Algorithms

Graph Algorithms

Administrative

- Test postponed to Friday
- Homework:
- Turned in last night by midnight: full credit
- Turned in tonight by midnight: 1 day late, 10% off
- Turned in tomorrow night: 2 days late, 30\% off
- Extra credit lateness measured separately

Review: Graphs

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- V = set of vertices, E = set of edges
- Dense graph: $|\mathrm{E}| \approx|\mathrm{V}|^{2}$; Sparse graph: $|\mathrm{E}| \approx|\mathrm{V}|$
- Undirected graph:
- Edge (u,v) = edge (v,u)
- No self-loops
- Directed graph:
\circ Edge (u,v) goes from vertex u to vertex v, notated u \rightarrow v
- A weighted graph associates weights with either the edges or the vertices

Review: Representing Graphs

- Assume $\mathrm{V}=\{1,2, \ldots, n\}$
- An adjacency matrix represents the graph as a $n \mathrm{x} n$ matrix A:
- $\mathrm{A}[i, j]=1$ if edge $(i, j) \in \mathrm{E} \quad$ (or weight of edge)
$=0$ if edge $(i, j) \notin \mathrm{E}$
■ Storage requirements: $\mathrm{O}\left(\mathrm{V}^{2}\right)$
- A dense representation
- But, can be very efficient for small graphs
- Especially if store just one bit/edge
- Undirected graph: only need one diagonal of matrix

Review: Graph Searching

- Given: a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
- Pick a vertex as the root
- Choose certain edges to produce a tree
- Note: might also build a forest if graph is not connected

Review: Breadth-First Search

- "Explore" a graph, turning it into a tree
- One vertex at a time
- Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
- Pick a source vertex to be the root
- Find ("discover") its children, then their children, etc.

Review: Breadth-First Search

- Again will associate vertex "colors" to guide the algorithm
- White vertices have not been discovered
- All vertices start out white
- Grey vertices are discovered but not fully explored
- They may be adjacent to white vertices

■ Black vertices are discovered and fully explored

- They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

Review: Breadth-First Search

```
BFS(G, s) {
    initialize vertices;
    Q = {s}; // Q is a queue (duh); initialize to s
    while (Q not empty) {
        u = RemoveTop(Q);
        for each v \in u->adj {
        if (v->color == WHITE)
            v->color = GREY;
            v}->\textrm{d}=\textrm{u}->\textrm{d}+1; What does v->d represent
            v->p = u;
            Enqueue (Q, v);
        }
        u->color = BLACK;
    }
}
```


Breadth-First Search: Example

Breadth-First Search: Example

$Q: \quad s$

Breadth-First Search: Example

$Q:$| w | r |
| :--- | :--- |

Breadth-First Search: Example

$Q:$| r | t | x |
| :--- | :--- | :--- |

Breadth-First Search: Example

$Q:$| t | x | v |
| :--- | :--- | :--- |

Breadth-First Search: Example

$Q:$| x | v | u |
| :--- | :--- | :--- |

Breadth-First Search: Example

$Q:$| v | u | y |
| :--- | :--- | :--- |

Breadth-First Search: Example

$Q:$| u | y |
| :--- | :--- |

Breadth-First Search: Example

$Q: y$

Breadth-First Search: Example

$Q: \varnothing$

BFS: The Code Again

BFS (G, s) \{
initialize vertices; \longleftarrow Touch every vertex: $O(V)$ Q = \{s\};
while (Q not empty) \{
$\mathrm{u}=$ RemoveTop (Q); $\longleftarrow u=$ every vertex, but only once
for each $v \in u->a d j\{$
if ($\mathrm{v}->$ color $==$ WHITE)
So $v=$ every vertex $v->$ color $=$ GREY;
that appears in $\quad \mathrm{v}->\mathrm{d}=\mathrm{u}->\mathrm{d}+1$;
some other vert's $\quad \mathrm{v}->\mathrm{p}=\mathrm{u}$;
adjacency list Enqueue (Q, v);
\}
\}->Color $=$ BLACK

What will be the running time? Total running time: $\mathrm{O}(\mathrm{V}+\mathrm{E})$

BFS: The Code Again

```
BFS(G, s) {
    initialize vertices;
    Q = {s};
    while (Q not empty) {
        u = RemoveTop(Q);
        for each v \in u->adj {
        if (v->color == WHITE)
            v->color = GREY;
            v->d = u->d + 1;
            v->p = u;
            Enqueue (Q, v);
    }
    u->color = BLACK;
    }
}
```

What will be the storage cost in addition to storing the graph? Total space used:
$O(\max (\operatorname{degree}(v)))=O(E)$

Breadth-First Search: Properties

- BFS calculates the shortest-path distance to the source node
- Shortest-path distance $\delta(\mathrm{s}, \mathrm{v})=$ minimum number of edges from s to v, or ∞ if v not reachable from s
- Proof given in the book (p. 472-5)
- BFS builds breadth-first tree, in which paths to root represent shortest paths in G
- Thus can use BFS to calculate shortest path from one vertex to another in $\mathrm{O}(\mathrm{V}+\mathrm{E})$ time

Depth-First Search

- Depth-first search is another strategy for exploring a graph
■ Explore "deeper" in the graph whenever possible
- Edges are explored out of the most recently discovered vertex v that still has unexplored edges
- When all of v 's edges have been explored, backtrack to the vertex from which v was discovered

Depth-First Search

- Vertices initially colored white
- Then colored gray when discovered
- Then black when finished

Depth-First Search: The Code

```
DFS (G)
{
    for each vertex u \in G->V
    {
    u->color = WHITE;
    }
    time = 0;
    for each vertex u \in G->V
    {
    if (u->color == WHITE)
        DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
{
    u->color = GREY;
    time = time+1;
    u->d = time;
    for each v \in u->Adj[]
    {
        if (v->color == WHITE)
        DFS_Visit(v);
    }
    u->color = BLACK;
    time = time+1;
    u->f = time;
}
```


Depth-First Search: The Code

```
DFS (G)
{
    for each vertex u \in G->V
    {
    u->color = WHITE;
    }
    time = 0;
    for each vertex u \in G->V
    {
    if (u->color == WHITE)
        DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
{
    u->color = GREY;
    time = time+1;
    u->d = time;
    for each v G u->Adj[]
    {
        if (v->color == WHITE)
        DFS_Visit(v);
    }
    u->color = BLACK;
    time = time+1;
    u->f = time;
}
```

What does u->d represent?

Depth-First Search: The Code

```
DFS (G)
{
    for each vertex u G G->V
    {
    u->color = WHITE;
    }
    time = 0;
    for each vertex u G G->V
    {
    if (u->color == WHITE)
        DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
```

DFS_Visit(u)
{
{
u->color = GREY;
u->color = GREY;
time = time+1;
time = time+1;
u->d = time;
u->d = time;
for each v \in u->Adj[]
for each v \in u->Adj[]
{
{
if (v->color == WHITE)
if (v->color == WHITE)
DFS_Visit(v);
DFS_Visit(v);
}
}
u->color = BLACK;
u->color = BLACK;
time = time+1;
time = time+1;
u->f = time;
u->f = time;
}
}
What does u->£ represent?

```

\section*{Depth-First Search: The Code}
```

DFS (G)
{
for each vertex u \in G->V
{
u->color = WHITE;
}
time = 0;
for each vertex u \in G->V
{
if (u->color == WHITE)
DFS_Visit(u);
}
}

```
```

DFS_Visit(u)
{
u->color = GREY;
time = time+1;
u->d = time;
for each v G u->Adj[]
{
if (v->color == WHITE)
DFS_Visit(v);
}
u->color = BLACK;
time = time+1;
u->f = time;
}

```

Will all vertices eventually be colored black?

\section*{Depth-First Search: The Code}
```

DFS (G)
{
for each vertex u \in G->V
{
u->color = WHITE;
}
time = 0;
for each vertex u \in G->V
{
if (u->color == WHITE)
DFS_Visit(u);
}
}

```
```

DFS_Visit(u)
{
u->color = GREY;
time = time+1;
u->d = time;
for each v \in u->Adj[]
{
if (v->color == WHITE)
DFS_Visit(v);
}
u->color = BLACK;
time = time+1;
u->f = time;
}

```

What will be the running time?

\section*{Depth-First Search: The Code}
```

DFS (G)
{
for each vertex u \in G->V
{
u->color = WHITE;
}
time = 0;
for each vertex u G G->V
{
if (u->color == WHITE)
DFS_Visit(u);
}
}

```
```

DFS_Visit(u)

```
DFS_Visit(u)
{
{
    u->color = GREY;
    u->color = GREY;
    time = time+1;
    time = time+1;
    u->d = time;
    u->d = time;
    for each v G u->Adj[]
    for each v G u->Adj[]
    {
    {
        if (v->color == WHITE)
        if (v->color == WHITE)
        DFS_Visit(v);
        DFS_Visit(v);
    }
    }
    u->color = BLACK;
    u->color = BLACK;
    time = time+1;
    time = time+1;
    u->f = time;
    u->f = time;
}
}
Running time: \(O\left(n^{2}\right)\) because call DFS_Visit on each vertex, and the loop over Adj[] can run as many as |V| times
```


Depth-First Search: The Code

```
DFS (G)
{
    for each vertex u \in G->V
    {
    u->color = WHITE;
    }
    time = 0;
    for each vertex u \in G->V
    {
    if (u->color == WHITE)
        DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
```

DFS_Visit(u)
{
{
u->color = GREY;
u->color = GREY;
time = time+1;
time = time+1;
u->d = time;
u->d = time;
for each v G u->Adj[]
for each v G u->Adj[]
{
{
if (v->color == WHITE)
if (v->color == WHITE)
DFS_Visit(v);
DFS_Visit(v);
}
}
u->color = BLACK;
u->color = BLACK;
time = time+1;
time = time+1;
u->f = time;
u->f = time;
}
}
BUT, there is actually a tighter bound. How many times will DFS_Visit() actually be called?

```

\section*{Depth-First Search: The Code}
```

DFS (G)
{
for each vertex u \in G->V
{
u->color = WHITE;
}
time = 0;
for each vertex u \in G->V
{
if (u->color == WHITE)
DFS_Visit(u);
}
}

```
```

DFS_Visit(u)
{
u->color = GREY;
time = time+1;
u->d = time;
for each v \in u->Adj[]
{
if (v->color == WHITE)
DFS_Visit(v);
}
u->color = BLACK;
time = time+1;
u->f = time;
}

```
So, running time of DFS \(=O(V+E)\)

\section*{Depth-First Sort Analysis}
- This running time argument is an informal example of amortized analysis
- "Charge" the exploration of edge to the edge:
- Each loop in DFS_Visit can be attributed to an edge in the graph
- Runs once/edge if directed graph, twice if undirected
- Thus loop will run in \(\mathrm{O}(\mathrm{E})\) time, algorithm \(\mathrm{O}(\mathrm{V}+\mathrm{E})\)
- Considered linear for graph, \(\mathrm{b} / \mathrm{c}\) adj list requires \(\mathrm{O}(\mathrm{V}+\mathrm{E})\) storage
- Important to be comfortable with this kind of reasoning and analysis

\section*{DFS Example}


What is the structure of the grey vertices? What do they represent?

\section*{DFS Example}


\section*{DFS: Kinds of edges}
- DFS introduces an important distinction among edges in the original graph:
- Tree edge: encounter new (white) vertex
- The tree edges form a spanning forest
- Can tree edges form cycles? Why or why not?

\section*{DFS Example}


Tree edges

\section*{DFS: Kinds of edges}
- DFS introduces an important distinction among edges in the original graph:
- Tree edge: encounter new (white) vertex
- Back edge: from descendent to ancestor
- Encounter a grey vertex (grey to grey)

\section*{DFS Example}


Tree edges Back edges

\section*{DFS: Kinds of edges}
- DFS introduces an important distinction among edges in the original graph:
- Tree edge: encounter new (white) vertex
- Back edge: from descendent to ancestor
- Forward edge: from ancestor to descendent
- Not a tree edge, though
- From grey node to black node

\section*{DFS Example}


Tree edges Back edges Forward edges

\section*{DFS: Kinds of edges}
- DFS introduces an important distinction among edges in the original graph:
- Tree edge: encounter new (white) vertex

■ Back edge: from descendent to ancestor
- Forward edge: from ancestor to descendent

■ Cross edge: between a tree or subtrees
- From a grey node to a black node

\section*{DFS Example}


Tree edges Back edges Forward edges Cross edges

\section*{DFS: Kinds of edges}
- DFS introduces an important distinction among edges in the original graph:
- Tree edge: encounter new (white) vertex
- Back edge: from descendent to ancestor
- Forward edge: from ancestor to descendent - Cross edge: between a tree or subtrees
- Note: tree \& back edges are important; most algorithms don't distinguish forward \& cross

\section*{DFS: Kinds Of Edges}
- Thm 23.9: If G is undirected, a DFS produces only tree and back edges
- Proof by contradiction:
- Assume there's a forward edge
- But F? edge must actually be a back edge (why?)


\section*{DFS: Kinds Of Edges}
- Thm 23.9: If G is undirected, a DFS produces only tree and back edges
- Proof by contradiction:
- Assume there's a cross edge
- But C? edge cannot be cross:
- must be explored from one of the vertices it connects, becoming a tree vertex, before other vertex is explored
- So in fact the picture is wrong... both lower tree edges cannot in fact be tree edges


\section*{DFS And Graph Cycles}
- Thm: An undirected graph is acyclic iff a DFS yields no back edges
- If acyclic, no back edges (because a back edge implies a cycle
- If no back edges, acyclic
- No back edges implies only tree edges (Why?)
- Only tree edges implies we have a tree or a forest
- Which by definition is acyclic
- Thus, can run DFS to find whether a graph has a cycle

\section*{DFS And Cycles}
- How would you modify the code to detect cycles?
```

DFS (G)
{
for each vertex u \in G->V
{
u->color = WHITE;
}
time = 0;
for each vertex u \in G->V
{
if (u->color == WHITE)
DFS_Visit(u);
}
}

```
```

DFS_Visit(u)

```
DFS_Visit(u)
    {
    {
        u->color = GREY;
        u->color = GREY;
        time = time+1;
        time = time+1;
    u->d = time;
    u->d = time;
    for each v \in u->Adj[]
    for each v \in u->Adj[]
    {
    {
        if (v->color == WHITE)
        if (v->color == WHITE)
        DFS_Visit(v);
        DFS_Visit(v);
    }
    }
    u->color = BLACK;
    u->color = BLACK;
    time = time+1;
    time = time+1;
    u->f = time;
    u->f = time;
}
```

}

```

\section*{DFS And Cycles}
- What will be the running time?
```

DFS (G)
{
for each vertex u \in G->V
{
u->color = WHITE;
}
time = 0;
for each vertex u \in G->V
{
if (u->color == WHITE)
DFS_Visit(u);
}
}

```
```

DFS_Visit(u)

```
DFS_Visit(u)
    {
    {
    u->color = GREY;
    u->color = GREY;
    time = time+1;
    time = time+1;
    u->d = time;
    u->d = time;
    for each v \in u->Adj[]
    for each v \in u->Adj[]
    {
    {
        if (v->color == WHITE)
        if (v->color == WHITE)
                DFS_Visit(v);
                DFS_Visit(v);
    }
    }
    u->color = BLACK;
    u->color = BLACK;
    time = time+1;
    time = time+1;
    u->f = time;
    u->f = time;
}
```

}

```

\section*{DFS And Cycles}
- What will be the running time?
- \(\mathrm{A}: \mathrm{O}(\mathrm{V}+\mathrm{E})\)
- We can actually determine if cycles exist in \(\mathrm{O}(\mathrm{V})\) time:
\(\square\) In an undirected acyclic forest, \(|\mathrm{El} \leq|\mathrm{V}|-1\)
- So count the edges: if ever see IVI distinct edges, must have seen a back edge along the way```

