlap at all

Correctness of IntervalSearch()

● Case 1: if search goes right, ∃ overlap in the right

subtree or no overlap in either subtree

■ If ∃ overlap in right subtree, we’re done

■ Otherwise:

○ x→left = NULL, or x → left → max < x → low (Why?)

○ Thus, no overlap in left subtree!

while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x;

Correctness of IntervalSearch()

● Case 2: if search goes left, ∃ overlap in the left

subtree or no overlap in either subtree

■ If ∃ overlap in left subtree, we’re done

■ Otherwise:

○ i →low ≤ x →left →max, by branch condition

○ x →left →max = y →high for some y in left subtree

○ Since i and y don’t overlap and i →low ≤ y →high,

i →high < y →low

○ Since tree is sorted by low’s, i →high < any low in right subtree

○ Thus, no overlap in right subtree
while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x;

