
Algorithms 

Graph Algorithms  

 



Administrative 

● Test postponed to Friday 

● Homework: 

■ Turned in last night by midnight: full credit 

■ Turned in tonight by midnight: 1 day late, 10% off 

■ Turned in tomorrow night: 2 days late, 30% off 

■ Extra credit lateness measured separately 



Review: Graphs 

● A graph G = (V, E) 

■ V = set of vertices, E = set of edges  

■ Dense graph: |E|  |V|2; Sparse graph: |E|  |V| 

■ Undirected graph: 

○ Edge (u,v) = edge (v,u) 

○ No self-loops 

■ Directed graph: 

○ Edge (u,v) goes from vertex u to vertex v, notated uv 

■ A weighted graph associates weights with either 

the edges or the vertices 



Review: Representing Graphs 

● Assume V = {1, 2, …, n} 

● An adjacency matrix represents the graph as a 

n x n matrix A: 

■ A[i, j]  = 1 if edge (i, j)  E   (or weight of edge) 

  = 0 if edge (i, j)  E 

■ Storage requirements: O(V2)  

○ A dense representation 

■ But, can be very efficient for small graphs 

○ Especially if store just one bit/edge 

○ Undirected graph: only need one diagonal of matrix 



Review: Graph Searching 

● Given: a graph G = (V, E), directed or 

undirected 

● Goal: methodically explore every vertex and 

every edge 

● Ultimately: build a tree on the graph 

■ Pick a vertex as the root 

■ Choose certain edges to produce a tree 

■ Note: might also build a forest if graph is not 

connected 



Review: Breadth-First Search 

● “Explore” a graph, turning it into a tree 

■ One vertex at a time 

■ Expand frontier of explored vertices across the 

breadth of the frontier 

● Builds a tree over the graph 

■ Pick a source vertex to be the root 

■ Find (“discover”) its children, then their children, 
etc. 



Review: Breadth-First Search 

● Again will associate vertex “colors” to guide 
the algorithm 

■ White vertices have not been discovered 

○ All vertices start out white 

■ Grey vertices are discovered but not fully explored 

○ They may be adjacent to white vertices 

■ Black vertices are discovered and fully explored 

○ They are adjacent only to black and gray vertices 

● Explore vertices by scanning adjacency list of 

grey vertices 



Review: Breadth-First Search 

BFS(G, s) { 

    initialize vertices; 

    Q = {s};  // Q is a queue (duh); initialize to s 

    while (Q not empty) {     

        u = RemoveTop(Q); 

        for each v  u->adj { 
            if (v->color == WHITE) 

                v->color = GREY; 

                v->d = u->d + 1; 

                v->p = u; 

                Enqueue(Q, v); 

        } 

        u->color = BLACK; 

    } 

} 

What does v->p represent? 

What does v->d represent? 



Breadth-First Search: Example 

 

 

 

 

 

 

 

 

r s t u 

v w x y 



Breadth-First Search: Example 

 

 

0 

 

 

 

 

 

r s t u 

v w x y 

s Q: 



Breadth-First Search: Example 

1 

 

0 

1 

 

 

 

 

r s t u 

v w x y 

w Q: r 



Breadth-First Search: Example 

1 

 

0 

1 

2 

2 

 

 

r s t u 

v w x y 

r Q: t x 



Breadth-First Search: Example 

1 

2 

0 

1 

2 

2 

 

 

r s t u 

v w x y 

Q: t x v 



Breadth-First Search: Example 

1 

2 

0 

1 

2 

2 

3 

 

r s t u 

v w x y 

Q: x v u 



Breadth-First Search: Example 

1 

2 

0 

1 

2 

2 

3 

3 

r s t u 

v w x y 

Q: v u y 



Breadth-First Search: Example 

1 

2 

0 

1 

2 

2 

3 

3 

r s t u 

v w x y 

Q: u y 



Breadth-First Search: Example 

1 

2 

0 

1 

2 

2 

3 

3 

r s t u 

v w x y 

Q: y 



Breadth-First Search: Example 

1 

2 

0 

1 

2 

2 

3 

3 

r s t u 

v w x y 

Q: Ø 



BFS: The Code Again 

BFS(G, s) { 

    initialize vertices; 

    Q = {s};   

    while (Q not empty) {     

        u = RemoveTop(Q); 

        for each v  u->adj { 
            if (v->color == WHITE) 

                v->color = GREY; 

                v->d = u->d + 1; 

                v->p = u; 

                Enqueue(Q, v); 

        } 

        u->color = BLACK; 

    } 

} 

What will be the running time? 

Touch every vertex: O(V) 

u = every vertex, but only once 

                                  (Why?) 

So v = every vertex 

that appears in 

some other vert’s 
adjacency list 

Total running time: O(V+E) 



BFS: The Code Again 

BFS(G, s) { 

    initialize vertices; 

    Q = {s};   

    while (Q not empty) {     

        u = RemoveTop(Q); 

        for each v  u->adj { 
            if (v->color == WHITE) 

                v->color = GREY; 

                v->d = u->d + 1; 

                v->p = u; 

                Enqueue(Q, v); 

        } 

        u->color = BLACK; 

    } 

} 

What will be the storage cost  

in addition to storing the graph? 

Total space used:  

O(max(degree(v))) = O(E) 



Breadth-First Search: Properties 

● BFS calculates the shortest-path distance to 

the source node 

■ Shortest-path distance (s,v) = minimum number 

of edges from s to v, or  if v not reachable from s 

■ Proof given in the book (p. 472-5) 

● BFS builds breadth-first tree, in which paths to 

root represent shortest paths in G 

■ Thus can use BFS to calculate shortest path from 

one vertex to another in O(V+E) time 



Depth-First Search 

● Depth-first search is another strategy for 

exploring a graph 

■ Explore “deeper” in the graph whenever possible 

■ Edges are explored out of the most recently 

discovered vertex v that still has unexplored edges 

■ When all of v’s edges have been explored, 
backtrack to the vertex from which v was 

discovered 

 



Depth-First Search 

● Vertices initially colored white 

● Then colored gray when discovered 

● Then black when finished 



Depth-First Search: The Code 

DFS(G) 

{ 

   for each vertex u  G->V 
   { 

      u->color = WHITE; 

   } 

   time = 0; 

   for each vertex u  G->V 
   { 

      if (u->color == WHITE) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   u->color = GREY; 

   time = time+1; 

   u->d = time; 

   for each v  u->Adj[] 
   { 

      if (v->color == WHITE) 

         DFS_Visit(v); 

   } 

   u->color = BLACK; 

   time = time+1; 

   u->f = time; 

} 



Depth-First Search: The Code 

DFS(G) 

{ 

   for each vertex u  G->V 
   { 

      u->color = WHITE; 

   } 

   time = 0; 

   for each vertex u  G->V 
   { 

      if (u->color == WHITE) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   u->color = GREY; 

   time = time+1; 

   u->d = time; 

   for each v  u->Adj[] 
   { 

      if (v->color == WHITE) 

         DFS_Visit(v); 

   } 

   u->color = BLACK; 

   time = time+1; 

   u->f = time; 

} 

What does u->d represent? 



Depth-First Search: The Code 

DFS(G) 

{ 

   for each vertex u  G->V 
   { 

      u->color = WHITE; 

   } 

   time = 0; 

   for each vertex u  G->V 
   { 

      if (u->color == WHITE) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   u->color = GREY; 

   time = time+1; 

   u->d = time; 

   for each v  u->Adj[] 
   { 

      if (v->color == WHITE) 

         DFS_Visit(v); 

   } 

   u->color = BLACK; 

   time = time+1; 

   u->f = time; 

} 

What does u->f represent? 



Depth-First Search: The Code 

DFS(G) 

{ 

   for each vertex u  G->V 
   { 

      u->color = WHITE; 

   } 

   time = 0; 

   for each vertex u  G->V 
   { 

      if (u->color == WHITE) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   u->color = GREY; 

   time = time+1; 

   u->d = time; 

   for each v  u->Adj[] 
   { 

      if (v->color == WHITE) 

         DFS_Visit(v); 

   } 

   u->color = BLACK; 

   time = time+1; 

   u->f = time; 

} 

Will all vertices eventually be colored black? 



Depth-First Search: The Code 

DFS(G) 

{ 

   for each vertex u  G->V 
   { 

      u->color = WHITE; 

   } 

   time = 0; 

   for each vertex u  G->V 
   { 

      if (u->color == WHITE) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   u->color = GREY; 

   time = time+1; 

   u->d = time; 

   for each v  u->Adj[] 
   { 

      if (v->color == WHITE) 

         DFS_Visit(v); 

   } 

   u->color = BLACK; 

   time = time+1; 

   u->f = time; 

} 

What will be the running time? 



Depth-First Search: The Code 

DFS(G) 

{ 

   for each vertex u  G->V 
   { 

      u->color = WHITE; 

   } 

   time = 0; 

   for each vertex u  G->V 
   { 

      if (u->color == WHITE) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   u->color = GREY; 

   time = time+1; 

   u->d = time; 

   for each v  u->Adj[] 
   { 

      if (v->color == WHITE) 

         DFS_Visit(v); 

   } 

   u->color = BLACK; 

   time = time+1; 

   u->f = time; 

} 

Running time: O(n2) because call DFS_Visit on each vertex,  

and the loop over Adj[] can run as many as |V| times 



Depth-First Search: The Code 

DFS(G) 

{ 

   for each vertex u  G->V 
   { 

      u->color = WHITE; 

   } 

   time = 0; 

   for each vertex u  G->V 
   { 

      if (u->color == WHITE) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   u->color = GREY; 

   time = time+1; 

   u->d = time; 

   for each v  u->Adj[] 
   { 

      if (v->color == WHITE) 

         DFS_Visit(v); 

   } 

   u->color = BLACK; 

   time = time+1; 

   u->f = time; 

} 

BUT, there is actually a tighter bound.   

How many times will DFS_Visit() actually be called? 



Depth-First Search: The Code 

DFS(G) 

{ 

   for each vertex u  G->V 
   { 

      u->color = WHITE; 

   } 

   time = 0; 

   for each vertex u  G->V 
   { 

      if (u->color == WHITE) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   u->color = GREY; 

   time = time+1; 

   u->d = time; 

   for each v  u->Adj[] 
   { 

      if (v->color == WHITE) 

         DFS_Visit(v); 

   } 

   u->color = BLACK; 

   time = time+1; 

   u->f = time; 

} 

 

So, running time of DFS = O(V+E) 



Depth-First Sort Analysis 

● This running time argument is an informal 

example of amortized analysis 

■ “Charge” the exploration of edge to the edge: 
○ Each loop in DFS_Visit can be attributed to an edge in 

the graph  

○ Runs once/edge if directed graph, twice if undirected 

○ Thus loop will run in O(E) time, algorithm O(V+E) 

 Considered linear for graph, b/c adj list requires O(V+E) storage 

■ Important to be comfortable with this kind of 

reasoning and analysis 



DFS Example 

source 

vertex 



DFS Example 

1 |     |     |   

  |    |   |   

  |     |   

source 

vertex 
d      f 



DFS Example 

1 |     |     |   

  |    |   |   

2 |     |   

source 

vertex 
d      f 



DFS Example 

1 |     |     |   

  |    |  3 |   

2 |     |   

source 

vertex 
d      f 



DFS Example 

1 |     |     |   

  |    |  3 | 4 

2 |     |   

source 

vertex 
d      f 



DFS Example 

1 |     |     |   

  |   5 |   3 | 4 

2 |     |   

source 

vertex 
d      f 



DFS Example 

1 |     |     |   

  |   5 | 6 3 | 4 

2 |     |   

source 

vertex 
d      f 



DFS Example 

1 |   8 |     |   

  |   5 | 6 3 | 4 

2 | 7   |   

source 

vertex 
d      f 



DFS Example 

1 |   8 |     |   

  |   5 | 6 3 | 4 

2 | 7   |   

source 

vertex 
d      f 



DFS Example 

1 |   8 |     |   

  |   5 | 6 3 | 4 

2 | 7 9 |   

source 

vertex 
d      f 

What is the structure of the grey vertices?   

What do they represent? 



DFS Example 

1 |   8 |     |   

  |   5 | 6 3 | 4 

2 | 7 9 |10 

source 

vertex 
d      f 



DFS Example 

1 |   8 |11   |   

  |   5 | 6 3 | 4 

2 | 7 9 |10 

source 

vertex 
d      f 



DFS Example 

1 |12 8 |11   |   

  |   5 | 6 3 | 4 

2 | 7 9 |10 

source 

vertex 
d      f 



DFS Example 

1 |12 8 |11 13|   

  |   5 | 6 3 | 4 

2 | 7 9 |10 

source 

vertex 
d      f 



DFS Example 

1 |12 8 |11 13|   

14|   5 | 6 3 | 4 

2 | 7 9 |10 

source 

vertex 
d      f 



DFS Example 

1 |12 8 |11 13|   

14|15 5 | 6 3 | 4 

2 | 7 9 |10 

source 

vertex 
d      f 



DFS Example 

1 |12 8 |11 13|16 

14|15 5 | 6 3 | 4 

2 | 7 9 |10 

source 

vertex 
d      f 



DFS: Kinds of edges 

● DFS introduces an important distinction 

among edges in the original graph: 

■ Tree edge: encounter new (white) vertex  

○ The tree edges form a spanning forest 

○ Can tree edges form cycles?  Why or why not? 

 



DFS Example 

1 |12 8 |11 13|16 

14|15 5 | 6 3 | 4 

2 | 7 9 |10 

source 

vertex 
d      f 

Tree edges 



DFS: Kinds of edges 

● DFS introduces an important distinction 

among edges in the original graph: 

■ Tree edge: encounter new (white) vertex  

■ Back edge: from descendent to ancestor 

○ Encounter a grey vertex (grey to grey) 



DFS Example 

1 |12 8 |11 13|16 

14|15 5 | 6 3 | 4 

2 | 7 9 |10 

source 

vertex 
d      f 

Tree edges Back edges 



DFS: Kinds of edges 

● DFS introduces an important distinction 

among edges in the original graph: 

■ Tree edge: encounter new (white) vertex  

■ Back edge: from descendent to ancestor 

■ Forward edge: from ancestor to descendent 

○ Not a tree edge, though 

○ From grey node to black node 



DFS Example 

1 |12 8 |11 13|16 

14|15 5 | 6 3 | 4 

2 | 7 9 |10 

source 

vertex 
d      f 

Tree edges Back edges Forward edges 



DFS: Kinds of edges 

● DFS introduces an important distinction 

among edges in the original graph: 

■ Tree edge: encounter new (white) vertex  

■ Back edge: from descendent to ancestor 

■ Forward edge: from ancestor to descendent 

■ Cross edge: between a tree or subtrees 

○ From a grey node to a black node 

 



DFS Example 

1 |12 8 |11 13|16 

14|15 5 | 6 3 | 4 

2 | 7 9 |10 

source 

vertex 
d      f 

Tree edges Back edges Forward edges Cross edges 



DFS: Kinds of edges 

● DFS introduces an important distinction 

among edges in the original graph: 

■ Tree edge: encounter new (white) vertex  

■ Back edge: from descendent to ancestor 

■ Forward edge: from ancestor to descendent 

■ Cross edge: between a tree or subtrees 

● Note: tree & back edges are important; most 

algorithms don’t distinguish forward & cross 



DFS: Kinds Of Edges 

● Thm 23.9: If G is undirected, a DFS produces 

only tree and back edges 

● Proof by contradiction: 

■ Assume there’s a forward edge 

○ But F? edge must actually be a  

back edge (why?) 

source 

F? 



DFS: Kinds Of Edges 

● Thm 23.9: If G is undirected, a DFS produces 

only tree and back edges 

● Proof by contradiction: 

■ Assume there’s a cross edge 

○ But C? edge cannot be cross: 

○ must be explored from one of the  

vertices it connects, becoming a tree 

vertex, before other vertex is explored 

○ So in fact the picture is wrong…both 

lower tree edges cannot in fact be 

tree edges 

source 

C? 



DFS And Graph Cycles 

● Thm: An undirected graph is acyclic iff a DFS 

yields no back edges 

■ If acyclic, no back edges (because a back edge 

implies a cycle 

■ If no back edges, acyclic 

○ No back edges implies only tree edges (Why?) 

○ Only tree edges implies we have a tree or a forest 

○ Which by definition is acyclic 

● Thus, can run DFS to find whether a graph has 

a cycle 



DFS And Cycles 

● How would you modify the code to detect cycles? 

DFS(G) 

{ 

   for each vertex u  G->V 
   { 

      u->color = WHITE; 

   } 

   time = 0; 

   for each vertex u  G->V 
   { 

      if (u->color == WHITE) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   u->color = GREY; 

   time = time+1; 

   u->d = time; 

   for each v  u->Adj[] 
   { 

      if (v->color == WHITE) 

         DFS_Visit(v); 

   } 

   u->color = BLACK; 

   time = time+1; 

   u->f = time; 

} 



DFS And Cycles 

● What will be the running time? 

DFS(G) 

{ 

   for each vertex u  G->V 
   { 

      u->color = WHITE; 

   } 

   time = 0; 

   for each vertex u  G->V 
   { 

      if (u->color == WHITE) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   u->color = GREY; 

   time = time+1; 

   u->d = time; 

   for each v  u->Adj[] 
   { 

      if (v->color == WHITE) 

         DFS_Visit(v); 

   } 

   u->color = BLACK; 

   time = time+1; 

   u->f = time; 

} 



DFS And Cycles 

● What will be the running time? 

● A: O(V+E) 

● We can actually determine if cycles exist in 

O(V) time: 

■ In an undirected acyclic forest, |E|  |V| - 1  

■ So count the edges: if ever see |V| distinct edges, 

must have seen a back edge along the way 


