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Interval Trees 

● The problem: maintain a set of intervals 

■ E.g., time intervals for a scheduling program: 
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Review: Interval Trees 

● The problem: maintain a set of intervals 

■ E.g., time intervals for a scheduling program: 

 

 

 

■ Query: find an interval in the set that overlaps a 

given query interval 

○ [14,16]  [15,18] 

○ [16,19]  [15,18] or [17,19] 

○ [12,14]  NULL 
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Review: Interval Trees 

● Following the methodology: 

■ Pick underlying data structure 

○ Red-black trees will store intervals, keyed on ilow 

■ Decide what additional information to store 

○ Store the maximum endpoint in the subtree rooted at i 

■ Figure out how to maintain the information 

○ Update max as traverse down during insert 

○ Recalculate max after delete with a traversal up the tree 

○ Update during rotations 

■ Develop the desired new operations 
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Review: Interval Trees 
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Note that: 

 



Review: Searching Interval Trees 

IntervalSearch(T, i) 

{ 

    x = T->root; 

    while (x != NULL && !overlap(i, x->interval)) 

        if (x->left != NULL && x->left->max  i->low) 
            x = x->left; 

        else 

            x = x->right; 

    return x 

} 

● What will be the running time? 



Review:  

Correctness of IntervalSearch() 

● Key idea: need to check only 1 of node’s 2 
children 

■ Case 1: search goes right 

○ Show that  overlap in right subtree, or no overlap at all 

■ Case 2: search goes left 

○ Show that  overlap in left subtree, or no overlap at all 



Correctness of IntervalSearch() 

● Case 1: if search goes right,  overlap in the right 

subtree or no overlap in either subtree 

■ If   overlap in right subtree, we’re done 

■ Otherwise: 

○ xleft = NULL, or  x  left  max  <  x  low (Why?) 

○ Thus, no overlap in left subtree! 

while (x != NULL && !overlap(i, x->interval)) 

        if (x->left != NULL && x->left->max  i->low) 

            x = x->left; 

        else 

            x = x->right; 

    return x; 



Review:  

Correctness of IntervalSearch() 

● Case 2: if search goes left,  overlap in the left 

subtree or no overlap in either subtree 

■ If  overlap in left subtree, we’re done 

■ Otherwise: 

○ i low  x left max, by branch condition 

○ x left max = y high for some y in left subtree 

○ Since i and y don’t overlap and i low  y high, 

i high < y low 

○ Since tree is sorted by low’s, i high < any low in right subtree 

○ Thus, no overlap in right subtree 

 while (x != NULL && !overlap(i, x->interval)) 

        if (x->left != NULL && x->left->max  i->low) 
            x = x->left; 

        else 

            x = x->right; 

    return x; 



Next Up: Graph Algorithms 

● Going to skip some advanced data structures  

■ B-Trees 

○ Balanced search tree designed to minimize disk I/O 

■ Fibonacci heaps 

○ Heap structure that supports efficient “merge heap” op 

○ Requires amortized analysis techniques 

● Will hopefully return to these 

● Meantime: graph algorithms 

■ Should be largely review, easier for exam 



Graphs 

● A graph G = (V, E) 

■ V = set of vertices 

■ E = set of edges = subset of V  V 

■ Thus |E| = O(|V|2) 



Graph Variations 

● Variations: 

■ A connected graph has a path from every vertex to 

every other 

■ In an undirected graph: 

○ Edge (u,v) = edge (v,u) 

○ No self-loops 

■ In a directed graph: 

○ Edge (u,v) goes from vertex u to vertex v, notated uv 



Graph Variations 

● More variations: 

■ A weighted graph associates weights with either 

the edges or the vertices 

○ E.g., a road map: edges might be weighted w/ distance 

■ A multigraph allows multiple edges between the 

same vertices 

○ E.g., the call graph in a program (a function can get 

called from multiple points in another function) 



Graphs 

● We will typically express running times in 

terms of |E| and |V| (often dropping the |’s) 
■ If |E|  |V|2 the graph is dense 

■ If |E|  |V| the graph is sparse 

● If you know you are dealing with dense or 

sparse graphs, different data structures may 

make sense 

 



Representing Graphs 

● Assume V = {1, 2, …, n} 

● An adjacency matrix represents the graph as a 

n x n matrix A: 

■ A[i, j]  = 1 if edge (i, j)  E   (or weight of edge) 

  = 0 if edge (i, j)  E 

 



Graphs: Adjacency Matrix 

● Example: 
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Graphs: Adjacency Matrix 

● Example: 

1 

2 4 
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b c 

A 1 2 3 4 
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Graphs: Adjacency Matrix 

● How much storage does the adjacency matrix 

require? 

● A: O(V2) 

● What is the minimum amount of storage 

needed by an adjacency matrix representation 

of an undirected graph with 4 vertices? 

● A: 6 bits 

■ Undirected graph  matrix is symmetric 

■ No self-loops  don’t need diagonal 



Graphs: Adjacency Matrix 

● The adjacency matrix is a dense representation 

■ Usually too much storage for large graphs 

■ But can be very efficient for small graphs 

● Most large interesting graphs are sparse 

■ E.g., planar graphs, in which no edges cross, have 

|E| = O(|V|) by Euler’s formula 

■ For this reason the adjacency list is often a more 

appropriate respresentation 

 



Graphs: Adjacency List 

● Adjacency list: for each vertex v  V, store a 

list of vertices adjacent to v 

● Example: 

■ Adj[1] = {2,3} 

■ Adj[2] = {3} 

■ Adj[3] = {} 

■ Adj[4] = {3} 

● Variation: can also keep  

a list of edges coming into vertex 
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Graphs: Adjacency List 

● How much storage is required? 

■ The degree of a vertex v = # incident edges 

○ Directed graphs have in-degree, out-degree 

■ For directed graphs, # of items in adjacency lists is 

    out-degree(v) = |E| 

takes (V + E) storage    (Why?) 

■ For undirected graphs, # items in adj lists is 

    degree(v) = 2 |E|    (handshaking lemma) 

also (V + E) storage 

● So: Adjacency lists take O(V+E) storage 



Graph Searching 

● Given: a graph G = (V, E), directed or 

undirected 

● Goal: methodically explore every vertex and 

every edge 

● Ultimately: build a tree on the graph 

■ Pick a vertex as the root 

■ Choose certain edges to produce a tree 

■ Note: might also build a forest if graph is not 

connected 



Breadth-First Search 

● “Explore” a graph, turning it into a tree 

■ One vertex at a time 

■ Expand frontier of explored vertices across the 

breadth of the frontier 

● Builds a tree over the graph 

■ Pick a source vertex to be the root 

■ Find (“discover”) its children, then their children, 
etc. 



Breadth-First Search 

● Again will associate vertex “colors” to guide 
the algorithm 

■ White vertices have not been discovered 

○ All vertices start out white 

■ Grey vertices are discovered but not fully explored 

○ They may be adjacent to white vertices 

■ Black vertices are discovered and fully explored 

○ They are adjacent only to black and gray vertices 

● Explore vertices by scanning adjacency list of 

grey vertices 



Breadth-First Search 

BFS(G, s) { 

    initialize vertices; 

    Q = {s};  // Q is a queue (duh); initialize to s 

    while (Q not empty) {     

        u = RemoveTop(Q); 

        for each v  u->adj { 
            if (v->color == WHITE) 

                v->color = GREY; 

                v->d = u->d + 1; 

                v->p = u; 

                Enqueue(Q, v); 

        } 

        u->color = BLACK; 

    } 

} 

What does v->p represent? 

What does v->d represent? 



Breadth-First Search: Example 
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Breadth-First Search: Example 
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Breadth-First Search: Example 
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Breadth-First Search: Example 

1 

 

0 

1 

2 

2 

 

 

r s t u 

v w x y 

r Q: t x 
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Breadth-First Search: Example 
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Breadth-First Search: Example 
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Breadth-First Search: Example 
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BFS: The Code Again 

BFS(G, s) { 

    initialize vertices; 

    Q = {s};   

    while (Q not empty) {     

        u = RemoveTop(Q); 

        for each v  u->adj { 
            if (v->color == WHITE) 

                v->color = GREY; 

                v->d = u->d + 1; 

                v->p = u; 

                Enqueue(Q, v); 

        } 

        u->color = BLACK; 

    } 

} 

What will be the running time? 

Touch every vertex: O(V) 

u = every vertex, but only once 

                                  (Why?) 

So v = every vertex 

that appears in 

some other vert’s 
adjacency list 

Total running time: O(V+E) 



BFS: The Code Again 

BFS(G, s) { 

    initialize vertices; 

    Q = {s};   

    while (Q not empty) {     

        u = RemoveTop(Q); 

        for each v  u->adj { 
            if (v->color == WHITE) 

                v->color = GREY; 

                v->d = u->d + 1; 

                v->p = u; 

                Enqueue(Q, v); 

        } 

        u->color = BLACK; 

    } 

} 

What will be the storage cost  

in addition to storing the tree? 

Total space used:  

O(max(degree(v))) = O(E) 



Breadth-First Search: Properties 

● BFS calculates the shortest-path distance to 

the source node 

■ Shortest-path distance (s,v) = minimum number 

of edges from s to v, or  if v not reachable from s 

■ Proof given in the book (p. 472-5) 

● BFS builds breadth-first tree, in which paths to 

root represent shortest paths in G 

■ Thus can use BFS to calculate shortest path from 

one vertex to another in O(V+E) time 


