
Algorithms

Augmenting Data Structures: 

Interval Trees



Review: Dynamic Order Statistics

● We’ve seen algorithms for finding the ith 

element of an unordered set in O(n) time

● OS-Trees: a structure to support finding the ith 

element of a dynamic set in O(lg n) time

■ Support standard dynamic set operations 

(Insert(), Delete(), Min(), Max(), 

Succ(), Pred())

■ Also support these order statistic operations:

void OS-Select(root, i);

int OS-Rank(x);



Review: Order Statistic Trees

● OS Trees augment red-black trees: 

■ Associate a size field with each node in the tree

■ x->size records the size of subtree rooted at x, 

including x itself:
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Review: OS-Select

● Example: show OS-Select(root, 5):
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OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else   

return OS-Select(x->right, i-r);

}



Review: OS-Select

● Example: show OS-Select(root, 5):
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OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else   

return OS-Select(x->right, i-r);

}

i = 5

r = 6



Review: OS-Select

● Example: show OS-Select(root, 5):
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{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else   

return OS-Select(x->right, i-r);

}

i = 5

r = 6

i = 5

r = 2



Review: OS-Select

● Example: show OS-Select(root, 5):
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Review: OS-Select

● Example: show OS-Select(root, 5):
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Review: OS-Select

● Example: show OS-Select(root, 5):

Note: use a sentinel NIL element at the leaves with 

size = 0 to simplify code, avoid testing for NULL
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OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else   

return OS-Select(x->right, i-r);

}

i = 5

r = 6

i = 5

r = 2

i = 3

r = 2

i = 1

r = 1



Review: Determining The 

Rank Of An Element
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OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Idea: rank of right child x is one

more than its parent’s rank, plus 

the size of x’s left subtree



Review: Determining The 

Rank Of An Element
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OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 1: 

find rank of element with key H

y

r = 1



Review: Determining The 

Rank Of An Element
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OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 1:

find rank of element with key H

r = 1

y

r = 1+1+1 = 3



Review: Determining The 

Rank Of An Element
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OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 1:

find rank of element with key H

r = 1

r = 3

y

r = 3+1+1 = 5



Review: Determining The 

Rank Of An Element
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OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 1: 

find rank of element with key H
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Review: Determining The 

Rank Of An Element
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OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 2: 

find rank of element with key P

y

r = 1



Review: Determining The 

Rank Of An Element
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OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 2: 

find rank of element with key P

r = 1

y

r = 1 + 5 + 1 = 7



Review: Maintaining Subtree Sizes

● So by keeping subtree sizes, order statistic 

operations can be done in O(lg n) time

● Next: maintain sizes during Insert() and 

Delete() operations

■ Insert(): Increment size fields of nodes traversed 

during search down the tree

■ Delete(): Decrement sizes along a path from the 

deleted node to the root

■ Both: Update sizes correctly during rotations



Reivew: Maintaining Subtree Sizes

● Note that rotation invalidates only x and y

● Can recalculate their sizes in constant time

● Thm 15.1: can compute any property in O(lg n) time 

that depends only on node, left child, and right child 
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Review: Methodology For 

Augmenting Data Structures

● Choose underlying data structure

● Determine additional information to maintain

● Verify that information can be maintained for 

operations that modify the structure

● Develop new operations



Interval Trees

● The problem: maintain a set of intervals

■ E.g., time intervals for a scheduling program:
107

115

84 1815 2321

17 19

i = [7,10]; i →low = 7; i→high = 10



Interval Trees

● The problem: maintain a set of intervals

■ E.g., time intervals for a scheduling program:

■ Query: find an interval in the set that overlaps a 

given query interval

○ [14,16] → [15,18]

○ [16,19] → [15,18] or [17,19]

○ [12,14] → NULL
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i = [7,10]; i →low = 7; i→high = 10



Interval Trees

● Following the methodology:

■ Pick underlying data structure

■ Decide what additional information to store

■ Figure out how to maintain the information

■ Develop the desired new operations



Interval Trees

● Following the methodology:

■ Pick underlying data structure

○ Red-black trees will store intervals, keyed on i→low

■ Decide what additional information to store

■ Figure out how to maintain the information

■ Develop the desired new operations



Interval Trees

● Following the methodology:

■ Pick underlying data structure

○ Red-black trees will store intervals, keyed on i→low

■ Decide what additional information to store

○ We will store max, the maximum endpoint in the 

subtree rooted at i

■ Figure out how to maintain the information

■ Develop the desired new operations



Interval Trees

[17,19]

[5,11] [21,23]

[4,8] [15,18]

[7,10]

int

max

What are the max fields?
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Interval Trees

[17,19]

23

[5,11]
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[21,23]
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[4,8]
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[15,18]

18

[7,10]
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int

max

Note that:



Interval Trees

● Following the methodology:

■ Pick underlying data structure

○ Red-black trees will store intervals, keyed on i→low

■ Decide what additional information to store

○ Store the maximum endpoint in the subtree rooted at i

■ Figure out how to maintain the information

○ How would we maintain max field for a BST?

○ What’s different?

■ Develop the desired new operations



Interval Trees

● What are the new max values for the subtrees?
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Interval Trees

● What are the new max values for the subtrees?

● A: Unchanged

● What are the new max values for x and y?
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Interval Trees

● What are the new max values for the subtrees?

● A: Unchanged

● What are the new max values for x and y?

● A: root value unchanged, recompute other
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Interval Trees

● Following the methodology:

■ Pick underlying data structure

○ Red-black trees will store intervals, keyed on i→low

■ Decide what additional information to store

○ Store the maximum endpoint in the subtree rooted at i

■ Figure out how to maintain the information

○ Insert: update max on way down, during rotations

○ Delete: similar

■ Develop the desired new operations



Searching Interval Trees

IntervalSearch(T, i)

{

x = T->root;

while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x

}

● What will be the running time?



IntervalSearch() Example

● Example: search for interval 

overlapping [14,16]
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IntervalSearch(T, i)

{

x = T->root;

while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x

}



IntervalSearch() Example

● Example: search for interval 

overlapping [12,14]
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IntervalSearch(T, i)

{

x = T->root;

while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x

}



Correctness of IntervalSearch()

● Key idea: need to check only 1 of node’s 2 

children

■ Case 1: search goes right

○ Show that ∃ overlap in right subtree, or no overlap at all

■ Case 2: search goes left

○ Show that ∃ overlap in left subtree, or no overlap at all



Correctness of IntervalSearch()

● Case 1: if search goes right, ∃ overlap in the right 

subtree or no overlap in either subtree

■ If ∃ overlap in right subtree, we’re done

■ Otherwise:

○ x→left = NULL, or  x → left → max  <  x → low (Why?)

○ Thus, no overlap in left subtree!

while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x;



Correctness of IntervalSearch()

● Case 2: if search goes left, ∃ overlap in the left 

subtree or no overlap in either subtree

■ If ∃ overlap in left subtree, we’re done

■ Otherwise:

○ i →low ≤ x →left →max, by branch condition

○ x →left →max = y →high for some y in left subtree

○ Since i and y don’t overlap and i →low ≤ y →high,

i →high < y →low

○ Since tree is sorted by low’s, i →high < any low in right subtree

○ Thus, no overlap in right subtree
while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x;


