
Algorithms 

Graph Algorithms  



Review: Depth-First Search 

● Depth-first search is another strategy for 

exploring a graph 

■ Explore “deeper” in the graph whenever possible 

■ Edges are explored out of the most recently 

discovered vertex v that still has unexplored edges 

■ When all of v’s edges have been explored, 
backtrack to the vertex from which v was 

discovered 



Review: DFS Code 

DFS(G) 

{ 

   for each vertex u  G->V 
   { 

      u->color = WHITE; 

   } 

   time = 0; 

   for each vertex u  G->V 
   { 

      if (u->color == WHITE) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   u->color = YELLOW; 

   time = time+1; 

   u->d = time; 

   for each v  u->Adj[] 
   { 

      if (v->color == WHITE) 

         DFS_Visit(v); 

   } 

   u->color = BLACK; 

   time = time+1; 

   u->f = time; 

} 
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What is the structure of the yellow vertices?   

What do they represent? 
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DFS: Kinds of edges 

● DFS introduces an important distinction 

among edges in the original graph: 

■ Tree edge: encounter new (white) vertex  

○ The tree edges form a spanning forest 

○ Can tree edges form cycles?  Why or why not? 
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DFS: Kinds of edges 

● DFS introduces an important distinction 

among edges in the original graph: 

■ Tree edge: encounter new (white) vertex  

■ Back edge: from descendent to ancestor 

○ Encounter a yellow vertex (yellow to yellow) 
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DFS: Kinds of edges 

● DFS introduces an important distinction 

among edges in the original graph: 

■ Tree edge: encounter new (white) vertex  

■ Back edge: from descendent to ancestor 

■ Forward edge: from ancestor to descendent 

○ Not a tree edge, though 

○ From yellow node to black node 
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DFS: Kinds of edges 

● DFS introduces an important distinction 

among edges in the original graph: 

■ Tree edge: encounter new (white) vertex  

■ Back edge: from descendent to ancestor 

■ Forward edge: from ancestor to descendent 

■ Cross edge: between a tree or subtrees 

○ From a yellow node to a black node 
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DFS: Kinds of edges 

● DFS introduces an important distinction 

among edges in the original graph: 

■ Tree edge: encounter new (white) vertex  

■ Back edge: from descendent to ancestor 

■ Forward edge: from ancestor to descendent 

■ Cross edge: between a tree or subtrees 

● Note: tree & back edges are important; most 

algorithms don’t distinguish forward & cross 



DFS: Kinds Of Edges 

● Thm 23.9: If G is undirected, a DFS produces 

only tree and back edges 

● Proof by contradiction: 

■ Assume there’s a forward edge 

○ But F? edge must actually be a  

back edge (why?) 

source 

F? 



DFS: Kinds Of Edges 

● Thm 23.9: If G is undirected, a DFS produces 

only tree and back edges 

● Proof by contradiction: 

■ Assume there’s a cross edge 

○ But C? edge cannot be cross: 

○ must be explored from one of the  

vertices it connects, becoming a tree 

vertex, before other vertex is explored 

○ So in fact the picture is wrong…both 

lower tree edges cannot in fact be 

tree edges 

source 

C? 



DFS And Graph Cycles 

● Thm: An undirected graph is acyclic iff a DFS 

yields no back edges 

■ If acyclic, no back edges (because a back edge 

implies a cycle 

■ If no back edges, acyclic 

○ No back edges implies only tree edges (Why?) 

○ Only tree edges implies we have a tree or a forest 

○ Which by definition is acyclic 

● Thus, can run DFS to find whether a graph has 

a cycle 



DFS And Cycles 

● How would you modify the code to detect cycles? 

DFS(G) 

{ 

   for each vertex u  G->V 
   { 

      u->color = WHITE; 

   } 

   time = 0; 

   for each vertex u  G->V 
   { 

      if (u->color == WHITE) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   u->color = GREY; 

   time = time+1; 

   u->d = time; 

   for each v  u->Adj[] 
   { 

      if (v->color == WHITE) 

         DFS_Visit(v); 

   } 

   u->color = BLACK; 

   time = time+1; 

   u->f = time; 

} 



DFS And Cycles 

● What will be the running time? 

DFS(G) 

{ 

   for each vertex u  G->V 
   { 

      u->color = WHITE; 

   } 

   time = 0; 

   for each vertex u  G->V 
   { 

      if (u->color == WHITE) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   u->color = GREY; 

   time = time+1; 

   u->d = time; 

   for each v  u->Adj[] 
   { 

      if (v->color == WHITE) 

         DFS_Visit(v); 

   } 

   u->color = BLACK; 

   time = time+1; 

   u->f = time; 

} 



DFS And Cycles 

● What will be the running time? 

● A: O(V+E) 

● We can actually determine if cycles exist in 

O(V) time: 

■ In an undirected acyclic forest, |E|  |V| - 1  

■ So count the edges: if ever see |V| distinct edges, 

must have seen a back edge along the way 


