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S-S Shortest Path: Dijkstra’s Algorithm 

Disjoint-Set Union 

Amortized Analysis 



Review:  

Single-Source Shortest Path 

● Problem: given a weighted directed graph G, 

find the minimum-weight path from a given 

source vertex s to another vertex v 

■ “Shortest-path” = minimum weight  
■ Weight of path is sum of edges 

■ E.g., a road map: what is the shortest path from 

Chapel Hill to Charlottesville? 



Review: Shortest Path Properties 

● Optimal substructure: the shortest path 

consists of shortest subpaths 

● Let (u,v) be the weight of the shortest path 

from u to v.  Shortest paths satisfy the triangle 

inequality: (u,v)  (u,x) + (x,v) 

● In graphs with negative weight cycles, some 

shortest paths will not exist 



Review: Relaxation 

● Key technique: relaxation 

■ Maintain upper bound d[v] on (s,v): 

 Relax(u,v,w) {  

    if (d[v] > d[u]+w) then d[v]=d[u]+w; 

 } 
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Review: Bellman-Ford Algorithm 

BellmanFord() 

   for each v  V 
      d[v] = ; 
   d[s] = 0; 

   for i=1 to |V|-1 

      for each edge (u,v)  E 
         Relax(u,v, w(u,v)); 

   for each edge (u,v)  E 
      if (d[v] > d[u] + w(u,v)) 

           return “no solution”; 
 

 

Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w 

 

Initialize d[], which 

will converge to  

shortest-path value  

Relaxation:  

Make |V|-1 passes,  

relaxing each edge 

Test for solution: 

have we converged yet? 

Ie,  negative cycle? 



Review: Bellman-Ford Algorithm 

BellmanFord() 

   for each v  V 
      d[v] = ; 
   d[s] = 0; 

   for i=1 to |V|-1 

      for each edge (u,v)  E 
         Relax(u,v, w(u,v)); 

   for each edge (u,v)  E 
      if (d[v] > d[u] + w(u,v)) 

           return “no solution”; 
 

 

Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w 

 

What will be the  

running time? 



Review: Bellman-Ford 

● Running time: O(VE) 

■ Not so good for large dense graphs 

■ But a very practical algorithm in many ways 

● Note that order in which edges are processed affects 

how quickly it converges (show example) 



DAG Shortest Paths 

● Problem: finding shortest paths in DAG 

■ Bellman-Ford takes O(VE) time.   

■ How can we do better? 

■ Idea: use topological sort. How does it work again? 

○ If were lucky and processes vertices on each shortest path 

from left to right, would be done in one pass 

○ Every path in a dag is subsequence of topologically sorted 

vertex order, so processing verts in that order, we will do 

each path in forward order (will never relax edges out of 

vert before doing all edges into vert).   

○ Thus: just one pass.  What will be the running time? 



Dijkstra’s Algorithm 

● If no negative edge weights, we can beat BF 

● Similar to breadth-first search 

■ Grow a tree gradually, advancing from vertices 

taken from a queue 

● Also similar to Prim’s algorithm for MST 

■ Use a priority queue keyed on d[v] 



Dijkstra’s Algorithm 

Dijkstra(G) 

   for each v  V 
      d[v] = ; 
   d[s] = 0; S = ; Q = V; 
   while (Q  ) 
      u = ExtractMin(Q); 

      S = S U {u}; 

      for each v  u->Adj[] 
         if (d[v] > d[u]+w(u,v)) 

            d[v] = d[u]+w(u,v); 

Relaxation 

Step Note: this 

is really a  

call to Q->DecreaseKey() 
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Ex: run the algorithm 


