
Algorithms

Graph Algorithms

Interval Trees

● The problem: maintain a set of intervals

■ E.g., time intervals for a scheduling program:
10 7

11 5

8 4 18 15 23 21

17 19

i = [7,10]; i low = 7; ihigh = 10

Review: Interval Trees

● The problem: maintain a set of intervals

■ E.g., time intervals for a scheduling program:

■ Query: find an interval in the set that overlaps a

given query interval

○ [14,16] [15,18]

○ [16,19] [15,18] or [17,19]

○ [12,14] NULL

10 7

11 5

8 4 18 15 23 21

17 19

i = [7,10]; i low = 7; ihigh = 10

Review: Interval Trees

● Following the methodology:

■ Pick underlying data structure

○ Red-black trees will store intervals, keyed on ilow

■ Decide what additional information to store

○ Store the maximum endpoint in the subtree rooted at i

■ Figure out how to maintain the information

○ Update max as traverse down during insert

○ Recalculate max after delete with a traversal up the tree

○ Update during rotations

■ Develop the desired new operations

max

maxmaxmax

rightx

leftx

highx

x

Review: Interval Trees

[17,19]

23

[5,11]

18

[21,23]

23

[4,8]

8

[15,18]

18

[7,10]

10

int

max

Note that:

Review: Searching Interval Trees

IntervalSearch(T, i)

{

 x = T->root;

 while (x != NULL && !overlap(i, x->interval))

 if (x->left != NULL && x->left->max i->low)
 x = x->left;

 else

 x = x->right;

 return x

}

● What will be the running time?

Review:

Correctness of IntervalSearch()

● Key idea: need to check only 1 of node’s 2
children

■ Case 1: search goes right

○ Show that overlap in right subtree, or no overlap at all

■ Case 2: search goes left

○ Show that overlap in left subtree, or no overlap at all

Correctness of IntervalSearch()

● Case 1: if search goes right, overlap in the right

subtree or no overlap in either subtree

■ If overlap in right subtree, we’re done

■ Otherwise:

○ xleft = NULL, or x left max < x low (Why?)

○ Thus, no overlap in left subtree!

while (x != NULL && !overlap(i, x->interval))

 if (x->left != NULL && x->left->max i->low)

 x = x->left;

 else

 x = x->right;

 return x;

Review:

Correctness of IntervalSearch()

● Case 2: if search goes left, overlap in the left

subtree or no overlap in either subtree

■ If overlap in left subtree, we’re done

■ Otherwise:

○ i low x left max, by branch condition

○ x left max = y high for some y in left subtree

○ Since i and y don’t overlap and i low y high,

i high < y low

○ Since tree is sorted by low’s, i high < any low in right subtree

○ Thus, no overlap in right subtree

 while (x != NULL && !overlap(i, x->interval))

 if (x->left != NULL && x->left->max i->low)
 x = x->left;

 else

 x = x->right;

 return x;

Next Up: Graph Algorithms

● Going to skip some advanced data structures

■ B-Trees

○ Balanced search tree designed to minimize disk I/O

■ Fibonacci heaps

○ Heap structure that supports efficient “merge heap” op

○ Requires amortized analysis techniques

● Will hopefully return to these

● Meantime: graph algorithms

■ Should be largely review, easier for exam

Graphs

● A graph G = (V, E)

■ V = set of vertices

■ E = set of edges = subset of V V

■ Thus |E| = O(|V|2)

Graph Variations

● Variations:

■ A connected graph has a path from every vertex to

every other

■ In an undirected graph:

○ Edge (u,v) = edge (v,u)

○ No self-loops

■ In a directed graph:

○ Edge (u,v) goes from vertex u to vertex v, notated uv

Graph Variations

● More variations:

■ A weighted graph associates weights with either

the edges or the vertices

○ E.g., a road map: edges might be weighted w/ distance

■ A multigraph allows multiple edges between the

same vertices

○ E.g., the call graph in a program (a function can get

called from multiple points in another function)

Graphs

● We will typically express running times in

terms of |E| and |V| (often dropping the |’s)
■ If |E| |V|2 the graph is dense

■ If |E| |V| the graph is sparse

● If you know you are dealing with dense or

sparse graphs, different data structures may

make sense

Representing Graphs

● Assume V = {1, 2, …, n}

● An adjacency matrix represents the graph as a

n x n matrix A:

■ A[i, j] = 1 if edge (i, j) E (or weight of edge)

 = 0 if edge (i, j) E

Graphs: Adjacency Matrix

● Example:

1

2 4

3

a

d

b c

A 1 2 3 4

1

2

3 ??
4

Graphs: Adjacency Matrix

● Example:

1

2 4

3

a

d

b c

A 1 2 3 4

1 0 1 1 0

2 0 0 1 0

3 0 0 0 0

4 0 0 1 0

Graphs: Adjacency Matrix

● How much storage does the adjacency matrix

require?

● A: O(V2)

● What is the minimum amount of storage

needed by an adjacency matrix representation

of an undirected graph with 4 vertices?

● A: 6 bits

■ Undirected graph matrix is symmetric

■ No self-loops don’t need diagonal

Graphs: Adjacency Matrix

● The adjacency matrix is a dense representation

■ Usually too much storage for large graphs

■ But can be very efficient for small graphs

● Most large interesting graphs are sparse

■ E.g., planar graphs, in which no edges cross, have

|E| = O(|V|) by Euler’s formula

■ For this reason the adjacency list is often a more

appropriate respresentation

Graphs: Adjacency List

● Adjacency list: for each vertex v V, store a

list of vertices adjacent to v

● Example:

■ Adj[1] = {2,3}

■ Adj[2] = {3}

■ Adj[3] = {}

■ Adj[4] = {3}

● Variation: can also keep

a list of edges coming into vertex

1

2 4

3

Graphs: Adjacency List

● How much storage is required?

■ The degree of a vertex v = # incident edges

○ Directed graphs have in-degree, out-degree

■ For directed graphs, # of items in adjacency lists is

 out-degree(v) = |E|

takes (V + E) storage (Why?)

■ For undirected graphs, # items in adj lists is

 degree(v) = 2 |E| (handshaking lemma)

also (V + E) storage

● So: Adjacency lists take O(V+E) storage

Graph Searching

● Given: a graph G = (V, E), directed or

undirected

● Goal: methodically explore every vertex and

every edge

● Ultimately: build a tree on the graph

■ Pick a vertex as the root

■ Choose certain edges to produce a tree

■ Note: might also build a forest if graph is not

connected

Breadth-First Search

● “Explore” a graph, turning it into a tree

■ One vertex at a time

■ Expand frontier of explored vertices across the

breadth of the frontier

● Builds a tree over the graph

■ Pick a source vertex to be the root

■ Find (“discover”) its children, then their children,
etc.

Breadth-First Search

● Again will associate vertex “colors” to guide
the algorithm

■ White vertices have not been discovered

○ All vertices start out white

■ Grey vertices are discovered but not fully explored

○ They may be adjacent to white vertices

■ Black vertices are discovered and fully explored

○ They are adjacent only to black and gray vertices

● Explore vertices by scanning adjacency list of

grey vertices

Breadth-First Search

BFS(G, s) {

 initialize vertices;

 Q = {s}; // Q is a queue (duh); initialize to s

 while (Q not empty) {

 u = RemoveTop(Q);

 for each v u->adj {
 if (v->color == WHITE)

 v->color = GREY;

 v->d = u->d + 1;

 v->p = u;

 Enqueue(Q, v);

 }

 u->color = BLACK;

 }

}

What does v->p represent?

What does v->d represent?

Breadth-First Search: Example

r s t u

v w x y

Breadth-First Search: Example

0

r s t u

v w x y

s Q:

Breadth-First Search: Example

1

0

1

r s t u

v w x y

w Q: r

Breadth-First Search: Example

1

0

1

2

2

r s t u

v w x y

r Q: t x

Breadth-First Search: Example

1

2

0

1

2

2

r s t u

v w x y

Q: t x v

Breadth-First Search: Example

1

2

0

1

2

2

3

r s t u

v w x y

Q: x v u

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: v u y

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: u y

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: y

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: Ø

BFS: The Code Again

BFS(G, s) {

 initialize vertices;

 Q = {s};

 while (Q not empty) {

 u = RemoveTop(Q);

 for each v u->adj {
 if (v->color == WHITE)

 v->color = GREY;

 v->d = u->d + 1;

 v->p = u;

 Enqueue(Q, v);

 }

 u->color = BLACK;

 }

}

What will be the running time?

Touch every vertex: O(V)

u = every vertex, but only once

 (Why?)

So v = every vertex

that appears in

some other vert’s
adjacency list

Total running time: O(V+E)

BFS: The Code Again

BFS(G, s) {

 initialize vertices;

 Q = {s};

 while (Q not empty) {

 u = RemoveTop(Q);

 for each v u->adj {
 if (v->color == WHITE)

 v->color = GREY;

 v->d = u->d + 1;

 v->p = u;

 Enqueue(Q, v);

 }

 u->color = BLACK;

 }

}

What will be the storage cost

in addition to storing the tree?

Total space used:

O(max(degree(v))) = O(E)

Breadth-First Search: Properties

● BFS calculates the shortest-path distance to

the source node

■ Shortest-path distance (s,v) = minimum number

of edges from s to v, or if v not reachable from s

■ Proof given in the book (p. 472-5)

● BFS builds breadth-first tree, in which paths to

root represent shortest paths in G

■ Thus can use BFS to calculate shortest path from

one vertex to another in O(V+E) time

