Algorithms

Graph Algorithms

Interval Trees

- The problem: maintain a set of intervals
- E.g., time intervals for a scheduling program:

$17 \bullet 19$
$4 \bullet \longrightarrow 8$
$15 \bullet \longrightarrow 18 \quad 21 \bullet \longrightarrow 23$

Review: Interval Trees

- The problem: maintain a set of intervals
- E.g., time intervals for a scheduling program:

$5 \bullet \longrightarrow 11$
$17 \bullet 19$
$4 \bullet 815 \longmapsto 23$
\square Query: find an interval in the set that overlaps a given query interval
$\circ[14,16] \rightarrow[15,18]$
$-[16,19] \rightarrow[15,18]$ or $[17,19]$
- $[12,14] \rightarrow$ NULL

Review: Interval Trees

- Following the methodology:
- Pick underlying data structure
- Red-black trees will store intervals, keyed on $i \rightarrow l o w$
- Decide what additional information to store
- Store the maximum endpoint in the subtree rooted at i
- Figure out how to maintain the information
- Update max as traverse down during insert
- Recalculate max after delete with a traversal up the tree
- Update during rotations

■ Develop the desired new operations

Review: Interval Trees

Review: Searching Interval Trees

```
IntervalSearch(T, i)
{
x = T->root;
while (x != NULL && !overlap(i, x->interval))
    if (x->left != NULL && x->left->max \geq i->low)
        x = x->left;
    else
                        x = x->right;
return x
}
- What will be the running time?
```


Review:
 Correctness of IntervalSearch()

- Key idea: need to check only 1 of node's 2 children
- Case 1: search goes right
- Show that \exists overlap in right subtree, or no overlap at all
- Case 2: search goes left
- Show that \exists overlap in left subtree, or no overlap at all

Correctness of IntervalSearch()

- Case 1 : if search goes right, \exists overlap in the right subtree or no overlap in either subtree
- If \exists overlap in right subtree, we're done
- Otherwise:
$\circ \mathrm{x} \rightarrow$ left $=$ NULL, or $\mathrm{x} \rightarrow$ left $\rightarrow \max <\mathrm{x} \rightarrow$ low (Why?)
- Thus, no overlap in left subtree!

```
while (x != NULL && !overlap(i, x->interval))
    if (x->left != NULL && x->left->max \geq i->low)
        x = x->left;
        else
            x = x->right;
    return x;
```


Review:

Correctness of IntervalSearch()

- Case 2: if search goes left, \exists overlap in the left subtree or no overlap in either subtree
- If \exists overlap in left subtree, we're done
- Otherwise:
- $\mathrm{i} \rightarrow$ low $\leq \mathrm{x} \rightarrow$ left \rightarrow max, by branch condition
$\circ \mathrm{x} \rightarrow$ left $\rightarrow \max =\mathrm{y} \rightarrow$ high for some y in left subtree
- Since i and y don't overlap and i \rightarrow low $\leq y \rightarrow$ high, i \rightarrow high $<$ y \rightarrow low
- Since tree is sorted by low's, $\mathrm{i} \rightarrow$ high $<$ any low in right subtree
- Thus, no overlap in right subtree

```
while (x != NULL && !overlap(i, x->interval))
    if (x->left != NULL && x->left->max \geq i->low)
            x = x->left;
        else
            x = x->right;
    return x;
```


Next Up: Graph Algorithms

- Going to skip some advanced data structures
- B-Trees
- Balanced search tree designed to minimize disk I/O

■ Fibonacci heaps

- Heap structure that supports efficient "merge heap" op
- Requires amortized analysis techniques
- Will hopefully return to these
- Meantime: graph algorithms
- Should be largely review, easier for exam

Graphs

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- $\mathrm{V}=$ set of vertices
- $\mathrm{E}=$ set of edges $=$ subset of $\mathrm{V} \times \mathrm{V}$
- Thus $\mid \mathrm{El}=\mathrm{O}\left(|\mathrm{V}|^{2}\right)$

Graph Variations

- Variations:
- A connected graph has a path from every vertex to every other
- In an undirected graph:
\circ Edge (u,v) = edge (v,u)
- No self-loops
- In a directed graph:
- Edge (u, v) goes from vertex u to vertex v, notated $u \rightarrow v$

Graph Variations

- More variations:
- A weighted graph associates weights with either the edges or the vertices
- E.g., a road map: edges might be weighted w/ distance
- A multigraph allows multiple edges between the same vertices
- E.g., the call graph in a program (a function can get called from multiple points in another function)

Graphs

- We will typically express running times in terms of $|\mathrm{E}|$ and $|\mathrm{V}|$ (often dropping the \mid 's)
\square If $|\mathrm{E}| \approx|\mathrm{V}|^{2}$ the graph is dense
\square If $|\mathrm{El} \approx| \mathrm{VI}$ the graph is sparse
- If you know you are dealing with dense or sparse graphs, different data structures may make sense

Representing Graphs

- Assume $\mathrm{V}=\{1,2, \ldots, n\}$
- An adjacency matrix represents the graph as a $n \mathrm{x} n$ matrix A:

$$
\begin{aligned}
\text { - } \mathrm{A}[i, j] & =1 \text { if edge }(i, j) \in \mathrm{E} \quad \text { (or weight of edge) } \\
& =0 \text { if edge }(i, j) \notin \mathrm{E}
\end{aligned}
$$

Graphs: Adjacency Matrix

- Example:

Graphs: Adjacency Matrix

- Example:

Graphs: Adjacency Matrix

- How much storage does the adjacency matrix require?
- A: $\mathrm{O}\left(\mathrm{V}^{2}\right)$
- What is the minimum amount of storage needed by an adjacency matrix representation of an undirected graph with 4 vertices?
- A: 6 bits
- Undirected graph \rightarrow matrix is symmetric
- No self-loops \rightarrow don't need diagonal

Graphs: Adjacency Matrix

- The adjacency matrix is a dense representation
- Usually too much storage for large graphs
- But can be very efficient for small graphs
- Most large interesting graphs are sparse
- E.g., planar graphs, in which no edges cross, have $|\mathrm{E}|=\mathrm{O}(|\mathrm{V}|)$ by Euler's formula
- For this reason the adjacency list is often a more appropriate respresentation

Graphs: Adjacency List

- Adjacency list: for each vertex $v \in \mathrm{~V}$, store a list of vertices adjacent to v
- Example:
- $\operatorname{Adj}[1]=\{2,3\}$
- $\operatorname{Adj}[2]=\{3\}$
- $\operatorname{Adj}[3]=\{ \}$
- $\operatorname{Adj}[4]=\{3\}$
- Variation: can also keep
 a list of edges coming into vertex

Graphs: Adjacency List

- How much storage is required?
- The degree of a vertex $v=$ \# incident edges
- Directed graphs have in-degree, out-degree
- For directed graphs, \# of items in adjacency lists is
Σ out-degree $(v)=\mid \mathrm{El}$
takes $\Theta(\mathrm{V}+\mathrm{E})$ storage (Why?)
- For undirected graphs, \# items in adj lists is
Σ degree $(\mathrm{v})=2|\mathrm{E}| \quad$ (handshaking lemma)
also $\Theta(V+E)$ storage
- So: Adjacency lists take $\mathrm{O}(\mathrm{V}+\mathrm{E})$ storage

Graph Searching

- Given: a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
- Pick a vertex as the root
- Choose certain edges to produce a tree
- Note: might also build a forest if graph is not connected

Breadth-First Search

- "Explore" a graph, turning it into a tree
- One vertex at a time
- Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
- Pick a source vertex to be the root
- Find ("discover") its children, then their children, etc.

Breadth-First Search

- Again will associate vertex "colors" to guide the algorithm
- White vertices have not been discovered
- All vertices start out white

■ Grey vertices are discovered but not fully explored

- They may be adjacent to white vertices
- Black vertices are discovered and fully explored
- They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search

```
BFS(G, s) {
    initialize vertices;
    Q = {s}; // Q is a queue (duh); initialize to s
    while (Q not empty) {
        u = RemoveTop (Q);
        for each v \in u->adj {
        if (v->color == WHITE)
            v->color = GREY;
            v->d = u->d + 1; What does v->d represent?
            v->p = u;
            Enqueue (Q, v);
        }
    u->color = BLACK;
    }
}
```


Breadth-First Search: Example

Breadth-First Search: Example

$Q: \quad s$

Breadth-First Search: Example

$Q:$| w | r |
| :--- | :--- |

Breadth-First Search: Example

$Q:$| r | t | x |
| :--- | :--- | :--- |

Breadth-First Search: Example

$Q:$| t | x | v |
| :--- | :--- | :--- |

Breadth-First Search: Example

$Q:$| x | v | u |
| :--- | :--- | :--- |

Breadth-First Search: Example

$Q:$| v | u | y |
| :--- | :--- | :--- |

Breadth-First Search: Example

$Q:$| u | y |
| :--- | :--- |

Breadth-First Search: Example

$Q: y$

Breadth-First Search: Example

$Q: \varnothing$

BFS: The Code Again

BFS (G, s) \{
initialize vertices; \longleftarrow Touch every vertex: $O(V)$ Q = \{s\};
while (Q not empty) \{
$\mathrm{u}=$ RemoveTop (Q); $\longleftarrow u=$ every vertex, but only once
for each $v \in u->a d j\{$
if ($\mathrm{v}->$ color $==$ WHITE)
So $v=$ every vertex $v->$ color $=$ GREY;
that appears in $\quad \mathrm{v}->\mathrm{d}=\mathrm{u}->\mathrm{d}+1$;
some other vert's $\quad \mathrm{v}->\mathrm{p}=\mathrm{u}$;
adjacency list Enqueue (Q, v);
\}
\}->Color $=$ BLACK

What will be the running time? Total running time: $\mathrm{O}(\mathrm{V}+\mathrm{E})$

BFS: The Code Again

```
BFS(G, s) {
    initialize vertices;
    Q = {s};
    while (Q not empty) {
        u = RemoveTop(Q);
        for each v \in u->adj {
        if (v->color == WHITE)
            v->color = GREY;
            v->d = u->d + 1;
            v->p = u;
            Enqueue (Q, v);
        }
        u->color = BLACK;
    }
}
What will be the storage cost in addition to storing the tree? Total space used: \(O(\max (\operatorname{degree}(v)))=O(E)\)
```


Breadth-First Search: Properties

- BFS calculates the shortest-path distance to the source node
- Shortest-path distance $\delta(\mathrm{s}, \mathrm{v})=$ minimum number of edges from s to v, or ∞ if v not reachable from s
- Proof given in the book (p. 472-5)
- BFS builds breadth-first tree, in which paths to root represent shortest paths in G
- Thus can use BFS to calculate shortest path from one vertex to another in $\mathrm{O}(\mathrm{V}+\mathrm{E})$ time

