
Algorithms

Graph Algorithms

Review: Depth-First Search

● Depth-first search is another strategy for

exploring a graph

■ Explore “deeper” in the graph whenever possible

■ Edges are explored out of the most recently

discovered vertex v that still has unexplored edges

■ When all of v’s edges have been explored,
backtrack to the vertex from which v was

discovered

Review: DFS Code

DFS(G)

{

 for each vertex u G->V
 {

 u->color = WHITE;

 }

 time = 0;

 for each vertex u G->V
 {

 if (u->color == WHITE)

 DFS_Visit(u);

 }

}

DFS_Visit(u)

{

 u->color = YELLOW;

 time = time+1;

 u->d = time;

 for each v u->Adj[]
 {

 if (v->color == WHITE)

 DFS_Visit(v);

 }

 u->color = BLACK;

 time = time+1;

 u->f = time;

}

DFS Example

source

vertex

DFS Example

1 | | |

 | | |

 | |

source

vertex
d f

DFS Example

1 | | |

 | | |

2 | |

source

vertex
d f

DFS Example

1 | | |

 | | 3 |

2 | |

source

vertex
d f

DFS Example

1 | | |

 | | 3 | 4

2 | |

source

vertex
d f

DFS Example

1 | | |

 | 5 | 3 | 4

2 | |

source

vertex
d f

DFS Example

1 | | |

 | 5 | 6 3 | 4

2 | |

source

vertex
d f

DFS Example

1 | 8 | |

 | 5 | 6 3 | 4

2 | 7 |

source

vertex
d f

DFS Example

1 | 8 | |

 | 5 | 6 3 | 4

2 | 7 |

source

vertex
d f

DFS Example

1 | 8 | |

 | 5 | 6 3 | 4

2 | 7 9 |

source

vertex
d f

What is the structure of the yellow vertices?

What do they represent?

DFS Example

1 | 8 | |

 | 5 | 6 3 | 4

2 | 7 9 |10

source

vertex
d f

DFS Example

1 | 8 |11 |

 | 5 | 6 3 | 4

2 | 7 9 |10

source

vertex
d f

DFS Example

1 |12 8 |11 |

 | 5 | 6 3 | 4

2 | 7 9 |10

source

vertex
d f

DFS Example

1 |12 8 |11 13|

 | 5 | 6 3 | 4

2 | 7 9 |10

source

vertex
d f

DFS Example

1 |12 8 |11 13|

14| 5 | 6 3 | 4

2 | 7 9 |10

source

vertex
d f

DFS Example

1 |12 8 |11 13|

14|15 5 | 6 3 | 4

2 | 7 9 |10

source

vertex
d f

DFS Example

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

source

vertex
d f

DFS: Kinds of edges

● DFS introduces an important distinction

among edges in the original graph:

■ Tree edge: encounter new (white) vertex

○ The tree edges form a spanning forest

○ Can tree edges form cycles? Why or why not?

DFS Example

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

source

vertex
d f

Tree edges

DFS: Kinds of edges

● DFS introduces an important distinction

among edges in the original graph:

■ Tree edge: encounter new (white) vertex

■ Back edge: from descendent to ancestor

○ Encounter a yellow vertex (yellow to yellow)

DFS Example

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

source

vertex
d f

Tree edges Back edges

DFS: Kinds of edges

● DFS introduces an important distinction

among edges in the original graph:

■ Tree edge: encounter new (white) vertex

■ Back edge: from descendent to ancestor

■ Forward edge: from ancestor to descendent

○ Not a tree edge, though

○ From yellow node to black node

DFS Example

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

source

vertex
d f

Tree edges Back edges Forward edges

DFS: Kinds of edges

● DFS introduces an important distinction

among edges in the original graph:

■ Tree edge: encounter new (white) vertex

■ Back edge: from descendent to ancestor

■ Forward edge: from ancestor to descendent

■ Cross edge: between a tree or subtrees

○ From a yellow node to a black node

DFS Example

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

source

vertex
d f

Tree edges Back edges Forward edges Cross edges

DFS: Kinds of edges

● DFS introduces an important distinction

among edges in the original graph:

■ Tree edge: encounter new (white) vertex

■ Back edge: from descendent to ancestor

■ Forward edge: from ancestor to descendent

■ Cross edge: between a tree or subtrees

● Note: tree & back edges are important; most

algorithms don’t distinguish forward & cross

DFS: Kinds Of Edges

● Thm 23.9: If G is undirected, a DFS produces

only tree and back edges

● Proof by contradiction:

■ Assume there’s a forward edge

○ But F? edge must actually be a

back edge (why?)

source

F?

DFS: Kinds Of Edges

● Thm 23.9: If G is undirected, a DFS produces

only tree and back edges

● Proof by contradiction:

■ Assume there’s a cross edge

○ But C? edge cannot be cross:

○ must be explored from one of the

vertices it connects, becoming a tree

vertex, before other vertex is explored

○ So in fact the picture is wrong…both

lower tree edges cannot in fact be

tree edges

source

C?

DFS And Graph Cycles

● Thm: An undirected graph is acyclic iff a DFS

yields no back edges

■ If acyclic, no back edges (because a back edge

implies a cycle

■ If no back edges, acyclic

○ No back edges implies only tree edges (Why?)

○ Only tree edges implies we have a tree or a forest

○ Which by definition is acyclic

● Thus, can run DFS to find whether a graph has

a cycle

DFS And Cycles

● How would you modify the code to detect cycles?

DFS(G)

{

 for each vertex u G->V
 {

 u->color = WHITE;

 }

 time = 0;

 for each vertex u G->V
 {

 if (u->color == WHITE)

 DFS_Visit(u);

 }

}

DFS_Visit(u)

{

 u->color = GREY;

 time = time+1;

 u->d = time;

 for each v u->Adj[]
 {

 if (v->color == WHITE)

 DFS_Visit(v);

 }

 u->color = BLACK;

 time = time+1;

 u->f = time;

}

DFS And Cycles

● What will be the running time?

DFS(G)

{

 for each vertex u G->V
 {

 u->color = WHITE;

 }

 time = 0;

 for each vertex u G->V
 {

 if (u->color == WHITE)

 DFS_Visit(u);

 }

}

DFS_Visit(u)

{

 u->color = GREY;

 time = time+1;

 u->d = time;

 for each v u->Adj[]
 {

 if (v->color == WHITE)

 DFS_Visit(v);

 }

 u->color = BLACK;

 time = time+1;

 u->f = time;

}

DFS And Cycles

● What will be the running time?

● A: O(V+E)

● We can actually determine if cycles exist in

O(V) time:

■ In an undirected acyclic forest, |E| |V| - 1

■ So count the edges: if ever see |V| distinct edges,

must have seen a back edge along the way

