
Algorithms

S-S Shortest Path: Dijkstra’s Algorithm

Disjoint-Set Union

Amortized Analysis

Review:

Single-Source Shortest Path

● Problem: given a weighted directed graph G,

find the minimum-weight path from a given

source vertex s to another vertex v

■ “Shortest-path” = minimum weight
■ Weight of path is sum of edges

■ E.g., a road map: what is the shortest path from

Chapel Hill to Charlottesville?

Review: Shortest Path Properties

● Optimal substructure: the shortest path

consists of shortest subpaths

● Let (u,v) be the weight of the shortest path

from u to v. Shortest paths satisfy the triangle

inequality: (u,v)  (u,x) + (x,v)

● In graphs with negative weight cycles, some

shortest paths will not exist

Review: Relaxation

● Key technique: relaxation

■ Maintain upper bound d[v] on (s,v):

 Relax(u,v,w) {

 if (d[v] > d[u]+w) then d[v]=d[u]+w;

 }

9 5
2

7 5
2

Relax

6 5
2

6 5
2

Relax

Review: Bellman-Ford Algorithm

BellmanFord()

 for each v  V
 d[v] = ;
 d[s] = 0;

 for i=1 to |V|-1

 for each edge (u,v)  E
 Relax(u,v, w(u,v));

 for each edge (u,v)  E
 if (d[v] > d[u] + w(u,v))

 return “no solution”;

Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w

Initialize d[], which

will converge to

shortest-path value 

Relaxation:

Make |V|-1 passes,

relaxing each edge

Test for solution:

have we converged yet?

Ie,  negative cycle?

Review: Bellman-Ford Algorithm

BellmanFord()

 for each v  V
 d[v] = ;
 d[s] = 0;

 for i=1 to |V|-1

 for each edge (u,v)  E
 Relax(u,v, w(u,v));

 for each edge (u,v)  E
 if (d[v] > d[u] + w(u,v))

 return “no solution”;

Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w

What will be the

running time?

Review: Bellman-Ford

● Running time: O(VE)

■ Not so good for large dense graphs

■ But a very practical algorithm in many ways

● Note that order in which edges are processed affects

how quickly it converges (show example)

DAG Shortest Paths

● Problem: finding shortest paths in DAG

■ Bellman-Ford takes O(VE) time.

■ How can we do better?

■ Idea: use topological sort. How does it work again?

○ If were lucky and processes vertices on each shortest path

from left to right, would be done in one pass

○ Every path in a dag is subsequence of topologically sorted

vertex order, so processing verts in that order, we will do

each path in forward order (will never relax edges out of

vert before doing all edges into vert).

○ Thus: just one pass. What will be the running time?

Dijkstra’s Algorithm

● If no negative edge weights, we can beat BF

● Similar to breadth-first search

■ Grow a tree gradually, advancing from vertices

taken from a queue

● Also similar to Prim’s algorithm for MST

■ Use a priority queue keyed on d[v]

Dijkstra’s Algorithm

Dijkstra(G)

 for each v  V
 d[v] = ;
 d[s] = 0; S = ; Q = V;
 while (Q  )
 u = ExtractMin(Q);

 S = S U {u};

 for each v  u->Adj[]
 if (d[v] > d[u]+w(u,v))

 d[v] = d[u]+w(u,v);

Relaxation

Step Note: this

is really a

call to Q->DecreaseKey()

B

C

D A

10

4 3

2

1 5

Ex: run the algorithm

